
Title stata.com

ml — Maximum likelihood estimation

Syntax Description Options Remarks and examples
Stored results Methods and formulas References Also see

Syntax

ml model in interactive mode

ml model method progname eq
[

eq . . .
] [

if
] [

in
] [

weight
][

, model options svy diparm options
]

ml model method funcname() eq
[

eq . . .
] [

if
] [

in
] [

weight
][

, model options svy diparm options
]

ml model in noninteractive mode

ml model method progname eq
[

eq . . .
] [

if
] [

in
] [

weight
]
, maximize[

model options svy diparm options noninteractive options
]

ml model method funcname() eq
[

eq . . .
] [

if
] [

in
] [

weight
]
, maximize[

model options svy diparm options noninteractive options
]

Noninteractive mode is invoked by specifying the maximize option. Use maximize when ml will
be used as a subroutine of another ado-file or program and you want to carry forth the problem,
from definition to posting of results, in one command.

ml clear

ml query

ml check

ml search
[[

/
]
eqname

[
:
]

#lb #ub
] [

. . .
] [

, search options
]

ml plot
[

eqname:
]
name

[
#
[

#
[

#
]]] [

, saving(filename
[
, replace

]
)
]

ml init
{ [

eqname:
]
name=# | /eqname=#

} [
. . .
]

ml init #
[

. . .
]
, copy

ml init matname
[
, copy skip

]
ml report

ml trace
{
on | off

}
1

http://stata.com
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions

2 ml — Maximum likelihood estimation

ml count
[
clear | on | off

]
ml maximize

[
, ml maximize options display options eform option

]
ml graph

[
#
] [

, saving(filename
[
, replace

]
)
]

ml display
[
, display options eform option

]
ml footnote

ml score newvar
[

if
] [

in
] [

, equation(eqname) missing
]

ml score newvarlist
[

if
] [

in
] [

, missing
]

ml score
[

type
]

stub*
[

if
] [

in
] [

, missing
]

where method is one of
lf d0 lf0 gf0

d1 lf1
d1debug lf1debug
d2 lf2
d2debug lf2debug

or method can be specified using one of the longer, more descriptive names

method Longer name

lf linearform

d0 derivative0

d1 derivative1

d1debug derivative1debug

d2 derivative2

d2debug derivative2debug

lf0 linearform0

lf1 linearform1

lf1debug linearform1debug

lf2 linearform2

lf2debug linearform2debug

gf0 generalform0

eq is the equation to be estimated, enclosed in parentheses, and optionally with a name to be given
to the equation, preceded by a colon,

(
[

eqname:
] [

varlisty =
] [

varlistx
] [

, eq options
]
)

or eq is the name of a parameter, such as sigma, with a slash in front

/eqname which is equivalent to (eqname:)

and diparm options is one or more diparm(diparm args) options where diparm args is either
sep or anything accepted by the “undocumented” diparm command; see help diparm.

http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/d.pdf#ddatatypes
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.4varlists

ml — Maximum likelihood estimation 3

eq options Description

noconstant do not include an intercept in the equation
offset(varnameo) include varnameo in model with coefficient constrained to 1
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1

model options Description

group(varname) use varname to identify groups
vce(vcetype) vcetype may be robust, cluster clustvar, oim, or opg
constraints(numlist) constraints by number to be applied
constraints(matname) matrix that contains the constraints to be applied
nocnsnotes do not display notes when constraints are dropped
title(string) place a title on the estimation output
nopreserve do not preserve the estimation subsample in memory
collinear keep collinear variables within equations
missing keep observations containing variables with missing values
lf0(#k #ll) number of parameters and log-likelihood value of the

constant-only model
continue specifies that a model has been fit and sets the initial values

b0 for the model to be fit based on those results
waldtest(#) perform a Wald test; see Options for use with ml model in

interactive or noninteractive mode below
obs(#) number of observations
crittype(string) describe the criterion optimized by ml

subpop(varname) compute estimates for the single subpopulation
nosvyadjust carry out Wald test as W/k ∼ F (k, d)
technique(nr) Stata’s modified Newton–Raphson (NR) algorithm
technique(bhhh) Berndt–Hall–Hall–Hausman (BHHH) algorithm
technique(dfp) Davidon–Fletcher–Powell (DFP) algorithm
technique(bfgs) Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

noninteractive options Description

init(ml init args) set the initial values b0

search(on) equivalent to ml search, repeat(0); the default
search(norescale) equivalent to ml search, repeat(0) norescale

search(quietly) same as search(on), except that output is suppressed
search(off) prevents calling ml search

repeat(#) ml search’s repeat() option; see below
bounds(ml search bounds) specify bounds for ml search

nowarning suppress “convergence not achieved” message of iterate(0)
novce substitute the zero matrix for the variance matrix
negh indicates that the evaluator returns the negative Hessian matrix
score(newvars) new variables containing the contribution to the score
maximize options control the maximization process; seldom used

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/r.pdf#rvce_option
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u12.pdf#u12.4Strings
http://www.stata.com/manuals13/u12.pdf#u12.4Strings
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

4 ml — Maximum likelihood estimation

search options Description

repeat(#) number of random attempts to find better initial-value
vector; default is repeat(10) in interactive mode and
repeat(0) in noninteractive mode

restart use random actions to find starting values; not recommended
norescale do not rescale to improve parameter vector; not recommended
maximize options control the maximization process; seldom used

ml maximize options Description

nowarning suppress “convergence not achieved” message of iterate(0)
novce substitute the zero matrix for the variance matrix
negh indicates that the evaluator returns the negative Hessian matrix
score(newvars | stub*) new variables containing the contribution to the score
nooutput suppress display of final results
noclear do not clear ml problem definition after model has converged
maximize options control the maximization process; seldom used

display options Description

noheader suppress header display above the coefficient table
nofootnote suppress footnote display below the coefficient table
level(#) set confidence level; default is level(95)

first display coefficient table reporting results for first equation only
neq(#) display coefficient table reporting first # equations
showeqns display equation names in the coefficient table
plus display coefficient table ending in dashes–plus-sign–dashes
nocnsreport suppress constraints display above the coefficient table
noomitted suppress display of omitted variables
vsquish suppress blank space separating factor-variable terms or

time-series–operated variables from other variables
noemptycells suppress empty cells for interactions of factor variables
baselevels report base levels of factor variables and interactions
allbaselevels display all base levels of factor variables and interactions
cformat(% fmt) format the coefficients, standard errors, and confidence limits in

the coefficient table
pformat(% fmt) format the p-values in the coefficient table
sformat(% fmt) format the test statistics in the coefficient table
nolstretch do not automatically widen the coefficient table to accommodate

longer variable names
coeflegend display legend instead of statistics

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/d.pdf#dformat

ml — Maximum likelihood estimation 5

eform option Description

eform(string) display exponentiated coefficients; column title is “string”
eform display exponentiated coefficients; column title is “exp(b)”
hr report hazard ratios
shr report subhazard ratios
irr report incidence-rate ratios
or report odds ratios
rrr report relative-risk ratios

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. With all but method lf, you must
write your likelihood-evaluation program carefully if pweights are to be specified, and pweights may not be
specified with method d0, d1, d1debug, d2, or d2debug. See Gould, Pitblado, and Poi (2010, chap. 6) for details.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
To redisplay results, type ml display.

Syntax of subroutines for use by evaluator programs

mleval newvar = vecname
[
, eq(#)

]
mleval scalarname = vecname , scalar

[
eq(#)

]
mlsum scalarnamelnf = exp

[
if
] [

, noweight
]

mlvecsum scalarnamelnf rowvecname = exp
[

if
] [

, eq(#)
]

mlmatsum scalarnamelnf matrixname = exp
[

if
] [

, eq(#
[
,#
]
)
]

mlmatbysum scalarnamelnf matrixname varnamea varnameb
[

varnamec
] [

if
]
,

by(varname)
[

eq(#
[
,#
]
)
]

Syntax of user-written evaluator

Summary of notation
The log-likelihood function is lnL(θ1j , θ2j , . . . , θEj), where θij = xijbi, j = 1, . . . , N indexes
observations, and i = 1, . . . , E indexes the linear equations defined by ml model. If the likelihood
satisfies the linear-form restrictions, it can be decomposed as lnL =

∑N
j=1 ln `(θ1j , θ2j , . . . , θEj).

Method-lf evaluators
program progname

version 13
args lnfj theta1 theta2 . . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
quietly gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .

end

http://www.stata.com/manuals13/u12.pdf#u12.4Strings
http://www.stata.com/manuals13/u11.pdf#u11.1.6weight
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

6 ml — Maximum likelihood estimation

where
‘lnfj’ variable to be filled in with observation-by-observation values of ln`j
‘theta1’ variable containing evaluation of first equation θ1j=x1jb1

‘theta2’ variable containing evaluation of second equation θ2j=x2jb2

. . .

Method-d0 evaluators
program progname

version 13
args todo b lnf

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
mlsum ‘lnf’ = . . .

end

where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnf’ scalar to be filled in with overall lnL

Method-d1 evaluators
program progname

version 13
args todo b lnf g

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
mlsum ‘lnf’ = . . .
if (‘todo’==0 | ‘lnf’>=.) exit

tempname d1 d2 . . .
mlvecsum ‘lnf’ ‘d1’ = formula for ∂ ln`j/∂θ1j, eq(1)
mlvecsum ‘lnf’ ‘d2’ = formula for ∂ ln`j/∂θ2j, eq(2)
. . .
matrix ‘g’ = (‘d1’,‘d2’, . . .)

end

where
‘todo’ contains 0 or 1

0⇒‘lnf’to be filled in;
1⇒‘lnf’ and ‘g’ to be filled in

‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnf’ scalar to be filled in with overall lnL
‘g’ row vector to be filled in with overall g=∂ lnL/∂b

ml — Maximum likelihood estimation 7

Method-d2 evaluators
program progname

version 13
args todo b lnf g H

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
mlsum ‘lnf’ = . . .
if (‘todo’==0 | ‘lnf’>=.) exit

tempname d1 d2 . . .
mlvecsum ‘lnf’ ‘d1’ = formula for ∂ ln`j/∂θ1j, eq(1)
mlvecsum ‘lnf’ ‘d2’ = formula for ∂ ln`j/∂θ2j, eq(2)
. . .
matrix ‘g’ = (‘d1’,‘d2’, . . .)
if (‘todo’==1 | ‘lnf’>=.) exit

tempname d11 d12 d22 . . .
mlmatsum ‘lnf’ ‘d11’ = formula for ∂2 ln`j/∂θ21j, eq(1)

mlmatsum ‘lnf’ ‘d12’ = formula for ∂2 ln`j/∂θ1j∂θ2j, eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = formula for ∂2 ln`j/∂θ22j, eq(2)
. . .
matrix ‘H’ = (‘d11’,‘d12’, . . . \ ‘d12’’,‘d22’, . . .)

end

where
‘todo’ contains 0, 1, or 2

0⇒‘lnf’ to be filled in;
1⇒‘lnf’ and ‘g’ to be filled in;
2⇒‘lnf’, ‘g’, and ‘H’ to be filled in

‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnf’ scalar to be filled in with overall lnL
‘g’ row vector to be filled in with overall g=∂ lnL/∂b
‘H’ matrix to be filled in with overall Hessian H=∂2 lnL/∂b∂b′

Method-lf0 evaluators
program progname

version 13
args todo b lnfj

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .

end

where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnfj’ variable to be filled in with observation-by-observation values of ln`j

8 ml — Maximum likelihood estimation

Method-lf1 evaluators
program progname

version 13
args todo b lnfj g1 g2 . . .
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .
if (‘todo’==0) exit

quietly replace ‘g1’ = formula for ∂ ln`j/∂θ1j
quietly replace ‘g2’ = formula for ∂ ln`j/∂θ2j
. . .

end

where
‘todo’ contains 0 or 1

0⇒‘lnfj’to be filled in;
1⇒‘lnfj’, ‘g1’, ‘g2’, . . ., to be filled in

‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnfj’ variable to be filled in with observation-by-observation values of ln`j
‘g1’ variable to be filled in with ∂ ln`j/∂θ1j
‘g2’ variable to be filled in with ∂ ln`j/∂θ2j
. . .

Method-lf2 evaluators
program progname

version 13
args todo b lnfj g1 g2 . . . H

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .
if (‘todo’==0) exit

quietly replace ‘g1’ = formula for ∂ ln`j/∂θ1j
quietly replace ‘g2’ = formula for ∂ ln`j/∂θ2j
. . .
if (‘todo’==1) exit

tempname d11 d12 d22 lnf . . .
mlmatsum ‘lnf’ ‘d11’ = formula for ∂2 ln`j/∂θ21j, eq(1)

mlmatsum ‘lnf’ ‘d12’ = formula for ∂2 ln`j/∂θ1j∂θ2j, eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = formula for ∂2 ln`j/∂θ22j, eq(2)
. . .
matrix ‘H’ = (‘d11’,‘d12’, . . . \ ‘d12’’,‘d22’, . . .)

end

ml — Maximum likelihood estimation 9

where
‘todo’ contains 0 or 1

0⇒‘lnfj’to be filled in;
1⇒‘lnfj’, ‘g1’, ‘g2’, . . ., to be filled in
2⇒‘lnfj’, ‘g1’, ‘g2’, . . ., and ‘H’ to be filled in

‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnfj’ scalar to be filled in with observation-by-observation lnL
‘g1’ variable to be filled in with ∂ ln`j/∂θ1j
‘g2’ variable to be filled in with ∂ ln`j/∂θ2j
. . .
‘H’ matrix to be filled in with overall Hessian H=∂2 lnL/∂b∂b′

Method-gf0 evaluators
program progname

version 13
args todo b lnfj

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .

end

where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnfj’ variable to be filled in with the values of the log-likelihood ln`j

Global macros for use by all evaluators
$ML y1 name of first dependent variable
$ML y2 name of second dependent variable, if any
. . .
$ML samp variable containing 1 if observation to be used; 0 otherwise
$ML w variable containing weight associated with observation or 1 if no weights specified

Method-lf evaluators can ignore $ML samp, but restricting calculations to the $ML samp==1
subsample will speed execution. Method-lf evaluators must ignore $ML w; application of weights
is handled by the method itself.

Methods d0, d1, d2, lf0, lf1, lf2, and gf0 can ignore $ML samp as long as ml model’s nopreserve
option is not specified. These methods will run more quickly if nopreserve is specified. These
evaluators can ignore $ML w only if they use mlsum, mlvecsum, mlmatsum, and mlmatbysum to
produce all final results.

Description
ml model defines the current problem.

ml clear clears the current problem definition. This command is rarely used because when you type
ml model, any previous problem is automatically cleared.

ml query displays a description of the current problem.

ml check verifies that the log-likelihood evaluator you have written works. We strongly recommend
using this command.

10 ml — Maximum likelihood estimation

ml search searches for (better) initial values. We recommend using this command.

ml plot provides a graphical way of searching for (better) initial values.

ml init provides a way to specify initial values.

ml report reports lnL’s values, gradient, and Hessian at the initial values or current parameter
estimates, b0.

ml trace traces the execution of the user-defined log-likelihood evaluation program.

ml count counts the number of times the user-defined log-likelihood evaluation program is called;
this command is seldom used. ml count clear clears the counter. ml count on turns on the
counter. ml count without arguments reports the current values of the counter. ml count off
stops counting calls.

ml maximize maximizes the likelihood function and reports results. Once ml maximize has success-
fully completed, the previously mentioned ml commands may no longer be used unless noclear
is specified. ml graph and ml display may be used whether or not noclear is specified.

ml graph graphs the log-likelihood values against the iteration number.

ml display redisplays results.

ml footnote displays a warning message when the model did not converge within the specified
number of iterations.

ml score creates new variables containing the equation-level scores. The variables generated by ml
score are equivalent to those generated by specifying the score() option of ml maximize (and
ml model . . . , . . . maximize).

progname is the name of a Stata program you write to evaluate the log-likelihood function.

funcname() is the name of a Mata function you write to evaluate the log-likelihood function.

In this documentation, progname and funcname() are referred to as the user-written evaluator, the
likelihood evaluator, or sometimes simply as the evaluator. The program you write is written in
the style required by the method you choose. The methods are lf, d0, d1, d2, lf0, lf1, lf2, and
gf0. Thus, if you choose to use method lf, your program is called a method-lf evaluator.

Method-lf evaluators are required to evaluate the observation-by-observation log likelihood ln `j ,
j = 1, . . . , N .

Method-d0 evaluators are required to evaluate the overall log likelihood lnL. Method-d1 evaluators
are required to evaluate the overall log likelihood and its gradient vector g = ∂ lnL/∂b. Method-d2
evaluators are required to evaluate the overall log likelihood, its gradient, and its Hessian matrix
H = ∂2lnL/∂b∂b′.

Method-lf0 evaluators are required to evaluate the observation-by-observation log likelihood ln `j ,
j = 1, . . . , N . Method-lf1 evaluators are required to evaluate the observation-by-observation log
likelihood and its equation-level scores gji = ∂ln `/∂xjibi. Method-lf2 evaluators are required to
evaluate the observation-by-observation log likelihood, its equation-level scores, and its Hessian
matrix H = ∂2ln `/∂b∂b′.

Method-gf0 evaluators are required to evaluate the summable pieces of the log likelihood ln `k,
k = 1, . . . ,K.

mleval is a subroutine used by evaluators of methods d0, d1, d2, lf0, lf1, lf2, and gf0 to evaluate
the coefficient vector, b, that they are passed.

mlsum is a subroutine used by evaluators of methods d0, d1, and d2 to define the value, lnL, that is
to be returned.

ml — Maximum likelihood estimation 11

mlvecsum is a subroutine used by evaluators of methods d1 and d2 to define the gradient vector, g,
that is to be returned. It is suitable for use only when the likelihood function meets the linear-form
restrictions.

mlmatsum is a subroutine used by evaluators of methods d2 and lf2 to define the Hessian matrix, H,
that is to be returned. It is suitable for use only when the likelihood function meets the linear-form
restrictions.

mlmatbysum is a subroutine used by evaluator of method d2 to help define the Hessian matrix, H,
that is to be returned. It is suitable for use when the likelihood function contains terms made
up of grouped sums, such as in panel-data models. For such models, use mlmatsum to compute
the observation-level outer products and mlmatbysum to compute the group-level outer products.
mlmatbysum requires that the data be sorted by the variable identified in the by() option.

Options
Options are presented under the following headings:

Options for use with ml model in interactive or noninteractive mode
Options for use with ml model in noninteractive mode
Options for use when specifying equations
Options for use with ml search
Option for use with ml plot
Options for use with ml init
Options for use with ml maximize
Option for use with ml graph
Options for use with ml display
Options for use with mleval
Option for use with mlsum
Option for use with mlvecsum
Option for use with mlmatsum
Options for use with mlmatbysum
Options for use with ml score

Options for use with ml model in interactive or noninteractive mode

group(varname) specifies the numeric variable that identifies groups. This option is typically used
to identify panels for panel-data models.

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar),
and that are derived from asymptotic theory (oim, opg); see [R] vce option.

vce(robust), vce(cluster clustvar), pweight, and svy will work with evaluators of methods
lf, lf0, lf1, lf2, and gf0; all you need do is specify them.

These options will not work with evaluators of methods d0, d1, or d2, and specifying these options
will produce an error message.

constraints(numlist |matname) specifies the linear constraints to be applied during estimation.
constraints(numlist) specifies the constraints by number. Constraints are defined by using
the constraint command; see [R] constraint. constraint(matname) specifies a matrix that
contains the constraints.

nocnsnotes prevents notes from being displayed when constraints are dropped. A constraint will
be dropped if it is inconsistent, contradicts other constraints, or causes some other error when the
constraint matrix is being built. Constraints are checked in the order in which they are specified.

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/rvce_option.pdf#rvce_option
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/rconstraint.pdf#rconstraint

12 ml — Maximum likelihood estimation

title(string) specifies the title for the estimation output when results are complete.

nopreserve specifies that ml need not ensure that only the estimation subsample is in memory when
the user-written likelihood evaluator is called. nopreserve is irrelevant when you use method lf.

For the other methods, if nopreserve is not specified, ml saves the data in a file (preserves the
original dataset) and drops the irrelevant observations before calling the user-written evaluator.
This way, even if the evaluator does not restrict its attentions to the $ML samp==1 subsample,
results will still be correct. Later, ml automatically restores the original dataset.

ml need not go through these machinations for method lf because the user-written evaluator
calculates observation-by-observation values, and ml itself sums the components.

ml goes through these machinations if and only if the estimation sample is a subsample of the data
in memory. If the estimation sample includes every observation in memory, ml does not preserve
the original dataset. Thus programmers must not alter the original dataset unless they preserve
the data themselves.

We recommend that interactive users of ml not specify nopreserve; the speed gain is not worth
the possibility of getting incorrect results.

We recommend that programmers specify nopreserve, but only after verifying that their evaluator
really does restrict its attentions solely to the $ML samp==1 subsample.

collinear specifies that ml not remove the collinear variables within equations. There is no reason
to leave collinear variables in place, but this option is of interest to programmers who, in their code,
have already removed collinear variables and do not want ml to waste computer time checking
again.

missing specifies that observations containing variables with missing values not be eliminated from
the estimation sample. There are two reasons you might want to specify missing:

Programmers may wish to specify missing because, in other parts of their code, they have already
eliminated observations with missing values and do not want ml to waste computer time looking
again.

You may wish to specify missing if your model explicitly deals with missing values. Stata’s
heckman command is a good example of this. In such cases, there will be observations where
missing values are allowed and other observations where they are not—where their presence should
cause the observation to be eliminated. If you specify missing, it is your responsibility to specify
an if exp that eliminates the irrelevant observations.

lf0(#k #ll) is typically used by programmers. It specifies the number of parameters and log-likelihood
value of the constant-only model so that ml can report a likelihood-ratio test rather than a Wald
test. These values may have been analytically determined, or they may have been determined by
a previous fitting of the constant-only model on the estimation sample.

Also see the continue option directly below.

If you specify lf0(), it must be safe for you to specify the missing option, too, else how did
you calculate the log likelihood for the constant-only model on the same sample? You must have
identified the estimation sample, and done so correctly, so there is no reason for ml to waste time
rechecking your results. All of which is to say, do not specify lf0() unless you are certain your
code identifies the estimation sample correctly.

lf0(), even if specified, is ignored if vce(robust), vce(cluster clustvar), pweight, or svy
is specified because, in that case, a likelihood-ratio test would be inappropriate.

http://www.stata.com/manuals13/u12.pdf#u12.4Strings

ml — Maximum likelihood estimation 13

continue is typically specified by programmers and does two things:

First, it specifies that a model has just been fit by either ml or some other estimation command,
such as logit, and that the likelihood value stored in e(ll) and the number of parameters stored
in e(b) as of that instant are the relevant values of the constant-only model. The current value of
the log likelihood is used to present a likelihood-ratio test unless vce(robust), vce(cluster
clustvar), pweight, svy, or constraints() is specified. A likelihood-ratio test is inappropriate
when vce(robust), vce(cluster clustvar), pweight, or svy is specified. We suggest using
lrtest when constraints() is specified; see [R] lrtest.

Second, continue sets the initial values, b0, for the model about to be fit according to the e(b)
currently stored.

The comments made about specifying missing with lf0() apply equally well here.

waldtest(#) is typically specified by programmers. By default, ml presents a Wald test, but that is
overridden if the lf0() or continue option is specified. A Wald test is performed if vce(robust),
vce(cluster clustvar), or pweight is specified.

waldtest(0) prevents even the Wald test from being reported.

waldtest(-1) is the default. It specifies that a Wald test be performed by constraining all coeffi-
cients except the intercept to 0 in the first equation. Remaining equations are to be unconstrained.
A Wald test is performed if neither lf0() nor continue was specified, and a Wald test is forced
if vce(robust), vce(cluster clustvar), or pweight was specified.

waldtest(k) for k ≤ −1 specifies that a Wald test be performed by constraining all coefficients
except intercepts to 0 in the first |k| equations; remaining equations are to be unconstrained. A
Wald test is performed if neither lf0() nor continue was specified, and a Wald test is forced if
vce(robust), vce(cluster clustvar), or pweight was specified.

waldtest(k) for k ≥ 1 works like the options above, except that it forces a Wald test to be
reported even if the information to perform the likelihood-ratio test is available and even if none of
vce(robust), vce(cluster clustvar), or pweight was specified. waldtest(k), k ≥ 1, may
not be specified with lf0().

obs(#) is used mostly by programmers. It specifies that the number of observations reported and
ultimately stored in e(N) be #. Ordinarily, ml works that out for itself. Programmers may want
to specify this option when, for the likelihood evaluator to work for N observations, they first had
to modify the dataset so that it contained a different number of observations.

crittype(string) is used mostly by programmers. It allows programmers to supply a string (up to
32 characters long) that describes the criterion that is being optimized by ml. The default is "log
likelihood" for nonrobust and "log pseudolikelihood" for robust estimation.

svy indicates that ml is to pick up the svy settings set by svyset and use the robust variance
estimator. This option requires the data to be svyset; see [SVY] svyset. svy may not be specified
with vce() or weights.

subpop(varname) specifies that estimates be computed for the single subpopulation defined by the
observations for which varname 6= 0. Typically, varname = 1 defines the subpopulation, and
varname = 0 indicates observations not belonging to the subpopulation. For observations whose
subpopulation status is uncertain, varname should be set to missing (‘.’). This option requires the
svy option.

nosvyadjust specifies that the model Wald test be carried out as W/k ∼ F (k, d), where W is the
Wald test statistic, k is the number of terms in the model excluding the constant term, d is the total
number of sampled PSUs minus the total number of strata, and F (k, d) is an F distribution with
k numerator degrees of freedom and d denominator degrees of freedom. By default, an adjusted

http://www.stata.com/manuals13/rlrtest.pdf#rlrtest
http://www.stata.com/manuals13/u12.pdf#u12.4Strings
http://www.stata.com/manuals13/svysvyset.pdf#svysvyset
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

14 ml — Maximum likelihood estimation

Wald test is conducted: (d− k + 1)W/(kd) ∼ F (k, d− k + 1). See Korn and Graubard (1990)
for a discussion of the Wald test and the adjustments thereof. This option requires the svy option.

technique(algorithm spec) specifies how the likelihood function is to be maximized. The following
algorithms are currently implemented in ml. For details, see Gould, Pitblado, and Poi (2010).

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(bhhh) specifies the Berndt–Hall–Hall–Hausman (BHHH) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The default is technique(nr).

You can switch between algorithms by specifying more than one in the technique() option. By
default, ml will use an algorithm for five iterations before switching to the next algorithm. To
specify a different number of iterations, include the number after the technique in the option. For
example, technique(bhhh 10 nr 1000) requests that ml perform 10 iterations using the BHHH
algorithm, followed by 1,000 iterations using the NR algorithm, and then switch back to BHHH for
10 iterations, and so on. The process continues until convergence or until reaching the maximum
number of iterations.

Options for use with ml model in noninteractive mode

The following extra options are for use with ml model in noninteractive mode. Noninteractive
mode is for programmers who use ml as a subroutine and want to issue one command that will carry
forth the estimation from start to finish.

maximize is required. It specifies noninteractive mode.

init(ml init args) sets the initial values, b0. ml init args are whatever you would type after the
ml init command.

search(on | norescale | quietly | off) specifies whether ml search is to be used to improve the
initial values. search(on) is the default and is equivalent to separately running ml search, re-
peat(0). search(norescale) is equivalent to separately running ml search, repeat(0)
norescale. search(quietly) is equivalent to search(on), except that it suppresses ml
search’s output. search(off) prevents calling ml search.

repeat(#) is ml search’s repeat() option. repeat(0) is the default.

bounds(ml search bounds) specifies the search bounds. ml search bounds is specified as[
eqn name

]
lower bound upper bound . . .

[
eqn name

]
lower bound upper bound

for instance, bounds(100 100 lnsigma 0 10). The ml model command issues ml search
ml search bounds, repeat(#). Specifying search bounds is optional.

nowarning, novce, negh, and score() are ml maximize’s equivalent options.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

http://www.stata.com/manuals13/rmaximize.pdf#rmaximize

ml — Maximum likelihood estimation 15

Options for use when specifying equations

noconstant specifies that the equation not include an intercept.

offset(varnameo) specifies that the equation be xb + varnameo—that it include varnameo with
coefficient constrained to be 1.

exposure(varnamee) is an alternative to offset(varnameo); it specifies that the equation be
xb+ ln(varnamee). The equation is to include ln(varnamee) with coefficient constrained to be 1.

Options for use with ml search

repeat(#) specifies the number of random attempts that are to be made to find a better initial-value
vector. The default is repeat(10).

repeat(0) specifies that no random attempts be made. More precisely, repeat(0) specifies that
no random attempts be made if the first initial-value vector is a feasible starting point. If it is
not, ml search will make random attempts, even if you specify repeat(0), because it has no
alternative. The repeat() option refers to the number of random attempts to be made to improve
the initial values. When the initial starting value vector is not feasible, ml search will make up to
1,000 random attempts to find starting values. It stops when it finds one set of values that works
and then moves into its improve-initial-values logic.

repeat(k), k > 0, specifies the number of random attempts to be made to improve the initial
values.

restart specifies that random actions be taken to obtain starting values and that the resulting starting
values not be a deterministic function of the current values. Generally, you should not specify this
option because, with restart, ml search intentionally does not produce as good a set of starting
values as it could. restart is included for use by the optimizer when it gets into serious trouble.
The random actions ensure that the optimizer and ml search, working together, do not cause an
endless loop.

restart implies norescale, which is why we recommend that you do not specify restart.
In testing, sometimes rescale worked so well that, even after randomization, the rescaler would
bring the starting values right back to where they had been the first time and thus defeat the
intended randomization.

norescale specifies that ml search not engage in its rescaling actions to improve the parameter
vector. We do not recommend specifying this option because rescaling tends to work so well.

maximize options:
[
no
]
log and trace; see [R] maximize. These options are seldom used.

Option for use with ml plot

saving(filename[, replace]) specifies that the graph be saved in filename.gph.
See [G-3] saving option.

Options for use with ml init

copy specifies that the list of numbers or the initialization vector be copied into the initial-value
vector by position rather than by name.

skip specifies that any parameters found in the specified initialization vector that are not also found
in the model be ignored. The default action is to issue an error message.

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/g-3saving_option.pdf#g-3saving_option

16 ml — Maximum likelihood estimation

Options for use with ml maximize

nowarning is allowed only with iterate(0). nowarning suppresses the “convergence not achieved”
message. Programmers might specify iterate(0) nowarning when they have a vector b already
containing the final estimates and want ml to calculate the variance matrix and postestimation
results. Then specify init(b) search(off) iterate(0) nowarning nolog.

novce is allowed only with iterate(0). novce substitutes the zero matrix for the variance matrix,
which in effect posts estimation results as fixed constants.

negh indicates that the evaluator returns the negative Hessian matrix. By default, ml assumes d2 and
lf2 evaluators return the Hessian matrix.

score(newvars | stub*) creates new variables containing the contributions to the score for each
equation and ancillary parameter in the model; see [U] 20.22 Obtaining scores.

If score(newvars) is specified, the newvars must contain k new variables. For evaluators of
methods lf, lf0, lf1, and lf2, k is the number of equations. For evaluators of method gf0, k is the
number of parameters. If score(stub*) is specified, variables named stub1, stub2, . . . , stubk are
created.

For evaluators of methods lf, lf0, lf1, and lf2, the first variable contains ∂ln `j/∂(x1jb1), the
second variable contains ∂ln `j/∂(x2jb2), and so on.

For evaluators of method gf0, the first variable contains ∂ln `j/∂b1, the second variable contains
∂ln `j/∂b2, and so on.

nooutput suppresses display of results. This option is different from prefixing ml maximize with
quietly in that the iteration log is still displayed (assuming that nolog is not specified).

noclear specifies that the ml problem definition not be cleared after the model has converged.
Perhaps you are having convergence problems and intend to run the model to convergence. If so,
use ml search to see if those values can be improved, and then restart the estimation.

maximize options: difficult, iterate(#),
[
no
]
log, trace, gradient, showstep, hessian,

showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance; see
[R] maximize. These options are seldom used.

display options; see Options for use with ml display below.

eform option; see Options for use with ml display below.

Option for use with ml graph

saving(filename[, replace]) specifies that the graph be saved in filename.gph.
See [G-3] saving option.

Options for use with ml display

noheader suppresses the header display above the coefficient table that displays the final log-likelihood
value, the number of observations, and the model significance test.

nofootnote suppresses the footnote display below the coefficient table, which displays a warning
if the model fit did not converge within the specified number of iterations. Use ml footnote to
display the warning if 1) you add to the coefficient table using the plus option or 2) you have
your own footnotes and want the warning to be last.

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u20.pdf#u20.22Obtainingscores
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/g-3saving_option.pdf#g-3saving_option

ml — Maximum likelihood estimation 17

level(#) is the standard confidence-level option. It specifies the confidence level, as a percentage,
for confidence intervals of the coefficients. The default is level(95) or as set by set level;
see [U] 20.7 Specifying the width of confidence intervals.

first displays a coefficient table reporting results for the first equation only, and the report makes
it appear that the first equation is the only equation. This option is used by programmers who
estimate ancillary parameters in the second and subsequent equations and who wish to report the
values of such parameters themselves.

neq(#) is an alternative to first. neq(#) displays a coefficient table reporting results for the first
equations. This option is used by programmers who estimate ancillary parameters in the # + 1
and subsequent equations and who wish to report the values of such parameters themselves.

showeqns is a seldom-used option that displays the equation names in the coefficient table. ml
display uses the numbers stored in e(k eq) and e(k aux) to determine how to display the
coefficient table. e(k eq) identifies the number of equations, and e(k aux) identifies how many
of these are for ancillary parameters. The first option is implied when showeqns is not specified
and all but the first equation are for ancillary parameters.

plus displays the coefficient table, but rather than ending the table in a line of dashes, ends it in
dashes–plus-sign–dashes. This is so that programmers can write additional display code to add
more results to the table and make it appear as if the combined result is one table. Programmers
typically specify plus with the first or neq() options. This option implies nofootnote.

nocnsreport suppresses the display of constraints above the coefficient table. This option is ignored
if constraints were not used to fit the model.

noomitted specifies that variables that were omitted because of collinearity not be displayed. The
default is to include in the table any variables omitted because of collinearity and to label them
as “(omitted)”.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated variables
from other variables in the model be suppressed.

noemptycells specifies that empty cells for interactions of factor variables not be displayed. The
default is to include in the table interaction cells that do not occur in the estimation sample and
to label them as “(empty)”.

baselevels and allbaselevels control whether the base levels of factor variables and interactions
are displayed. The default is to exclude from the table all base categories.

baselevels specifies that base levels be reported for factor variables and for interactions whose
bases cannot be inferred from their component factor variables.

allbaselevels specifies that all base levels of factor variables and interactions be reported.

cformat(% fmt) specifies how to format coefficients, standard errors, and confidence limits in the
coefficient table.

pformat(% fmt) specifies how to format p-values in the coefficient table.

sformat(% fmt) specifies how to format test statistics in the coefficient table.

nolstretch specifies that the width of the coefficient table not be automatically widened to accom-
modate longer variable names. The default, lstretch, is to automatically widen the coefficient
table up to the width of the Results window. To change the default, use set lstretch off.
nolstretch is not shown in the dialog box.

coeflegend specifies that the legend of the coefficients and how to specify them in an expression
be displayed rather than displaying the statistics for the coefficients.

http://www.stata.com/manuals13/u20.pdf#u20.7Specifyingthewidthofconfidenceintervals
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/d.pdf#dformat

18 ml — Maximum likelihood estimation

eform option: eform(string), eform, hr, shr, irr, or, and rrr display the coefficient table in
exponentiated form: for each coefficient, exp(b) rather than b is displayed, and standard errors and
confidence intervals are transformed. string is the table header that will be displayed above the
transformed coefficients and must be 11 characters or shorter in length—for example, eform("Odds
ratio"). The options eform, hr, shr, irr, or, and rrr provide a default string equivalent to
“exp(b)”, “Haz. Ratio”, “SHR”, “IRR”, “Odds Ratio”, and “RRR”, respectively. These options
may not be combined.

ml display looks at e(k eform) to determine how many equations are affected by an
eform option; by default, only the first equation is affected. Type ereturn list, all to view
e(k eform); see [P] ereturn.

Options for use with mleval

eq(#) specifies the equation number, i, for which θij = xijbi is to be evaluated. eq(1) is assumed
if eq() is not specified.

scalar asserts that the ith equation is known to evaluate to a constant, meaning that the equation
was specified as (), (name:), or /name on the ml model statement. If you specify this option,
the new variable created is created as a scalar. If the ith equation does not evaluate to a scalar,
an error message is issued.

Option for use with mlsum

noweight specifies that weights ($ML w) be ignored when summing the likelihood function.

Option for use with mlvecsum

eq(#) specifies the equation for which a gradient vector ∂lnL/∂bi is to be constructed. The default
is eq(1).

Option for use with mlmatsum

eq(#
[
,#
]
) specifies the equations for which the Hessian matrix is to be constructed. The default is

eq(1), which is the same as eq(1,1), which means ∂2lnL/∂b1∂b
′
1. Specifying eq(i,j) results

in ∂2lnL/∂bi∂b′j .

Options for use with mlmatbysum
by(varname) is required and specifies the group variable.

eq(#
[
,#
]
) specifies the equations for which the Hessian matrix is to be constructed. The default is

eq(1), which is the same as eq(1,1), which means ∂2lnL/∂b1∂b
′
1. Specifying eq(i,j) results

in ∂2lnL/∂bi∂b′j .

Options for use with ml score
equation(eqname) identifies from which equation the observation scores are to come. This option

may be used only when generating one variable.

missing specifies that observations containing variables with missing values not be eliminated from
the estimation sample.

http://www.stata.com/manuals13/u12.pdf#u12.4Strings
http://www.stata.com/manuals13/pereturn.pdf#pereturn
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

ml — Maximum likelihood estimation 19

Remarks and examples stata.com

For a thorough discussion of ml, see the fourth edition of Maximum Likelihood Estimation with Stata
(Gould, Pitblado, and Poi 2010). The book provides a tutorial introduction to ml, notes on advanced
programming issues, and a discourse on maximum likelihood estimation from both theoretical and
practical standpoints. See Survey options and ml at the end of Remarks and examples for examples
of the new svy options. For more information about survey estimation, see [SVY] survey, [SVY] svy
estimation, and [SVY] variance estimation.

ml requires that you write a program that evaluates the log-likelihood function and, possibly, its
first and second derivatives. The style of the program you write depends upon the method you choose.
Methods lf, lf0, d0, and gf0 require that your program evaluate the log likelihood only. Methods d1
and lf1 require that your program evaluate the log likelihood and its first derivatives. Methods d2
and lf2 requires that your program evaluate the log likelihood and its first and second derivatives.
Methods lf, lf0, d0, and gf0 differ from each other in that, with methods lf and lf0, your program
is required to produce observation-by-observation log-likelihood values ln `j and it is assumed that
lnL =

∑
j ln `j ; with method d0, your program is required to produce only the overall value lnL;

and with method gf0, your program is required to produce the summable pieces of the log likelihood,
such as those in panel-data models.

Once you have written the program—called an evaluator—you define a model to be fit using ml
model and obtain estimates using ml maximize. You might type

. ml model . . .

. ml maximize

but we recommend that you type

. ml model . . .

. ml check

. ml search

. ml maximize

ml check verifies your evaluator has no obvious errors, and ml search finds better initial values.

You fill in the ml model statement with 1) the method you are using, 2) the name of your
program, and 3) the “equations”. You write your evaluator in terms of θ1, θ2, . . . , each of which
has a linear equation associated with it. That linear equation might be as simple as θi = b0, it might
be θi = b1mpg + b2weight + b3, or it might omit the intercept b3. The equations are specified in
parentheses on the ml model line.

Suppose that you are using method lf and the name of your evaluator program is myprog. The
statement

. ml model lf myprog (mpg weight)

would specify one equation with θi = b1mpg+ b2weight+ b3. If you wanted to omit b3, you would
type

. ml model lf myprog (mpg weight, nocons)

and if all you wanted was θi = b0, you would type

. ml model lf myprog ()

With multiple equations, you list the equations one after the other; so, if you typed

. ml model lf myprog (mpg weight) ()

http://stata.com
http://www.stata.com/manuals13/svysurvey.pdf#svysurvey
http://www.stata.com/manuals13/svysvyestimation.pdf#svysvyestimation
http://www.stata.com/manuals13/svysvyestimation.pdf#svysvyestimation
http://www.stata.com/manuals13/svyvarianceestimation.pdf#svyvarianceestimation

20 ml — Maximum likelihood estimation

you would be specifying θ1 = b1mpg+ b2weight+ b3 and θ2 = b4. You would write your likelihood
in terms of θ1 and θ2. If the model was linear regression, θ1 might be the xb part and θ2 the variance
of the residuals.

When you specify the equations, you also specify any dependent variables. If you typed

. ml model lf myprog (price = mpg weight) ()

price would be the one and only dependent variable, and that would be passed to your program in
$ML y1. If your model had two dependent variables, you could type

. ml model lf myprog (price displ = mpg weight) ()

Then $ML y1 would be price and $ML y2 would be displ. You can specify however many dependent
variables are necessary and specify them on any equation. It does not matter on which equation you
specify them; the first one specified is placed in $ML y1, the second in $ML y2, and so on.

Example 1: Method lf

Using method lf, we want to produce observation-by-observation values of the log likelihood. The
probit log-likelihood function is

ln `j =

{
ln Φ(θ1j) if yj = 1
ln Φ(−θ1j) if yj = 0

θ1j = xjb1

The following is the method-lf evaluator for this likelihood function:

program myprobit
version 13
args lnf theta1
quietly replace ‘lnf’ = ln(normal(‘theta1’)) if $ML_y1==1
quietly replace ‘lnf’ = ln(normal(-‘theta1’)) if $ML_y1==0

end

If we wanted to fit a model of foreign on mpg and weight, we would type the following
commands. The ‘foreign =’ part specifies that y is foreign. The ‘mpg weight’ part specifies that
θ1j = b1mpgj + b2weightj + b3.

ml — Maximum likelihood estimation 21

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. ml model lf myprobit (foreign = mpg weight)

. ml maximize

initial: log likelihood = -51.292891
alternative: log likelihood = -45.055272
rescale: log likelihood = -45.055272
Iteration 0: log likelihood = -45.055272
Iteration 1: log likelihood = -27.905385
Iteration 2: log likelihood = -26.858058
Iteration 3: log likelihood = -26.844198
Iteration 4: log likelihood = -26.844189
Iteration 5: log likelihood = -26.844189

Number of obs = 74
Wald chi2(2) = 20.75

Log likelihood = -26.844189 Prob > chi2 = 0.0000

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg -.1039503 .0515689 -2.02 0.044 -.2050235 -.0028772
weight -.0023355 .0005661 -4.13 0.000 -.003445 -.0012261
_cons 8.275464 2.554142 3.24 0.001 3.269438 13.28149

Example 2: Method lf for two-equation, two-dependent-variable model

A two-equation, two-dependent-variable model is a little different. Rather than receiving one θ,
our program will receive two. Rather than there being one dependent variable in $ML y1, there will
be dependent variables in $ML y1 and $ML y2. For instance, the Weibull regression log-likelihood
function is

ln `j = −(tje
−θ1j)exp(θ2j) + dj{θ2j − θ1j + (eθ2j − 1)(ln tj − θ1j)}

θ1j = xjb1

θ2j = s

where tj is the time of failure or censoring and dj = 1 if failure and 0 if censored. We can make
the log likelihood a little easier to program by introducing some extra variables:

pj = exp(θ2j)

Mj = {tj exp(−θ1j)}pj

Rj = ln tj − θ1j
ln `j = −Mj + dj{θ2j − θ1j + (pj − 1)Rj}

The method-lf evaluator for this is
program myweib

version 13
args lnf theta1 theta2

tempvar p M R
quietly gen double ‘p’ = exp(‘theta2’)
quietly gen double ‘M’ = ($ML_y1*exp(-‘theta1’))^‘p’
quietly gen double ‘R’ = ln($ML_y1)-‘theta1’

quietly replace ‘lnf’ = -‘M’ + $ML_y2*(‘theta2’-‘theta1’ + (‘p’-1)*‘R’)
end

22 ml — Maximum likelihood estimation

We can fit a model by typing

. ml model lf myweib (studytime died = i.drug age) ()

. ml maximize

Note that we specified ‘()’ for the second equation. The second equation corresponds to the Weibull
shape parameter s, and the linear combination we want for s contains just an intercept. Alternatively,
we could type

. ml model lf myweib (studytime died = i.drug age) /s

Typing /s means the same thing as typing (s:), and both really mean the same thing as (). The
s, either after a slash or in parentheses before a colon, labels the equation. It makes the output look
prettier, and that is all:

. use http://www.stata-press.com/data/r13/cancer, clear
(Patient Survival in Drug Trial)

. ml model lf myweib (studytime died = i.drug age) /s

. ml maximize

initial: log likelihood = -744
alternative: log likelihood = -356.14276
rescale: log likelihood = -200.80201
rescale eq: log likelihood = -136.69232
Iteration 0: log likelihood = -136.69232 (not concave)
Iteration 1: log likelihood = -124.11726
Iteration 2: log likelihood = -113.91566
Iteration 3: log likelihood = -110.30559
Iteration 4: log likelihood = -110.26747
Iteration 5: log likelihood = -110.26736
Iteration 6: log likelihood = -110.26736

Number of obs = 48
Wald chi2(3) = 35.25

Log likelihood = -110.26736 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
drug

2 1.012966 .2903917 3.49 0.000 .4438086 1.582123
3 1.45917 .2821195 5.17 0.000 .9062261 2.012114

age -.0671728 .0205688 -3.27 0.001 -.1074868 -.0268587
_cons 6.060723 1.152845 5.26 0.000 3.801188 8.320259

s
_cons .5573333 .1402154 3.97 0.000 .2825162 .8321504

Example 3: Method d0

Method-d0 evaluators receive b = (b1,b2, . . . ,bE), the coefficient vector, rather than the already
evaluated θ1, θ2, . . . , θE , and they are required to evaluate the overall log-likelihood lnL rather than
ln `j , j = 1, . . . , N .

Use mleval to produce the thetas from the coefficient vector.

Use mlsum to sum the components that enter into lnL.

ml — Maximum likelihood estimation 23

In the case of Weibull, lnL =
∑

ln `j , and our method-d0 evaluator is

program weib0
version 13
args todo b lnf

tempvar theta1 theta2
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2)

local t "$ML_y1" // this is just for readability
local d "$ML_y2"

tempvar p M R
quietly gen double ‘p’ = exp(‘theta2’)
quietly gen double ‘M’ = (‘t’*exp(-‘theta1’))^‘p’
quietly gen double ‘R’ = ln(‘t’)-‘theta1’

mlsum ‘lnf’ = -‘M’ + ‘d’*(‘theta2’-‘theta1’ + (‘p’-1)*‘R’)
end

To fit our model using this evaluator, we would type

. ml model d0 weib0 (studytime died = i.drug age) /s

. ml maximize

Technical note
Method d0 does not require lnL =

∑
j ln `j , j = 1, . . . , N , as method lf does. Your likelihood

function might have independent components only for groups of observations. Panel-data estimators
have a log-likelihood value lnL =

∑
i lnLi, where i indexes the panels, each of which contains

multiple observations. Conditional logistic regression has lnL =
∑
k lnLk, where k indexes the risk

pools. Cox regression has lnL =
∑

(t) lnL(t), where (t) denotes the ordered failure times.

To evaluate such likelihood functions, first calculate the within-group log-likelihood contributions.
This usually involves generate and replace statements prefixed with by, as in

tempvar sumd
by group: gen double ‘sumd’ = sum($ML_y1)

Structure your code so that the log-likelihood contributions are recorded in the last observation of
each group. Say that a variable is named ‘cont’. To sum the contributions, code

tempvar last
quietly by group: gen byte ‘last’ = (_n==_N)
mlsum ‘lnf’ = ‘cont’ if ‘last’

You must inform mlsum which observations contain log-likelihood values to be summed. First, you
do not want to include intermediate results in the sum. Second, mlsum does not skip missing values.
Rather, if mlsum sees a missing value among the contributions, it sets the overall result, ‘lnf’, to
missing. That is how ml maximize is informed that the likelihood function could not be evaluated
at the particular value of b. ml maximize will then take action to escape from what it thinks is an
infeasible area of the likelihood function.

When the likelihood function violates the linear-form restriction lnL =
∑
j ln `j , j = 1, . . . , N ,

with ln `j being a function solely of values within the jth observation, use method d0. In the following
examples, we will demonstrate methods d1 and d2 with likelihood functions that meet this linear-form
restriction. The d1 and d2 methods themselves do not require the linear-form restriction, but the
utility routines mlvecsum and mlmatsum do. Using method d1 or d2 when the restriction is violated
is difficult; however, mlmatbysum may be of some help for method-d2 evaluators.

24 ml — Maximum likelihood estimation

Example 4: Method d1

Method-d1 evaluators are required to produce the gradient vector g = ∂ lnL/∂b, as well as
the overall log-likelihood value. Using mlvecsum, we can obtain ∂ lnL/∂b from ∂ lnL/∂θi, i =
1, . . . , E. The derivatives of the Weibull log-likelihood function are

∂ln `j
∂θ1j

= pj(Mj − dj)

∂ln `j
∂θ2j

= dj −Rjpj(Mj − dj)

The method-d1 evaluator for this is

program weib1
version 13
args todo b lnf g // g is new

tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)

local t "$ML_y1"
local d "$ML_y2"

tempvar p M R
quietly gen double ‘p’ = exp(‘t2’)
quietly gen double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly gen double ‘R’ = ln(‘t’)-‘t1’

mlsum ‘lnf’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0 | ‘lnf’>=.) exit /* <-- new */

tempname d1 d2 /* <-- new */
mlvecsum ‘lnf’ ‘d1’ = ‘p’*(‘M’-‘d’), eq(1) /* <-- new */
mlvecsum ‘lnf’ ‘d2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’), eq(2) /* <-- new */
matrix ‘g’ = (‘d1’,‘d2’) /* <-- new */

end

We obtained this code by starting with our method-d0 evaluator and then adding the extra lines that
method d1 requires. To fit our model using this evaluator, we could type

. ml model d1 weib1 (studytime died = drug2 drug3 age) /s

. ml maximize

but we recommend substituting method d1debug for method d1 and typing

. ml model d1debug weib1 (studytime died = drug2 drug3 age) /s

. ml maximize

Method d1debug will compare the derivatives we calculate with numerical derivatives and thus verify
that our program is correct. Once we are certain the program is correct, then we would switch from
method d1debug to method d1.

Example 5: Method d2

Method-d2 evaluators are required to produce H = ∂2lnL/∂b∂b′, the Hessian matrix, as well as
the gradient and log-likelihood value. mlmatsum will help calculate ∂2lnL/∂b∂b′ from the second
derivatives with respect to θ. For the Weibull model, these second derivatives are

ml — Maximum likelihood estimation 25

∂2ln `j
∂θ21j

= −p2jMj

∂2ln `j
∂θ1j∂θ2j

= pj(Mj − dj +RjpjMj)

∂2ln `j
∂θ22j

= −pjRj(RjpjMj +Mj − dj)

The method-d2 evaluator is
program weib2

version 13
args todo b lnf g H // H added

tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)

local t "$ML_y1"
local d "$ML_y2"

tempvar p M R
quietly gen double ‘p’ = exp(‘t2’)
quietly gen double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly gen double ‘R’ = ln(‘t’)-‘t1’

mlsum ‘lnf’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0 | ‘lnf’>=.) exit

tempname d1 d2
mlvecsum ‘lnf’ ‘d1’ = ‘p’*(‘M’-‘d’), eq(1)
mlvecsum ‘lnf’ ‘d2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’), eq(2)
matrix ‘g’ = (‘d1’,‘d2’)
if (‘todo’==1 | ‘lnf’>=.) exit // new from here down

tempname d11 d12 d22
mlmatsum ‘lnf’ ‘d11’ = -‘p’^2 * ‘M’, eq(1)
mlmatsum ‘lnf’ ‘d12’ = ‘p’*(‘M’-‘d’ + ‘R’*‘p’*‘M’), eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = -‘p’*‘R’*(‘R’*‘p’*‘M’ + ‘M’ - ‘d’) , eq(2)
matrix ‘H’ = (‘d11’,‘d12’ \ ‘d12’’,‘d22’)

end

We started with our previous method-d1 evaluator and added the lines that method d2 requires. We
could now fit a model by typing

. ml model d2 weib2 (studytime died = drug2 drug3 age) /s

. ml maximize

but we would recommend substituting method d2debug for method d2 and typing
. ml model d2debug weib2 (studytime died = drug2 drug3 age) /s
. ml maximize

Method d2debug will compare the first and second derivatives we calculate with numerical derivatives
and thus verify that our program is correct. Once we are certain the program is correct, then we
would switch from method d2debug to method d2.

As we stated earlier, to produce the robust variance estimator with method lf, there is nothing to
do except specify vce(robust), vce(cluster clustvar), or pweight. For methods d0, d1, and d2,
these options do not work. If your likelihood function meets the linear-form restrictions, you can use
methods lf0, lf1, and lf2, then these options will work. The equation scores are defined as

∂ln `j
∂θ1j

,
∂ln `j
∂θ2j

, . . .

26 ml — Maximum likelihood estimation

Your evaluator will be passed variables, one for each equation, which you fill in with the equation
scores. For both method lf1 and lf2, these variables are passed in the fourth and subsequent positions
of the argument list. That is, you must process the arguments as

args todo b lnf g1 g2 ... H

Note that for method lf1, the ‘H’ argument is not used and can be ignored.

Example 6: Robust variance estimates

If you have used mlvecsum in your evaluator of method d1 or d2, it is easy to turn it into evaluator
of method lf1 or lf2 that allows the computation of the robust variance estimator. The expression that
you specified on the right-hand side of mlvecsum is the equation score.

Here we turn the program that we gave earlier in the method-d1 example into a method-lf1 evaluator
that allows vce(robust), vce(cluster clustvar), or pweight.

program weib1
version 13
args todo b lnfj g1 g2 // g1 and g2 are new

tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)

local t "$ML_y1"
local d "$ML_y2"

tempvar p M R
quietly gen double ‘p’ = exp(‘t2’)
quietly gen double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly gen double ‘R’ = ln(‘t’)-‘t1’

quietly replace ‘lnfj’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0) exit

quietly replace ‘g1’ = ‘p’*(‘M’-‘d’) /* <-- new */
quietly replace ‘g2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’) /* <-- new */

end

To fit our model and get the robust variance estimates, we type

. ml model lf1 weib1 (studytime died = drug2 drug3 age) /s, vce(robust)

. ml maximize

Survey options and ml

ml can handle stratification, poststratification, multiple stages of clustering, and finite population
corrections. Specifying the svy option implies that the data come from a survey design and also
implies that the survey linearized variance estimator is to be used; see [SVY] variance estimation.

Example 7

Suppose that we are interested in a probit analysis of data from a survey in which q1 is the answer
to a yes/no question and x1, x2, x3 are demographic responses. The following is a lf2 evaluator
for the probit model that meets the requirements for vce(robust) (linear form and computes the
scores).

http://www.stata.com/manuals13/svyvarianceestimation.pdf#svyvarianceestimation

ml — Maximum likelihood estimation 27

program mylf2probit
version 13
args todo b lnfj g1 H
tempvar z Fz lnf
mleval ‘z’ = ‘b’
quietly gen double ‘Fz’ = normal(‘z’) if $ML_y1 == 1
quietly replace ‘Fz’ = normal(-‘z’) if $ML_y1 == 0
quietly replace ‘lnfj’ = log(‘Fz’)
if (‘todo’==0) exit
quietly replace ‘g1’ = normalden(‘z’)/‘Fz’ if $ML_y1 == 1
quietly replace ‘g1’ = -normalden(‘z’)/‘Fz’ if $ML_y1 == 0
if (‘todo’==1) exit
mlmatsum ‘lnf’ ‘H’ = -‘g1’*(‘g1’+‘z’), eq(1,1)

end

To fit a model, we svyset the data, then use svy with ml.
. svyset psuid [pw=w], strata(strid)
. ml model lf2 mylf2probit (q1 = x1 x2 x3), svy
. ml maximize

We could also use the subpop() option to make inferences about the subpopulation identified by the
variable sub:

. svyset psuid [pw=w], strata(strid)

. ml model lf2 mylf2probit (q1 = x1 x2 x3), svy subpop(sub)

. ml maximize

Stored results
For results stored by ml without the svy option, see [R] maximize.

For results stored by ml with the svy option, see [SVY] svy.

Methods and formulas
ml is implemented using moptimize(); see [M-5] moptimize().

References
Gould, W. W., J. S. Pitblado, and B. P. Poi. 2010. Maximum Likelihood Estimation with Stata. 4th ed. College

Station, TX: Stata Press.

Korn, E. L., and B. I. Graubard. 1990. Simultaneous testing of regression coefficients with complex survey data: Use
of Bonferroni t statistics. American Statistician 44: 270–276.

Royston, P. 2007. Profile likelihood for estimation and confidence intervals. Stata Journal 7: 376–387.

Also see
[R] maximize — Details of iterative maximization

[R] mlexp — Maximum likelihood estimation of user-specified expressions

[R] nl — Nonlinear least-squares estimation

[M-5] moptimize() — Model optimization

[M-5] optimize() — Function optimization

http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/svysvy.pdf#svysvy
http://www.stata.com/manuals13/m-5moptimize.pdf#m-5moptimize()
http://www.stata-press.com/books/ml4.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0132
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/rmlexp.pdf#rmlexp
http://www.stata.com/manuals13/rnl.pdf#rnl
http://www.stata.com/manuals13/m-5moptimize.pdf#m-5moptimize()
http://www.stata.com/manuals13/m-5optimize.pdf#m-5optimize()

