Syntax

```
lsens  [depvar]  [if]  [in]  [weight] [,  options]
```

options

Main
- `all`
 graph all observations in the data
- `genprob(varname)`
 create variable containing probability cutoffs
- `gensens(varname)`
 create variable containing sensitivity
- `genspec(varname)`
 create variable containing specificity
- `replace`
 overwrite existing variables
- `nog`
 suppress the graph

Advanced
- `beta(matname)`
 row vector containing model coefficients

Plot
- `connect_options`
 affect rendition of the plotted points connected by lines
- `addplot(plot)`
 add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall
- `twoway_options`
 any options other than by() documented in [G-3] twoway_options

Weights are allowed; see [U] 11.1.6 weight.

lsens is not appropriate after the svy prefix.

Menu

Statistics > Binary outcomes > Postestimation > Sensitivity/specificity plot

Description

lsens graphs sensitivity and specificity versus probability cutoff and optionally creates new variables containing these data.

lsens requires that the current estimation results be from `logistic`, `logit`, `probit`, or `ivprobit`; see [R] logistic, [R] logit, [R] probit, or [R] ivprobit.
Options

all requests that the statistic be computed for all observations in the data, ignoring any if or in restrictions specified by the estimation command.

`genprob(varname), gensens(varname), and genspec(varname)` specify the names of new variables created to contain, respectively, the probability cutoffs and the corresponding sensitivity and specificity.

`replace` requests that existing variables specified for `genprob()`, `gensens()`, or `genspec()` be overwritten.

`nograph` suppresses graphical output.

`beta(matname)` specifies a row vector containing model coefficients. The columns of the row vector must be labeled with the corresponding names of the independent variables in the data. The dependent variable `depvar` must be specified immediately after the command name. See *Models other than the last fitted model* later in this entry.

`connect_options` affect the rendition of the plotted points connected by lines; see `connect_options` in [G-2] `graph twoway scatter`.

`addplot(plot)` provides a way to add other plots to the generated graph. See [G-3] `addplot_option`.

`twoway_options` are any of the options documented in [G-3] `twoway_options`, excluding `by()`. These include options for titling the graph (see [G-3] `title_options`) and for saving the graph to disk (see [G-3] `saving_option`).

Remarks and examples

Remarks are presented under the following headings:

Introduction
Models other than the last fitted model

Introduction

`lsens` plots sensitivity and specificity; it plots both sensitivity and specificity versus probability cutoff c. The graph is equivalent to what you would get from `estat classification` (see [R] `estat classification`) if you varied the cutoff probability c from 0 to 1.
Example 1

We illustrate \texttt{lsens} after \texttt{logistic}; see [R] \texttt{logistic}.

\begin{verbatim}
. use http://www.stata-press.com/data/r13/lbw (Hosmer & Lemeshow data)
. logistic low age i.race smoke ui (output omitted)
. lsens
\end{verbatim}

\texttt{lsens} optionally creates new variables containing the probability cutoff, sensitivity, and specificity.

\begin{verbatim}
. lsens, genprob(p) gensens(sens) genspec(spec) nograph
\end{verbatim}

The variables created will have $M+2$ distinct nonmissing values: one for each of the M covariate patterns, one for $c = 0$, and another for $c = 1$. Values are recorded for $p = 0$, for each of the observed predicted probabilities, and for $p = 1$. The total number of observations required to do this can be fewer than _N, the same as _N, or _N + 1, or _N + 2. If more observations are added, they are added at the end of the dataset and the values of the original variables are set to missing in the added observations. How the values added align with existing observations is irrelevant.

\textbf{Technical note}

\texttt{logistic}, \texttt{logit}, \texttt{probit}, or \texttt{ivprobit} and \texttt{lsens} keep track of the estimation sample. If you type, for instance, \texttt{logistic ... if x==1}, then when you type \texttt{lsens}, the statistics will be calculated on the x==1 subsample of the data automatically.

You should specify \texttt{if} or \texttt{in} with \texttt{lsens} only when you wish to produce graphs and calculate statistics for a set of observations other than the estimation sample.

If the \texttt{logistic} model was fit with \texttt{fweights}, \texttt{lsens} properly accounts for the weights in its calculations. You do not have to specify the weights when you run \texttt{lsens}. Weights should be specified with \texttt{lsens} only when you wish to use a different set of weights.
Models other than the last fitted model

By default, \texttt{lsens} uses the last model fit. You may also directly specify the model to \texttt{lsens} by inputting a vector of coefficients with the \texttt{beta()} option and passing the name of the dependent variable \texttt{depvar} to \texttt{lsens}.

\textbf{Example 2}

Suppose that someone publishes the following logistic model of low birthweight:

$$\Pr(\text{low} = 1) = F(-0.02 \text{age} - 0.01 \text{lwt} + 1.3 \text{black} + 1.1 \text{smoke} + 0.5 \text{ptl} + 1.8 \text{ht} + 0.8 \text{ui} + 0.5)$$

where F is the cumulative logistic distribution. These coefficients are not odds ratios; they are the equivalent of what \texttt{logit} produces.

We can see whether this model fits our data. First we enter the coefficients as a row vector and label its columns with the names of the independent variables plus _\texttt{cons} for the constant (see [P] \texttt{matrix define} and [P] \texttt{matrix rownames}).

(Hosmer & Lemeshow data)
: matrix input b = (-0.02, -.01, 1.3, 1.1, .5, 1.8, .8, .5)
: matrix colnames b = age lwt black smoke ptl ht ui _cons

We can use \texttt{lroc} (see [R] \texttt{lroc}) to examine the predictive ability of the model:

: lroc low, beta(b) nograph
Logistic model for low
number of observations = 189
area under ROC curve = 0.7275

The area under the curve indicates that this model does have some predictive power. We can obtain a graph of sensitivity and specificity as a function of the cutoff probability by typing

: lsens low, beta(b)
Stored results

`lsens` stores the following in `r()`:

Scalars
\[r(N) \]
number of observations

Methods and formulas

Let \(j \) index observations and \(c \) be the cutoff probability. Let \(p_j \) be the predicted probability of a positive outcome and \(y_j \) be the actual outcome, which we will treat as 0 or 1, although Stata treats it as 0 and non-0, excluding missing observations.

A prediction is classified as positive if \(p_j \geq c \) and otherwise is classified as negative. The classification is correct if it is positive and \(y_j = 1 \) or if it is negative and \(y_j = 0 \).

Sensitivity is the fraction of \(y_j = 1 \) observations that are correctly classified. Specificity is the percentage of \(y_j = 0 \) observations that are correctly classified.

Reference

Also see

[R] logistic — Logistic regression, reporting odds ratios
[R] logit — Logistic regression, reporting coefficients
[R] probit — Probit regression
[R] ivprobit — Probit model with continuous endogenous regressors
[R] lroc — Compute area under ROC curve and graph the curve
[R] estat classification — Classification statistics and table
[R] estat gof — Pearson or Hosmer–Lemeshow goodness-of-fit test
[R] roc — Receiver operating characteristic (ROC) analysis
[U] 20 Estimation and postestimation commands