Syntax

```stata
histogram varname [if] [in] [weight] [, [continuous_opts | discrete_opts] options]
```

continuous_opts

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin(#)</td>
<td>set number of bins to #</td>
</tr>
<tr>
<td>width(#)</td>
<td>set width of bins to #</td>
</tr>
<tr>
<td>start(#)</td>
<td>set lower limit of first bin to #</td>
</tr>
</tbody>
</table>

discrete_opts

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discrete</td>
<td>specify that data are discrete</td>
</tr>
<tr>
<td>width(#)</td>
<td>set width of bins to #</td>
</tr>
<tr>
<td>start(#)</td>
<td>set theoretical minimum value to #</td>
</tr>
</tbody>
</table>

Description

Main bin(#) set number of bins to #

Main width(#) set width of bins to #

Main start(#) set lower limit of first bin to #

Main discrete specify that data are discrete

Main width(#) set width of bins to #

Main start(#) set theoretical minimum value to #
histogram — Histograms for continuous and categorical variables

options

<table>
<thead>
<tr>
<th>Main</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>density</td>
<td>draw as density; the default</td>
</tr>
<tr>
<td>fraction</td>
<td>draw as fractions</td>
</tr>
<tr>
<td>frequency</td>
<td>draw as frequencies</td>
</tr>
<tr>
<td>percent</td>
<td>draw as percentages</td>
</tr>
<tr>
<td>bar_options</td>
<td>rendition of bars</td>
</tr>
<tr>
<td>addlabels</td>
<td>add height labels to bars</td>
</tr>
<tr>
<td>addlabopts(marker_label_options)</td>
<td>affect rendition of labels</td>
</tr>
</tbody>
</table>

Density plots

normal	add a normal density to the graph
normopts(line_options)	affect rendition of normal density
kdensity	add a kernel density estimate to the graph
kdenopts(kdensity_options)	affect rendition of kernel density

Add plots

| **addplot(plot)** | add other plots to the histogram |

Y axis, X axis, Titles, Legend, Overall, By

twoway_options

any options documented in [G-3] `twoway_options`

fweights are allowed; see [U] 11.1.6 weight.

Menu

Graphics ➔ Histogram

Description

histogram draws histograms of `varname`, which is assumed to be the name of a continuous variable unless the discrete option is specified.

Options for use in the continuous case

`bin(#)` and `width(#)` are alternatives. They specify how the data are to be aggregated into bins:
- `bin()` by specifying the number of bins (from which the width can be derived) and `width()` by specifying the bin width (from which the number of bins can be derived).

If neither option is specified, results are the same as if `bin(k)` had been specified, where

\[k = \min\left\{ \sqrt{N}, 10 \ln(N)/\ln(10) \right\} \]

and where \(N \) is the (weighted) number of observations.

`start(#)` specifies the theoretical minimum of `varname`. The default is `start(m)`, where `m` is the observed minimum value of `varname`.

Specify \texttt{start()} when you are concerned about sparse data, for instance, if you know that \texttt{varname} can have a value of 0, but you are concerned that 0 may not be observed. \texttt{start(#)}, if specified, must be less than or equal to \texttt{m}, or else an error will be issued.

Options for use in the discrete case

- \texttt{discrete} specifies that \texttt{varname} is discrete and that you want each unique value of \texttt{varname} to have its own bin (bar of histogram).

- \texttt{width(#)} is rarely specified in the discrete case; it specifies the width of the bins. The default is \texttt{width(d)}, where \texttt{d} is the observed minimum difference between the unique values of \texttt{varname}.

 Specify \texttt{width()} if you are concerned that your data are sparse. For example, in theory \texttt{varname} could take on the values, say, 1, 2, 3, ..., 9, but because of the sparseness, perhaps only the values 2, 4, 7, and 8 are observed. Here the default width calculation would produce \texttt{width(2)}, and you would want to specify \texttt{width(1)}.

- \texttt{start(#)} is also rarely specified in the discrete case; it specifies the theoretical minimum value of \texttt{varname}. The default is \texttt{start(m)}, where \texttt{m} is the observed minimum value.

 As with \texttt{width()}, specify \texttt{start(#)} if you are concerned that your data are sparse. In the previous example, you might also want to specify \texttt{start(1)}. \texttt{start()} does nothing more than add white space to the left side of the graph.

 The value of \# in \texttt{start()} must be less than or equal to \texttt{m}, or an error will be issued.

Options for use in the continuous and discrete cases

- \texttt{density, fraction, frequency, and percent} specify whether you want the histogram scaled to density units, fractional units, frequencies, or percentages. \texttt{density} is the default.

- \texttt{density} scales the height of the bars so that the sum of their areas equals 1.

- \texttt{fraction} scales the height of the bars so that the sum of their heights equals 1.

- \texttt{frequency} scales the height of the bars so that each bar’s height is equal to the number of observations in the category. Thus the sum of the heights is equal to the total number of observations.

- \texttt{percent} scales the height of the bars so that the sum of their heights equals 100.

- \texttt{bar_options} are any of the options allowed by \texttt{graph twoway bar}; see \texttt{[G-2] graph twoway bar}.

 One of the most useful \texttt{bar_options} is \texttt{barwidth(#)}, which specifies the width of the bars in \texttt{varname} units. By default, \texttt{histogram} draws the bars so that adjacent bars just touch. If you want gaps between the bars, do not specify \texttt{histogram’s width()} option—which would change how the histogram is calculated—but specify the \texttt{bar_option barwidth()} or the \texttt{histogram} option \texttt{gap}, both of which affect only how the bar is rendered.

 The \texttt{bar_option horizontal} cannot be used with the \texttt{addlabels} option.

- \texttt{addlabels} specifies that the top of each bar be labeled with the density, fraction, or frequency, as determined by the \texttt{density, fraction, and frequency} options.
addlabopts(marker_label_options) specifies how to render the labels atop the bars. See [G-3] marker_label_options. Do not specify the marker_label_option mlabel(varname), which specifies the variable to be used; this is specified for you by histogram.

addlabopts() will accept more options than those documented in [G-3] marker_label_options. All options allowed by twoway scatter are also allowed by addlabopts(); see [G-2] graph twoway scatter. One particularly useful option is yvarformat(); see [G-3] advanced_options.

Density plots

normal specifies that the histogram be overlaid with an appropriately scaled normal density. The normal will have the same mean and standard deviation as the data.

normopts(line_options) specifies details about the rendition of the normal curve, such as the color and style of line used. See [G-2] graph twoway line.

kdensity specifies that the histogram be overlaid with an appropriately scaled kernel density estimate of the density. By default, the estimate will be produced using the Epanechnikov kernel with an “optimal” half-width. This default corresponds to the default of kdensity; see [R] kdensity. How the estimate is produced can be controlled using the kdenopts() option described below.

kdenopts(kdensity_options) specifies details about how the kernel density estimate is to be produced along with details about the rendition of the resulting curve, such as the color and style of line used. The kernel density estimate is described in [G-2] graph twoway kdensity. As an example, if you wanted to produce kernel density estimates by using the Gaussian kernel with optimal half-width, you would specify kdenopts(gauss) and if you also wanted a half-width of 5, you would specify kdenopts(gauss width(5)).

Add plots

addplot(plot) allows adding more graph twoway plots to the graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall, By

twoway_options are any of the options documented in [G-3] twoway_options. This includes, most importantly, options for titling the graph (see [G-3] title_options), options for saving the graph to disk (see [G-3] saving_option), and the by() option, which will allow you to simultaneously graph histograms for different subsets of the data (see [G-3] by_option).

Remarks and examples

Remarks are presented under the following headings:

Histograms of continuous variables
Overlaying normal and kernel density estimates
Histograms of discrete variables
Use with by()
Video example

For an example of editing a histogram with the Graph Editor, see Pollock (2011, 29–31).
Histograms of continuous variables

`histogram` assumes that the variable is continuous, so you need type only `histogram` followed by the variable name:

```
. use http://www.stata-press.com/data/r13/sp500
(S&P 500)
. histogram volume
(bin=15, start=4103, width=1280.3533)
```

The small values reported for density on the y axis are correct; if you added up the area of the bars, you would get 1. Nevertheless, many people are used to seeing histograms scaled so that the bar heights sum to 1,
Histograms for continuous and categorical variables

and others are used to seeing histograms so that the bar height reflects the number of observations,

```
. histogram volume, frequency
(bin=15, start=4103, width=1280.3533)
```

Regardless of the scale you prefer, you can specify other options to make the graph look more impressive:
For an explanation of the `xaxis()` option—it created the upper and lower \(x \) axis—see [G-3] `axis_choice_options`. For an explanation of the `ylabel()` and `xlabel()` options, see [G-3] `axis_label_options`. For an explanation of the `subtitle()` and `note()` options, see [G-3] `title_options`.

Overlaying normal and kernel density estimates

Specifying `normal` will overlay a normal density over the histogram. It would be enough to type

```
. histogram volume, normal
```

but we will add the option to our more impressive rendition:

```
. summarize volume
  Variable | Obs | Mean | Std. Dev. | Min  | Max
---|-----|------|-----------|------|------
volume | 248 | 12320.68 | 2585.929 | 4103 | 23308.3
```

Overlaying normal and kernel density estimates
. histogram volume, freq normal
> xaxis(1 2)
> ylabel(0(10)60, grid)
> xlabel(12321 "mean"
> 9735 "-1 s.d."
> 14907 "+1 s.d."
> 7149 "-2 s.d."
> 17493 "+2 s.d."
> 20078 "+3 s.d."
> 22664 "+4 s.d."
> , axis(2) grid gmax)
> xtitle("", axis(2))
> subtitle("S&P 500, January 2001 – December 2001")
> note("Source: Yahoo! Finance and Commodity Systems, Inc.")
(bin=15, start=4103, width=1280.3533)

If we instead wanted to overlay a kernel density estimate, we could specify `kdensity` in place of `normal`.

Histograms of discrete variables

Specify `histogram`’s discrete option when you wish to treat the data as discrete—when you wish each unique value of the variable to be assigned its own bin. For instance, in the automobile data, `mpg` is a continuous variable, but the mileage ratings have been measured to integer precision. If we were to type

```
. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)
. histogram mpg
(bin=8, start=12, width=3.625)
```

`mpg` would be treated as continuous and categorized into eight bins by the default number-of-bins calculation, which is based on the number of observations, 74.
Adding the `discrete` option makes a histogram with a bin for each of the 21 unique values.

```
. histogram mpg, discrete
    (start=12, width=1)
```

Just as in the continuous case, the y axis was reported in density, and we could specify the `fraction` or `frequency` options if we wanted it to be reported differently. Below we specify `frequency`, we specify `addlabels` to add a report of frequencies printed above the bars, we specify `ylabel(,grid)` to add horizontal grid lines, and we specify `xlabel(12(2)42)` to label the values 12, 14, ..., 42 on the x axis:

```
. histogram mpg, discrete freq addlabels ylabel(,grid) xlabel(12(2)42)
    (start=12, width=1)
```
Use with `by()`

`histogram` may be used with `graph twoway`’s `by()`, for example,

```
. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)
. histogram mpg, discrete by(foreign)
```

Here results would be easier to compare if the graphs were presented in one column:

```
. histogram mpg, discrete by(foreign, col(1))
```

`col(1)` is a `by()` suboption—see [G-3] `by_option`—and there are other useful suboptions, such as `total`, which will add an overall total histogram. `total` is a suboption of `by()`, not an option of `histogram`, so you would type

```
. histogram mpg, discrete by(foreign, total)
```
and not `histogram mpg, discrete by(foreign) total`.

```plaintext
. use http://www.stata-press.com/data/r13/voter
. histogram candi [freq=pop], discrete fraction by(inc, total)
> gap(40) xlabel(2 3 4, valuelabel)
```

We specified `gap(40)` to reduce the width of the bars by 40%. We also used `xlabel()`'s `valuelabel` suboption, which caused our bars to be labeled “Clinton”, “Bush”, and “Perot”, rather than 2, 3, and 4; see [G-3] `axis_label_options`.

Video example

Histograms in Stata

References

Also see

[R] `kdensity` — Univariate kernel density estimation

[R] `spikeplot` — Spike plots and rootograms

[G-2] `graph twoway histogram` — Histogram plots