Syntax

```
hetprobit depvar [ indepvars ] [ if ] [ in ] [ weight ],
het(varlist[, offset(varname_o)]) [ options ]
```

options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent variables to model the variance and possible offset variable</td>
</tr>
<tr>
<td>Suppress constant term</td>
</tr>
<tr>
<td>Include varname in model with coefficient constrained to 1</td>
</tr>
<tr>
<td>Retain perfect predictor variables</td>
</tr>
<tr>
<td>Apply specified linear constraints</td>
</tr>
<tr>
<td>Keep collinear variables</td>
</tr>
</tbody>
</table>

SE/Robust

```
vce(vcetype)
```

vctype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife

Reporting

```
level(#)  
noskip    
nolrtest  
nocnsreport
```

set confidence level; default is level(95)
perform likelihood-ratio test
perform Wald test on variance
do not display constraints
control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization

```
maximize_options
```

control the maximization process; seldom used

coefflegend

display legend instead of statistics

*het() is required. The full specification is het(varlist[, offset(varname_o)]).

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), noskip, and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
hetprobit — Heteroskedastic probit model

Menu

Statistics > Binary outcomes > Heteroskedastic probit regression

Description

hetprobit fits a maximum-likelihood heteroskedastic probit model.

hetprob is a synonym for hetprobit.

See [R] logistic for a list of related estimation commands.

Options

Model

het(varlist [, offset(varname_o)]) specifies the independent variables and the offset variable, if there is one, in the variance function. het() is required.

offset(varname_o) specifies that selection offset varname_o be included in the model with the coefficient constrained to be 1.

noconstant, offset(varname): see [R] estimation options.

asis forces the retention of perfect predictor variables and their associated perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

constraints(constraints), collinear; see [R] estimation options.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

level(#); see [R] estimation options.

noskip requests fitting of the constant-only model and calculation of the corresponding likelihood-ratio \(\chi^2 \) statistic for testing significance of the full model. By default, a Wald \(\chi^2 \) statistic is computed for testing the significance of the full model.

nolrtest specifies that a Wald test of whether \(\ln sigma2 = 0 \) be performed instead of the LR test.

nocnsreport; see [R] estimation options.

display_options: nomitted, vsquish, noemptycells, baselevels, allbaselevels, nolabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, [no]trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).
The following option is available with *hetprobit* but is not shown in the dialog box: `coeflegend`; see [*R*](*estimation options*).

Remarks and examples

Remarks are presented under the following headings:

- Introduction
- Robust standard errors

Introduction

hetprobit fits a maximum-likelihood heteroskedastic probit model, which is a generalization of the probit model. Let \(y_j, j = 1, \ldots, N \), be a binary outcome variable taking on the value 0 (failure) or 1 (success). In the probit model, the probability that \(y_j \) takes on the value 1 is modeled as a nonlinear function of a linear combination of the \(k \) independent variables \(x_j = (x_{1j}, x_{2j}, \ldots, x_{kj}) \),

\[
\Pr(y_j = 1) = \Phi(x_j \beta)
\]

in which \(\Phi() \) is the cumulative distribution function (CDF) of a standard normal random variable, that is, a normally distributed (Gaussian) random variable with mean 0 and variance 1. The linear combination of the independent variables, \(x_j \beta \), is commonly called the index function, or index. Heteroskedastic probit generalizes the probit model by generalizing \(\Phi() \) to a normal CDF with a variance that is no longer fixed at 1 but can vary as a function of the independent variables. *hetprobit* models the variance as a multiplicative function of these \(m \) variables \(z_j = (z_{1j}, z_{2j}, \ldots, z_{mj}) \), following Harvey (1976):

\[
\sigma_j^2 = \{\exp(z_j \gamma)\}^2
\]

Thus the probability of success as a function of all the independent variables is

\[
\Pr(y_j = 1) = \Phi\left\{x_j \beta / \exp(z_j \gamma)\right\}
\]

From this expression, it is clear that, unlike the index \(x_j \beta \), no constant term can be present in \(z_j \gamma \) if the model is to be identifiable.

Suppose that the binary outcomes \(y_j \) are generated by thresholding an unobserved random variable, \(w \), which is normally distributed with mean \(x_j \beta \) and variance 1 such that

\[
y_j = \begin{cases}
1 & \text{if } w_j > 0 \\
0 & \text{if } w_j \leq 0
\end{cases}
\]

This process gives the probit model:

\[
\Pr(y_j = 1) = \Pr(w_j > 0) = \Phi(x_j \beta)
\]

Now suppose that the unobserved \(w_j \) are heteroskedastic with variance

\[
\sigma_j^2 = \{\exp(z_j \gamma)\}^2
\]

Relaxing the homoskedastic assumption of the probit model in this manner yields our multiplicative heteroskedastic probit model:

\[
\Pr(y_j = 1) = \Phi\left\{x_j \beta / \exp(z_j \gamma)\right\}
\]
Example 1

For this example, we generate simulated data for a simple heteroskedastic probit model and then estimate the coefficients with `hetprobit`:

```
set obs 1000
obs was 0, now 1000
. set seed 1234567
. gen x = 1-2*runiform()
. gen xhet = runiform()
. gen sigma = exp(1.5*xhet)
. gen p = normal((0.3+2*x)/sigma)
. gen y = cond(runiform()<=p,1,0)
. hetprob y x, het(xhet)
```

Fitting probit model:

```
Iteration 0: log likelihood = -688.53208
Iteration 1: log likelihood = -591.59895
Iteration 2: log likelihood = -591.50674
Iteration 3: log likelihood = -591.50674
```

Fitting full model:

```
Iteration 0: log likelihood = -591.50674
Iteration 1: log likelihood = -572.12219
Iteration 2: log likelihood = -570.7742
Iteration 3: log likelihood = -569.48921
Iteration 4: log likelihood = -569.47828
Iteration 5: log likelihood = -569.47827
```

Heteroskedastic probit model

```
Number of obs = 1000
Zero outcomes = 452
Nonzero outcomes = 548
Wald chi2(1) = 78.66
Log likelihood = -569.4783 Prob > chi2 = 0.0000
```

```
| Coef. Std. Err. z P>|z|  [95% Conf. Interval] |
|---------|-----------|----------------|---------------|
| y       |
| x       | 2.228031  | .2512073       | 8.87          | 0.000       | 1.735673 - 2.720388 |
| _cons   | .2493822  | .0862833       | 2.89          | 0.004       | .179027 - .319736   |
| lnsigma2|
| xhet    | 1.602537  | .2640131       | 6.07          | 0.000       | 1.085081 - 2.119993 |
```

Likelihood-ratio test of lnsigma2=0: chi2(1) = 44.06 Prob > chi2 = 0.0000

Above we created two variables, x and xhet, and then simulated the model

\[\Pr(y = 1) = F\left(\left(\beta_0 + \beta_1 x\right) / \exp(\gamma_1 x_{\text{het}})\right) \]

for \(\beta_0 = 0.3, \beta_1 = 2, \) and \(\gamma_1 = 1.5. \) According to `hetprobit`’s output, all coefficients are significant, and, as we would expect, the Wald test of the full model versus the constant-only model—for example, the index consisting of \(\beta_0 + \beta_1 x \) versus that of just \(\beta_0 \)—is significant with \(\chi^2(1) = 79. \) Likewise, the likelihood-ratio test of heteroskedasticity, which tests the full model with heteroskedasticity against the full model without, is significant with \(\chi^2(1) = 44. \) See \([R]\) `maximize` for more explanation of the output. For this simple model, `hetprobit` took five iterations to converge. As stated elsewhere (Greene 2012, 714), this is a difficult model to fit, and it is not uncommon for it to require many iterations or for the optimizer to print out warnings and informative messages during the optimization. Slow convergence is especially common for models in which one or more of the independent variables appear in both the index and variance functions.
Technical note

Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing) as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and 1, then 0 is interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1, and 2, then 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

Robust standard errors

If you specify the `vce(robust)` option, `hetprobit` reports robust standard errors as described in [U] 20.21 Obtaining robust variance estimates. To illustrate the effect of this option, we will reestimate our coefficients by using the same model and data in our example, this time adding `vce(robust)` to our `hetprobit` command.

Example 2

```
. hetprob y x, het(xhet) vce(robust) nolog
Heteroskedastic probit model
Number of obs = 1000
Zero outcomes = 452
Nonzero outcomes = 548
Wald chi2(1) = 65.23
Log pseudolikelihood = -569.4783 Prob > chi2 = 0.0000

Robust
                     Coef.  Std. Err.     z  P>|z|     [95% Conf. Interval]
-------------    -------------------   -------    ------    -------------------
        y          2.22803    .2758597    8.08  0.000     1.687355    2.768705
          x         .2493821    .0843367    2.96  0.003      .0840853    .4146789
        _cons       .2493821    .0843367    2.96  0.003      .0840853    .4146789
lnsigma2       1.602537    .2671326    6.00  0.000     1.078967    2.126107
          xhet      lnsigma2 = 0: chi2(1) = 35.99 Prob > chi2 = 0.0000
```

The `vce(robust)` standard errors for two of the three parameters are larger than the previously reported conventional standard errors. This is to be expected, even though (by construction) we have perfect model specification because this option trades off efficient estimation of the coefficient variance–covariance matrix for robustness against misspecification.

Specifying the `vce(cluster clustvar)` option relaxes the usual assumption of independence between observations to the weaker assumption of independence just between clusters; that is, `hetprobit`, `vce(cluster clustvar)` is robust with respect to within-cluster correlation. This option is less efficient than the `xtgee` population-averaged models because `hetprobit` inefficiently sums within cluster for the standard-error calculation rather than attempting to exploit what might be assumed about the within-cluster correlation.
hetprobit — Heteroskedastic probit model

Stored results

hetprobit stores the following in e():

Scalars

- `e(N)` number of observations
- `e(N_d)` number of zero outcomes
- `e(N_s)` number of nonzero outcomes
- `e(k)` number of parameters
- `e(k_eq)` number of equations in `e(b)`
- `e(k_eq_model)` number of equations in overall model test
- `e(k_eq_model)` number of equations in overall model test
- `e(df_m)` model degrees of freedom
- `e(ll)` log likelihood
- `e(ll_0)` log likelihood, constant-only model
- `e(ll_c)` log likelihood, comparison model
- `e(N_clust)` number of clusters
- `e(chi2)` \(\chi^2 \)
- `e(chi2_c)` \(\chi^2 \) for heteroskedasticity LR test
- `e(p_c)` \(p \)-value for heteroskedasticity LR test
- `e(df_m_c)` degrees of freedom for heteroskedasticity LR test
- `e(rank)` rank of `e(V)`
- `e(rank0)` rank of `e(V)` for constant-only model
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

Macros

- `e(cmd)` `hetprobit`
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(wtype)` weight type
- `e(wexp)` weight expression
- `e(title)` title in estimation output
- `e(clustvar)` name of cluster variable
- `e(offset1)` offset for probit equation
- `e(offset2)` offset for variance equation
- `e(chi2type)` Wald or LR; type of model \(\chi^2 \) test
- `e(chi2_ct)` Wald or LR; type of model \(\chi^2 \) test corresponding to `e(chi2_c)`
- `e(vcetype)` title used to label Std. Err.
- `e(opt)` type of optimization
- `e(which)` `max` or `min`; whether optimizer is to perform maximization or minimization
- `e(method)` requested estimation method
- `e(ml_method)` type of `ml` method
- `e(user)` name of likelihood-evaluator
- `e(technique)` maximization technique
- `e(properties)` `b V`
- `e(predict)` program used to implement `predict`
- `e(asbalanced)` factor variables `fvset` as `asbalanced`
- `e(asobserved)` factor variables `fvset` as `asobserved`

Matrices

- `e(b)` coefficient vector
- `e(Cns)` constraints matrix
- `e(ilog)` iteration log (up to 20 iterations)
- `e(gradient)` gradient vector
- `e(V)` variance–covariance matrix of the estimators
- `e(V_modelbased)` model-based variance

Functions

- `e(sample)` marks estimation sample
Methods and formulas

The heteroskedastic probit model is a generalization of the probit model because it allows the scale of the inverse link function to vary from observation to observation as a function of the independent variables.

The log-likelihood function for the heteroskedastic probit model is

$$\ln L = \sum_{j \in S} w_j \ln \Phi \left(\frac{x_j \beta}{\exp(z \gamma)} \right) + \sum_{j \notin S} w_j \ln \left[1 - \Phi \left(\frac{x_j \beta}{\exp(z \gamma)} \right) \right]$$

where S is the set of all observations j such that $y_j \neq 0$ and w_j denotes the optional weights. $\ln L$ is maximized as described in [R] maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas.

hetprobit also supports estimation with survey data. For details on VCEs with survey data, see [SVY] variance estimation.

References

Also see

[R] hetprobit postestimation — Postestimation tools for hetprobit
[R] logistic — Logistic regression, reporting odds ratios
[R] probit — Probit regression
[SVY] svy estimation — Estimation commands for survey data
[XT] xtprobit — Random-effects and population-averaged probit models
[U] 20 Estimation and postestimation commands