

The following postestimation commands are available after `heckman`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contrast</code></td>
<td>contrasts and ANOVA-style joint tests of estimates</td>
</tr>
<tr>
<td><code>estat ic</code></td>
<td>Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)</td>
</tr>
<tr>
<td><code>estat summarize</code></td>
<td>summary statistics for the estimation sample</td>
</tr>
<tr>
<td><code>estat vce</code></td>
<td>variance–covariance matrix of the estimators (VCE)</td>
</tr>
<tr>
<td><code>estat (svy)</code></td>
<td>postestimation statistics for survey data</td>
</tr>
<tr>
<td><code>estimates</code></td>
<td>cataloging estimation results</td>
</tr>
<tr>
<td><code>lincom</code></td>
<td>point estimates, standard errors, testing, and inference for linear combinations of coefficients</td>
</tr>
<tr>
<td><code>lrtest</code></td>
<td>likelihood-ratio test; not available with two-step estimator</td>
</tr>
<tr>
<td><code>margins</code></td>
<td>marginal means, predictive margins, marginal effects, and average marginal effects</td>
</tr>
<tr>
<td><code>marginsplot</code></td>
<td>graph the results from margins (profile plots, interaction plots, etc.)</td>
</tr>
<tr>
<td><code>nlcom</code></td>
<td>point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>predictions, residuals, influence statistics, and other diagnostic measures</td>
</tr>
<tr>
<td><code>predictnl</code></td>
<td>point estimates, standard errors, testing, and inference for generalized predictions</td>
</tr>
<tr>
<td><code>pwcompare</code></td>
<td>pairwise comparisons of estimates</td>
</tr>
<tr>
<td><code>suest</code></td>
<td>seemingly unrelated estimation</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Wald tests of simple and composite linear hypotheses</td>
</tr>
<tr>
<td><code>testnl</code></td>
<td>Wald tests of nonlinear hypotheses</td>
</tr>
</tbody>
</table>

1 `estat ic` and `suest` are not appropriate after `heckman, twostep`.
2 `lrtest` is not appropriate with `svy` estimation results.
Syntax for predict

After ML or twostep

```
predict [type] newvar [if] [in] [, statistic nooffset]
```

After ML

```
predict [type] { stub* | newvar_reg newvar_sel newvar_athrho newvar_lnsigma }
```

<table>
<thead>
<tr>
<th>statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xb</td>
<td>linear prediction; the default</td>
</tr>
<tr>
<td>stdp</td>
<td>standard error of the prediction</td>
</tr>
<tr>
<td>stdf</td>
<td>standard error of the forecast</td>
</tr>
<tr>
<td>xbsel</td>
<td>linear prediction for selection equation</td>
</tr>
<tr>
<td>stdpsel</td>
<td>standard error of the linear prediction for selection equation</td>
</tr>
<tr>
<td>pr(a,b)</td>
<td>Pr(yj</td>
</tr>
<tr>
<td>e(a,b)</td>
<td>E(yj</td>
</tr>
<tr>
<td>ystar(a,b)</td>
<td>E(yj*), yj* = max{a, min(yj,b)}</td>
</tr>
<tr>
<td>ycond</td>
<td>E(yj</td>
</tr>
<tr>
<td>yexpected</td>
<td>E(yj*), yj taken to be 0 where unobserved</td>
</tr>
<tr>
<td>ns_hazard</td>
<td>nonselection hazard (also called the inverse of Mills’ ratio)</td>
</tr>
<tr>
<td>mills</td>
<td>Pr(yj observed)</td>
</tr>
</tbody>
</table>

These statistics are available both in and out of sample; type `predict ... if e(sample) ... if wanted only for the estimation sample.`

stdf is not allowed with `svy` estimation results.

where `a` and `b` may be numbers or variables; `a` missing `(a ≥ .)` means $-\infty$, and `b` missing `(b ≥ .)` means $+\infty$; see [U] 12.2.1 Missing values.

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Main

- **xb**, the default, calculates the linear prediction x_jb.

- **stdp** calculates the standard error of the prediction, which can be thought of as the standard error of the predicted expected value or mean for the observation’s covariate pattern. The standard error of the prediction is also referred to as the standard error of the fitted value.

- **stdf** calculates the standard error of the forecast, which is the standard error of the point prediction for 1 observation. It is commonly referred to as the standard error of the future or forecast value. By construction, the standard errors produced by stdf are always larger than those produced by stdp; see Methods and formulas in [R] regress postestimation.
xbse1 calculates the linear prediction for the selection equation.
stdpse1 calculates the standard error of the linear prediction for the selection equation.
pr(a,b) calculates Pr(a < x_j b + u_1 < b), the probability that y_j | x_j would be observed in the interval (a,b).
a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < x_j b + u_1 < 30); pr(lb,ub) calculates Pr(lb < x_j b + u_1 < ub);
and pr(20,ub) calculates Pr(20 < x_j b + u_1 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x_j b + u_1 < 30);
pr(lb,30) calculates Pr(−∞ < x_j b + u_j < 30) in observations for which lb ≥ .
and calculates Pr(lb < x_j b + u_j < 30) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x_j b + u_j > 20);
pr(20,ub) calculates Pr(+∞ > x_j b + u_j > 20) in observations for which ub ≥ .
and calculates Pr(20 < x_j b + u_j < ub) elsewhere.
e(a,b) calculates E(x_j b + u_1 | a < x_j b + u_1 < b), the expected value of y_j | x_j conditional on
y_j | x_j being in the interval (a,b), meaning that y_j | x_j is truncated.
a and b are specified as they are for pr().
ystar(a,b) calculates E(y_j*), where y_j* = a if x_j b + u_j ≤ a, y_j* = b if x_j b + u_j ≥ b, and
y_j* = x_j b + u_j otherwise, meaning that y_j* is censored. a and b are specified as they are for pr().
ycond calculates the expected value of the dependent variable conditional on the dependent variable
being observed, that is, selected; E(y_j | y_j observed).
ynexpected calculates the expected value of the dependent variable (y_j*), where that value is taken
to be 0 when it is expected to be unobserved; y_j* = Pr(y_j observed)E(y_j | y_j observed).
The assumption of 0 is valid for many cases where nonselection implies nonparticipation (for example, unobserved wage levels, insurance claims from those who are uninsured) but may be
inappropriate for some problems (for example, unobserved disease incidence).
nshazard and mills are synonyms; both calculate the nonselection hazard—what Heckman (1979)
referred to as the inverse of the Mills’ ratio—from the selection equation.

psel calculates the probability of selection (or being observed):
Pr(y_j observed) = Pr(z_j γ + u_2j > 0).

nooffset is relevant when you specify offset(varname) for heckman. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x_j b
rather than as x_j b + offset_j.

scores, not available with twostep, calculates equation-level score variables.

The first new variable will contain \(\partial \ln L / \partial (x_j \beta) \).
The second new variable will contain \(\partial \ln L / \partial (z_j \gamma) \).
The third new variable will contain \(\partial \ln L / \partial (\text{atanh } \rho) \).
The fourth new variable will contain \(\partial \ln L / \partial (\ln \sigma) \).
Example 1

The default statistic produced by predict after heckman is the expected value of the dependent variable from the underlying distribution of the regression model. In the wage model of [R] heckman, this is the expected wage rate among all women, regardless of whether they were observed to participate in the labor force:

```
. use http://www.stata-press.com/data/r13/womenwk
. heckman wage educ age, select(married children educ age) vce(cluster county)
(output omitted)
. predict heckwage
(option xb assumed; fitted values)
```

It is instructive to compare these predicted wage values from the Heckman model with an ordinary regression model—a model without the selection adjustment:

```
. regress wage educ age

Source                    SS       df       MS              Number of obs = 1343
Model                     13524.0337   2   6762.01687       F(  2, 1340) = 227.49
Prob > F = 0.0000
Residual                  39830.8609  1340  29.7245231       R-squared = 0.2535
Adj R-squared = 0.2524
Total                     53354.8946  1342  39.7577456       Root MSE = 5.452

wage                       Coef.     Std. Err.     t     P>|t|     [95% Conf. Interval]
education                  .8965829   .0498061     18.00   0.000     .7988765    .9942893
age                        .1465739   .0187135      7.83   0.000     .109863    .1832848
_cons                      6.084875   .8896182      6.84   0.000     4.339679    7.830071
```

. predict regwage
(option xb assumed; fitted values)

. summarize heckwage regwage

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>regwage</td>
<td>2000</td>
<td>23.12291</td>
<td>3.241911</td>
<td>17.98218</td>
<td>32.66439</td>
</tr>
</tbody>
</table>

Since this dataset was concocted, we know the true coefficients of the wage regression equation to be 1, 0.2, and 1, respectively. We can compute the true mean wage for our sample.

. generate truewage = 1 + .2*age + 1*educ
. summarize truewage

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>truewage</td>
<td>2000</td>
<td>21.3256</td>
<td>3.797904</td>
<td>15</td>
<td>32.8</td>
</tr>
</tbody>
</table>

Whereas the mean of the predictions from heckman is within 18 cents of the true mean wage, ordinary regression yields predictions that are on average about $1.80 per hour too high because of the selection effect. The regression predictions also show somewhat less variation than the true wages.

The coefficients from heckman are so close to the true values that they are not worth testing. Conversely, the regression equation is significantly off but seems to give the right sense. Would we be led far astray if we relied on the OLS coefficients? The effect of age is off by more than 5 cents per year of age, and the coefficient on education level is off by about 10%. We can test the OLS coefficient on education level against the true value by using test.
. test educ = 1
(1) education = 1
F(1, 1340) = 4.31
Prob > F = 0.0380

Not only is the OLS coefficient on education substantially lower than the true parameter, but the difference from the true parameter is also statistically significant beyond the 5% level. We can perform a similar test for the OLS age coefficient:

. test age = .2
(1) age = .2
F(1, 1340) = 8.15
Prob > F = 0.0044

We find even stronger evidence that the OLS regression results are biased away from the true parameters.

Example 2

Several other interesting aspects of the Heckman model can be explored with predict. Continuing with our wage model, we can obtain the expected wages for women conditional on participating in the labor force with the `ycond` option. Let’s get these predictions and compare them with actual wages for women participating in the labor force.

. use http://www.stata-press.com/data/r13/womenwk, clear
. heckman wage educ age, select(married children educ age)
(output omitted)
. predict hcndwage, ycond
. summarize wage hcndwage if wage != .

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage</td>
<td>1343</td>
<td>23.69217</td>
<td>6.305374</td>
<td>5.88497</td>
<td>45.80979</td>
</tr>
<tr>
<td>hcndwage</td>
<td>1343</td>
<td>23.68239</td>
<td>3.335087</td>
<td>16.18337</td>
<td>33.7567</td>
</tr>
</tbody>
</table>

We see that the average predictions from `heckman` are close to the observed levels but do not have the same mean. These conditional wage predictions are available for all observations in the dataset but can be directly compared only with observed wages, where individuals are participating in the labor force.

What if we were interested in making predictions about mean wages for all women? Here the expected wage is 0 for those who are not expected to participate in the labor force, with expected participation determined by the selection equation. These values can be obtained with the `yexpected` option of `predict`. For comparison, a variable can be generated where the wage is set to 0 for nonparticipants.

. predict hexpwage, yexpected
. generate wage0 = wage
(657 missing values generated)
. replace wage0 = 0 if wage == .
(657 real changes made)
Again we note that the predictions from `heckman` are close to the observed mean hourly wage rate for all women. Why aren’t the predictions using `ycond` and `yexpected` equal to their observed sample equivalents? For the Heckman model, unlike linear regression, the sample moments implied by the optimal solution to the model likelihood do not require that these predictions match observed data. Properly accounting for the additional variation from the selection equation requires that the model use more information than just the sample moments of the observed wages.

Reference

Also see

[R] `heckman` — Heckman selection model

[U] 20 Estimation and postestimation commands