cnsreg — Constrained linear regression

Syntax

cnsreg depvar indepvars [if] [in] [weight], constraints(constraints) [options]

options Description

Model
*constraints(constraints) apply specified linear constraints
collinear keep collinear variables
noconstant suppress constant term

SE/Robust
vce(vcetype) vcetype may be ols, robust, cluster clustvar, bootstrap, or jackknife

Reporting
level(#) set confidence level; default is level(95)
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, display of omitted
 variables and base and empty cells, and factor-variable labeling
mse1 force MSE to be 1
coeflegend display legend instead of statistics

*constraints(constraints) is required.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fp, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
With the fp prefix (see [R] fp), constraints cannot be specified for the variable containing fractional polynomial terms.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), mse1, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
mse1 and coeflegend do not appear in the dialog.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
cnsreg fits constrained linear regression models.

Options

```
Model constraints(constraints), collinear, noconstant; see [R] estimation options.
```

```
SE/Robust vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (ols), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce_option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.
```

```
Reporting level(#) ; see [R] estimation options.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabe-
label, fvwrap(#), fvwrapon(style), cformat(%,fmt), pformat(%,fmt), sformat(%,fmt), and
nolstretch; see [R] estimation options.
```

The following options are available with cnsreg but are not shown in the dialog box:

```
msel is used only in programs and ado-files that use cnsreg to fit models other than constrained linear
regression. msel sets the mean squared error to 1, thus forcing the variance–covariance matrix of
the estimators to be \((X'DX)^{-1}\) (see Methods and formulas in [R] regress) and affecting calculated
standard errors. Degrees of freedom for \( t \) statistics are calculated as \( n \) rather than \( n - p + c \), where
\( p \) is the total number of parameters (prior to restrictions and including the constant) and \( c \) is the
number of constraints.

msel is not allowed with the svy prefix.
```

```
coeflegend; see [R] estimation options.
```

Remarks and examples

For a discussion of constrained linear regression, see Greene (2012, 121–122); Hill, Griffiths, and
Lim (2011, 231–233); or Davidson and MacKinnon (1993, 17).
Example 1: One constraint

In principle, we can obtain constrained linear regression estimates by modifying the list of independent variables. For instance, if we wanted to fit the model

\[\text{mpg} = \beta_0 + \beta_1 \text{price} + \beta_2 \text{weight} + u \]

and constrain \(\beta_1 = \beta_2 \), we could write

\[\text{mpg} = \beta_0 + \beta_1 (\text{price} + \text{weight}) + u \]

and run a regression of \(\text{mpg} \) on \(\text{price} + \text{weight} \). The estimated coefficient on the sum would be the constrained estimate of \(\beta_1 \) and \(\beta_2 \). Using \text{cnsreg} however, is easier:

```
use http://www.stata-press.com/data/r13/auto  
(1978 Automobile Data)
constraint 1 price = weight
.cnsreg mpg price weight, constraint(1)
```

```
Constrained linear regression
Number of obs = 74
F( 1, 72) = 37.59
Prob > F = 0.0000
Root MSE = 4.7220

( 1) price - weight = 0

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--- | -------- -------- -------- -------- ------------------
price  | -.0009875  .0001611  -6.13 0.000  -.0013086  -.0006664
weight | -.0009875  .0001611  -6.13 0.000  -.0013086  -.0006664
_cons  | 30.36718  1.577958  19.24 0.000  27.22158  33.51278
```

We define constraints by using the \text{constraint} command; see \text{[R] constraint}. We fit the model with \text{cnsreg} and specify the constraint number or numbers in the \text{constraints()} option.

Just to show that the results above are correct, here is the result of applying the constraint by hand:

```
.generate x = price + weight
.regress mpg x
```

```
Source | SS df MS
------- | -------- -------- --------
Model   | 838.065767 1 838.065767 37.59
Residual| 1605.39369 72 22.2971346 0.0000
Total   | 2443.45946 73 33.4720474 0.3339

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--- | -------- -------- -------- -------- ------------------
x  | -.0009875  .0001611  -6.13 0.000  -.0013086  -.0006664
_cons  | 30.36718  1.577958  19.24 0.000  27.22158  33.51278
```

Example 2: Multiple constraints

Models can be fit subject to multiple simultaneous constraints. We simply define the constraints and then include the constraint numbers in the `constraints()` option. For instance, say that we wish to fit the model

\[
mpg = \beta_0 + \beta_1 \text{price} + \beta_2 \text{weight} + \beta_3 \text{displ} + \beta_4 \text{gear_ratio} + \beta_5 \text{foreign} + \beta_6 \text{length} + u
\]

subject to the constraints

\[
\beta_1 = \beta_2 = \beta_3 = \beta_6 \\
\beta_4 = -\beta_5 = \beta_0 / 20
\]

(This model, like the one in example 1, is admittedly senseless.) We fit the model by typing

```
. constraint 1 price=weight
. constraint 2 displ=weight
. constraint 3 length=weight
. constraint 5 gear\_ratio = -foreign
. constraint 6 gear\_ratio = _cons/20
. cnsreg mpg price weight displ gear\_ratio foreign length, c(1-3,5-6)
```

There are many ways we could have specified the `constraints()` option (which we abbreviated `c()` above). We typed `c(1-3,5-6)`, meaning that we want constraints 1 through 3 and 5 and 6; those numbers correspond to the constraints we defined. The only reason we did not use the number 4 was to emphasize that constraints do not have to be consecutively numbered. We typed `c(1-3,5-6)`, but we could have typed `c(1,2,3,5,6)` or `c(1-3,5,6)` or `c(1-2,3,5,6)` or even `c(1-6)`, which would have worked as long as constraint 4 was not defined. If we had previously defined a constraint 4, then `c(1-6)` would have included it.
Stored results

cnsreg stores the following in e():

Scalars
- e(N) number of observations
- e(df_m) model degrees of freedom
- e(df_r) residual degrees of freedom
- e(F) F statistic
- e(rmse) root mean squared error
- e(ll) log likelihood
- e(N_clust) number of clusters
- e(rank) rank of e(V)

Macros
- e(cmd) cnsreg
- e(cmdline) command as typed
- e(depvar) name of dependent variable
- e(wtype) weight type
- e(wexp) weight expression
- e(title) title in estimation output
- e(clustvar) name of cluster variable
- e(vce) vcetype specified in vce()
- e(vcetype) title used to label Std. Err.
- e(properties) b V
- e(predict) program used to implement predict
- e(asbalanced) factor variables fvset as asbalanced
- e(asobserved) factor variables fvset as asobserved

Matrices
- e(b) coefficient vector
- e(Cns) constraints matrix
- e(V) variance–covariance matrix of the estimators
- e(V_modelbased) model-based variance

Functions
- e(sample) marks estimation sample

Methods and formulas

Let n be the number of observations, p be the total number of parameters (prior to restrictions and including the constant), and c be the number of constraints. The coefficients are calculated as $b' = T\{(T'X'WXT)^{-1}(T'X'Wy - T'X'WXa')\} + a'$, where T and a are as defined in [P] makecns. $W = I$ if no weights are specified. If weights are specified, let v: $1 \times n$ be the specified weights. If fweight frequency weights are specified, $W = \text{diag}(v)$. If aweight analytic weights are specified, then $W = \text{diag}[v/(1'v)(1'1)]$, meaning that the weights are normalized to sum to the number of observations.

The mean squared error is $s^2 = (y'Wy - 2b'X'Wy + b'X'WXb)/(n - p + c)$. The variance–covariance matrix is $s^2T(T'X'WXT)^{-1}T'$.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly Introduction and Methods and formulas.

cnsreg also supports estimation with survey data. For details on VCEs with survey data, see [SVY] variance estimation.
References

Also see

[R] cnsreg postestimation — Postestimation tools for cnsreg

[R] regress — Linear regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands