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Syntax

Syntax for ci

ci
[

varlist
] [

if
] [

in
] [

weight
] [

, options
]

Immediate command for variable distributed as normal

cii #obs #mean #sd

[
, ciin option

]
Immediate command for variable distributed as binomial

cii #obs #succ

[
, ciib options

]
Immediate command for variable distributed as Poisson

cii #exposure #events , poisson
[

ciip options
]

options Description

Main

binomial binomial 0/1 variables; compute exact confidence intervals
poisson Poisson variables; compute exact confidence intervals
exposure(varname) exposure variable; implies poisson

exact calculate exact confidence intervals; the default
wald calculate Wald confidence intervals
wilson calculate Wilson confidence intervals
agresti calculate Agresti–Coull confidence intervals
jeffreys calculate Jeffreys confidence intervals
total add output for all groups combined (for use with by only)
separator(#) draw separator line after every # variables; default is separator(5)

level(#) set confidence level; default is level(95)

by is allowed with ci; see [D] by.
aweights and fweights are allowed, but aweights may not be specified with the binomial or poisson options;

see [U] 11.1.6 weight.

ciin option Description

level(#) set confidence level; default is level(95)
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ciib options Description

level(#) set confidence level; default is level(95)

exact calculate exact confidence intervals; the default
wald calculate Wald confidence intervals
wilson calculate Wilson confidence intervals
agresti calculate Agresti–Coull confidence intervals
jeffreys calculate Jeffreys confidence intervals

ciip options Description

∗poisson numbers are Poisson-distributed counts
level(#) set confidence level; default is level(95)

∗poisson is required.

Menu
ci

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Confidence intervals

cii for variable distributed as normal

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Normal CI calculator

cii for variable distributed as binomial

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Binomial CI calculator

cii for variable distributed as Poisson

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Poisson CI calculator

Description
ci computes standard errors and confidence intervals for each of the variables in varlist.

cii is the immediate form of ci; see [U] 19 Immediate commands for a general discussion of
immediate commands.

In the binomial and Poisson variants of cii, the second number specified (#succ or #events) must
be an integer or between 0 and 1. If the number is between 0 and 1, Stata interprets it as the fraction
of successes or events and converts it to an integer number representing the number of successes or
events. The computation then proceeds as if two integers had been specified.

Options

� � �
Main �

binomial tells ci that the variables are 0/1 variables and that binomial confidence intervals will be
calculated. (cii produces binomial confidence intervals when only two numbers are specified.)

poisson specifies that the variables (or numbers for cii) are Poisson-distributed counts; exact Poisson
confidence intervals will be calculated.

http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u19.pdf#u19Immediatecommands
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exposure(varname) is used only with poisson. You do not need to specify poisson if you specify
exposure(); poisson is assumed. varname contains the total exposure (typically a time or an
area) during which the number of events recorded in varlist were observed.

exact, wald, wilson, agresti, and jeffreys specify that variables are 0/1 and specify how
binomial confidence intervals are to be calculated.

exact is the default and specifies exact (also known in the literature as Clopper–Pearson [1934])
binomial confidence intervals.

wald specifies calculation of Wald confidence intervals.

wilson specifies calculation of Wilson confidence intervals.

agresti specifies calculation of Agresti–Coull confidence intervals.

jeffreys specifies calculation of Jeffreys confidence intervals.

See Brown, Cai, and DasGupta (2001) for a discussion and comparison of the different binomial
confidence intervals.

total is for use with the by prefix. It requests that, in addition to output for each by-group, output
be added for all groups combined.

separator(#) specifies how often separation lines should be inserted into the output. The default is
separator(5), meaning that a line is drawn after every five variables. separator(10) would
draw the line after every 10 variables. separator(0) suppresses the separation line.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

Remarks and examples stata.com

Remarks are presented under the following headings:

Ordinary confidence intervals
Binomial confidence intervals
Poisson confidence intervals
Immediate form
Video examples

Ordinary confidence intervals

Example 1

Without the binomial or poisson options, ci produces “ordinary” confidence intervals, meaning
those that are correct if the variable is distributed normally, and asymptotically correct for all other
distributions satisfying the conditions of the central limit theorem.

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. ci mpg price

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.2973 .6725511 19.9569 22.63769
price 74 6165.257 342.8719 5481.914 6848.6

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/rlevel.pdf#rlevel
http://stata.com
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The standard error of the mean of mpg is 0.67, and the 95% confidence interval is [ 19.96, 22.64 ].
We can obtain wider confidence intervals, 99%, by typing

. ci mpg price, level(99)

Variable Obs Mean Std. Err. [99% Conf. Interval]

mpg 74 21.2973 .6725511 19.51849 23.07611
price 74 6165.257 342.8719 5258.405 7072.108

Example 2

by() breaks out the confidence intervals according to by-group; total adds an overall summary.
For instance,

. ci mpg, by(foreign) total

-> foreign = Domestic

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 52 19.82692 .657777 18.50638 21.14747

-> foreign = Foreign

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 22 24.77273 1.40951 21.84149 27.70396

-> Total

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

Technical note
You can control the formatting of the numbers in the output by specifying a display format for

the variable; see [U] 12.5 Formats: Controlling how data are displayed. For instance,

. format mpg %9.2f

. ci mpg

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.30 0.67 19.96 22.64

Binomial confidence intervals

Example 3

We have data on employees, including a variable marking whether the employee was promoted
last year.

http://www.stata.com/manuals13/u12.pdf#u12.5FormatsControllinghowdataaredisplayed
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. use http://www.stata-press.com/data/r13/promo

. ci promoted, binomial

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 .1 .067082 .0123485 .3169827

The above interval is the default for binomial data, known equivalently as both the exact binomial
and the Clopper–Pearson interval.

Nominally, the interpretation of a 95% confidence interval is that under repeated samples or
experiments, 95% of the resultant intervals would contain the unknown parameter in question.
However, for binomial data, the actual coverage probability, regardless of method, usually differs from
that interpretation. This result occurs because of the discreteness of the binomial distribution, which
produces only a finite set of outcomes, meaning that coverage probabilities are subject to discrete
jumps and the exact nominal level cannot always be achieved. Therefore, the term exact confidence
interval refers to its being derived from the binomial distribution, the distribution exactly generating
the data, rather than resulting in exactly the nominal coverage.

For the Clopper–Pearson interval, the actual coverage probability is guaranteed to be greater
than or equal to the nominal confidence level, here 95%. Because of the way it is calculated—see
Methods and formulas—it may also be interpreted as follows: If the true probability of being promoted
were 0.012, the chances of observing a result as extreme or more extreme than the result observed
(20× 0.1 = 2 or more promotions) would be 2.5%. If the true probability of being promoted were
0.317, the chances of observing a result as extreme or more extreme than the result observed (two
or fewer promotions) would be 2.5%.

Example 4

The Clopper–Pearson interval is desirable because it guarantees nominal coverage; however, by
dropping this restriction, you may obtain accurate intervals that are not as conservative. In this vein,
you might opt for the Wilson (1927) interval,

. ci promoted, binomial wilson

Wilson
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 .1 .067082 .0278665 .3010336

the Agresti–Coull (1998) interval,

. ci promoted, binomial agresti

Agresti-Coull
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 .1 .067082 .0156562 .3132439

or the Bayesian-derived Jeffreys interval (Brown, Cai, and DasGupta 2001),

. ci promoted, binomial jeffreys

Jeffreys
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 .1 .067082 .0213725 .2838533
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Picking the best interval is a matter of balancing accuracy (coverage) against precision (average
interval length) and depends on sample size and success probability. Brown, Cai, and DasGupta (2001)
recommend the Wilson or Jeffreys interval for small sample sizes (≤40) yet favor the Agresti–Coull
interval for its simplicity, decent performance for sample sizes less than or equal to 40, and performance
comparable to Wilson/Jeffreys for sample sizes greater than 40. They also deem the Clopper–Pearson
interval to be “wastefully conservative and [. . . ] not a good choice for practical use”, unless of course
one requires, at a minimum, the nominal coverage level.

Finally, the binomial Wald confidence interval is obtained by specifying the binomial and wald
options. The Wald interval is the one taught in most introductory statistics courses and for the above
is simply, for level 1− α, Mean±zα(Std. Err.), where zα is the 1− α/2 quantile of the standard
normal. Because its overall poor performance makes it impractical, the Wald interval is available
mainly for pedagogical purposes. The binomial Wald interval is also similar to the interval produced
by treating binary data as normal data and using ci without the binomial option, with two exceptions.
First, when binomial is specified, the calculation of the standard error uses denominator n rather
than n − 1, used for normal data. Second, confidence intervals for normal data are based on the
t distribution rather than the standard normal. Of course, both discrepancies vanish as sample size
increases.

Technical note

Let’s repeat example 3, but this time with data in which there are no promotions over the observed
period:

. use http://www.stata-press.com/data/r13/promonone

. ci promoted, binomial

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 0 0 0 .1684335*

(*) one-sided, 97.5% confidence interval

The confidence interval is [ 0, 0.168 ], and this is the confidence interval that most books publish. It
is not, however, a true 95% confidence interval because the lower tail has vanished. As Stata notes,
it is a one-sided, 97.5% confidence interval. If you wanted to put 5% in the right tail, you could type
ci promoted, binomial level(90).

Technical note
ci with the binomial option ignores any variables that do not take on the values 0 and 1

exclusively. For instance, with our automobile dataset,
. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. ci mpg foreign, binomial

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

foreign 74 .2972973 .0531331 .196584 .4148353

We also requested the confidence interval for mpg, but Stata ignored us. It does that so you can type
ci, binomial and obtain correct confidence intervals for all the variables that are 0/1 in your data.
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Poisson confidence intervals

Example 5

We have data on the number of bacterial colonies on a Petri dish. The dish has been divided into
36 small squares, and the number of colonies in each square has been counted. Each observation in
our dataset represents a square on the dish. The variable count records the number of colonies in
each square counted, which varies from 0 to 5.

. use http://www.stata-press.com/data/r13/petri

. ci count, poisson

Poisson Exact
Variable Exposure Mean Std. Err. [95% Conf. Interval]

count 36 2.333333 .2545875 1.861158 2.888825

ci reports that the average number of colonies per square is 2.33. If the expected number of colonies
per square were as low as 1.86, the probability of observing 2.33 or more colonies per square would
be 2.5%. If the expected number were as large as 2.89, the probability of observing 2.33 or fewer
colonies per square would be 2.5%.

Technical note
The number of “observations”—how finely the Petri dish is divided—makes no difference. The

Poisson distribution is a function only of the count. In example 4, we observed a total of 2.33×36 = 84
colonies and a confidence interval of [ 1.86× 36, 2.89× 36 ] = [ 67, 104 ]. We would obtain the same
[ 67, 104 ] confidence interval if our dish were divided into, say, 49 squares, rather than 36.

For the counts, it is not even important that all the squares be of the same size. For rates, however,
such differences do matter, but in an easy-to-calculate way. Rates are obtained from counts by dividing
by exposure, which is typically a number multiplied by either time or an area. For our Petri dishes,
we divide by an area to obtain a rate, but if our example were cast in terms of being infected by a
disease, we might divide by person-years to obtain the rate. Rates are convenient because they are
easier to compare: we might have 2.3 colonies per square inch or 0.0005 infections per person-year.

So, let’s assume that we wish to obtain the number of colonies per square inch, and, moreover,
that not all the “squares” on our dish are of equal size. We have a variable called area that records
the area of each “square”:

. ci count, exposure(area)

Poisson Exact
Variable Exposure Mean Std. Err. [95% Conf. Interval]

count 3 28 3.055051 22.3339 34.66591

The rates are now in more familiar terms. In our sample, there are 28 colonies per square inch and
the 95% confidence interval is [ 22.3, 34.7 ]. When we did not specify exposure(), ci assumed that
each observation contributed 1 to exposure.
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Technical note
As with the binomial option, if there were no colonies on our dish, ci would calculate a one-sided

confidence interval:

. use http://www.stata-press.com/data/r13/petrinone

. ci count, poisson

Poisson Exact
Variable Exposure Mean Std. Err. [95% Conf. Interval]

count 36 0 0 0 .1024689*

(*) one-sided, 97.5% confidence interval

Immediate form

Example 6

We are reading a soon-to-be-published paper by a colleague. In it is a table showing the number of
observations, mean, and standard deviation of 1980 median family income for the Northeast and West.
We correctly think that the paper would be much improved if it included the confidence intervals.
The paper claims that for 166 cities in the Northeast, the average of median family income is $19,509
with a standard deviation of $4,379:

For the Northeast:

. cii 166 19509 4379

Variable Obs Mean Std. Err. [95% Conf. Interval]

166 19509 339.8763 18837.93 20180.07

For the West:

. cii 256 22557 5003

Variable Obs Mean Std. Err. [95% Conf. Interval]

256 22557 312.6875 21941.22 23172.78

Example 7

We flip a coin 10 times, and it comes up heads only once. We are shocked and decide to obtain
a 99% confidence interval for this coin:

. cii 10 1, level(99)

Binomial Exact
Variable Obs Mean Std. Err. [99% Conf. Interval]

10 .1 .0948683 .0005011 .5442871
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Example 8

The number of reported traffic accidents in Santa Monica over a 24-hour period is 27. We need
know nothing else:

. cii 1 27, poisson

Poisson Exact
Variable Exposure Mean Std. Err. [95% Conf. Interval]

1 27 5.196152 17.79317 39.28358

Video examples

Immediate commands in Stata: Confidence intervals for Poisson data

Immediate commands in Stata: Confidence intervals for binomial data

Immediate commands in Stata: Confidence intervals for normal data

Stored results
ci and cii store the following in r():

Scalars
r(N) number of observations or exposure r(lb) lower bound of confidence interval
r(mean) mean r(ub) upper bound of confidence interval
r(se) estimate of standard error

Methods and formulas
Methods and formulas are presented under the following headings:

Ordinary
Binomial
Poisson

Ordinary

Define n, x, and s2 as, respectively, the number of observations, (weighted) average, and (unbiased)
estimated variance of the variable in question; see [R] summarize.

The standard error of the mean, sµ, is defined as
√
s2/n.

Let α be 1 − l/100, where l is the significance level specified by the user. Define tα as the
two-sided t statistic corresponding to a significance level of α with n − 1 degrees of freedom; tα
is obtained from Stata as invttail(n-1,0.5*α). The lower and upper confidence bounds are,
respectively, x− sµtα and x+ sµtα.

http://www.youtube.com/watch?v=vQab7Ot4qnE
http://www.youtube.com/watch?v=eaUs_LLV6gw
http://www.youtube.com/watch?v=fFVBIpHY-RY
http://www.stata.com/manuals13/rsummarize.pdf#rsummarize
http://www.stata.com/manuals13/dfunctions.pdf#dfunctionsDescriptioninvttail()
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Binomial

Given k successes of n trials, the estimated probability is p̂ = k/nwith standard error
√
p̂(1− p̂)/n.

ci calculates the exact (Clopper–Pearson) confidence interval [ p1, p2 ] such that

Pr(K ≥ k|p = p1) = α/2

and
Pr(K ≤ k|p = p2) = α/2

where K is distributed as binomial(n, p). The endpoints may be obtained directly by using Stata’s
invbinomial() function. If k = 0 or k = n, the calculation of the appropriate tail is skipped.

The Wald interval is p̂ ± zα
√
p̂(1− p̂)/n, where zα is the 1 − α/2 quantile of the standard

normal. The interval is obtained by inverting the acceptance region of the large-sample Wald test of
H0 : p = p0 versus the two-sided alternative. That is, the confidence interval is the set of all p0 such
that ∣∣∣∣∣ p̂− p0√

n−1p̂(1− p̂)

∣∣∣∣∣ ≤ zα
The Wilson interval is a variation on the Wald interval, using the null standard error

√
n−1p0(1− p0)

in place of the estimated standard error
√
n−1p̂(1− p̂) in the above expression. Inverting this

acceptance region is more complicated yet results in the closed form

k + z2α/2

n+ z2α
± zαn

1/2

n+ z2α/2

{
p̂(1− p̂) + z2α

4n

}1/2

The Agresti–Coull interval is basically a Wald interval that borrows its center from the Wilson
interval. Defining k̃ = k + z2α/2, ñ = n+ z2α, and (hence) p̃ = k̃/ñ, the Agresti–Coull interval is

p̃± zα
√
p̃(1− p̃)/ñ

When α = 0.05, zα is near enough to 2 that p̃ can be thought of as a typical estimate of proportion
where two successes and two failures have been added to the sample (Agresti and Coull 1998).
This typical estimate of proportion makes the Agresti–Coull interval an easy-to-present alternative
for introductory statistics students.

The Jeffreys interval is a Bayesian interval and is based on the Jeffreys prior, which is the
Beta(1/2, 1/2) distribution. Assigning this prior to p results in a posterior distribution for p that is
Beta with parameters k+1/2 and n−k+1/2. The Jeffreys interval is then taken to be the 1−α central
posterior probability interval, namely, the α/2 and 1−α/2 quantiles of the Beta(k+1/2, n−k+1/2)
distribution. These quantiles may be obtained directly by using Stata’s invibeta() function.

Poisson

Given the total cases, k, the estimate of the expected count λ is k, and its standard error is
√
k.

ci calculates the exact confidence interval [λ1, λ2 ] such that

Pr(K ≥ k|λ = λ1) = α/2

http://www.stata.com/manuals13/dfunctions.pdf#dfunctionsDescriptioninvibeta()
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and
Pr(K ≤ k|λ = λ2) = α/2

where K is Poisson with mean λ. Solution is by Newton’s method. If k = 0, the calculation of λ1
is skipped. All values are then reported as rates, which are the above numbers divided by the total
exposure.

� �
Harold Jeffreys (1891–1989) was born near Durham, England, and spent more than 75 years
studying and working at the University of Cambridge, principally on theoretical and observational
problems in geophysics, astronomy, mathematics, and statistics. He developed a systematic
Bayesian approach to inference in his monograph Theory of Probability.

Edwin Bidwell (E. B.) Wilson (1879–1964) majored in mathematics at Harvard and studied and
taught at Yale and MIT before returning to Harvard in 1922. He worked in mathematics, physics,
and statistics. His method for binomial intervals can be considered a precursor, for a particular
problem, of Neyman’s concept of confidence intervals.

Jerzy Neyman (1894–1981) was born in Bendery, Russia, now Moldavia. He studied and then
taught at Kharkov University, moving from physics to mathematics. In 1921, Neyman moved
to Poland, where he worked in statistics at Bydgoszcz and then Warsaw. Neyman received a
Rockefeller Fellowship to work with Karl Pearson at University College London. There, he
collaborated with Egon Pearson, Karl’s son, on the theory of hypothesis testing. Life in Poland
became progressively more difficult, and Neyman returned to UCL to work there from 1934 to 1938.
At this time, he published on the theory of confidence intervals. He then was offered a post in
California at Berkeley, where he settled. Neyman established an outstanding statistics department
and remained highly active in research, including applications in astronomy, meteorology, and
medicine. He was one of the great statisticians of the 20th century.� �
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