
Title stata.com

syntax — Parse Stata syntax

Syntax Description Syntax, continued Remarks and examples Also see

Syntax
Parse Stata syntax positionally

args macroname1
[

macroname2
[

macroname3 . . .
]]

Parse syntax according to a standard syntax grammar

syntax description of syntax

Description
There are two ways that a Stata program can interpret what the user types:

1. positionally, meaning first argument, second argument, and so on, or

2. according to a grammar, such as standard Stata syntax.

args does the first. The first argument is assigned to macroname1, the second to macroname2,
and so on. In the program, you later refer to the contents of the macros by enclosing their names in
single quotes: ‘macroname1’, ‘macroname2’, . . . :

program myprog
version 13
args varname dof beta
(the rest of the program would be coded in terms of ‘varname’, ‘dof’, and ‘beta’)
. . .

end

syntax does the second. You specify the new command’s syntax on the syntax command; for
instance, you might code

program myprog
version 13
syntax varlist [if] [in] [, DOF(integer 50) Beta(real 1.0)]
(the rest of the program would be coded in terms of ‘varlist’, ‘if’, ‘in’, ‘dof’, and ‘beta’)
. . .

end

syntax examines what the user typed and attempts to match it to the syntax diagram. If it does not
match, an error message is issued and the program is stopped (a nonzero return code is returned).
If it does match, the individual components are stored in particular local macros where you can
subsequently access them. In the example above, the result would be to define the local macros
‘varlist’, ‘if’, ‘in’, ‘dof’, and ‘beta’.

For an introduction to Stata programming, see [U] 18 Programming Stata and especially
[U] 18.4 Program arguments.

1

http://stata.com
http://www.stata.com/manuals13/u18.pdf#u18ProgrammingStata
http://www.stata.com/manuals13/u18.pdf#u18.4Programarguments

2 syntax — Parse Stata syntax

Standard Stata syntax is

cmd
[

varlist | namelist | anything
][

if
][

in
][

using filename
][

= exp
][

weight
][

, options
]

Each of these building blocks, such as varlist, namelist, and if, is outlined below.

Syntax, continued
The description of syntax allowed by syntax includes

description of varlist:
type nothing

or
optionally type [
then type one of varlist varname newvarlist newvarname
optionally type (varlist specifiers)
type] (if you typed [at the start)

varlist specifiers are default=none min=# max=# numeric
string str# strL fv ts
generate (newvarlist and newvarname only)

Examples: syntax varlist . . .
syntax [varlist] . . .
syntax varlist(min=2) . . .
syntax varlist(max=4) . . .
syntax varlist(min=2 max=4 numeric) . . .
syntax varlist(default=none) . . .

syntax newvarlist(max=1) . . .

syntax varname . . .
syntax [varname] . . .

If you type nothing, the command does not allow a varlist.

Typing [and] means that the varlist is optional.

default= specifies how the varlist is to be filled in when the varlist is optional and the user does not specify it.
The default is to fill it in with all the variables. If default=none is specified, it is left empty.

min= and max= specify the minimum and maximum number of variables that may be specified. Typing varname
is equivalent to typing varlist(max=1).

numeric, string, str#, and strL restrict the specified varlist to consist of entirely numeric, entirely string
(meaning str# or strL), entirely str#, or entirely strL variables.

fv allows the varlist to contain factor variables.

ts allows the varlist to contain time-series operators.

generate specifies, for newvarlist or newvarname, that the new variables be created and filled in with missing
values.

http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/u11.pdf#u11.1.6weight

syntax — Parse Stata syntax 3

After the syntax command, the resulting varlist is returned in ‘varlist’. If there are new variables (you coded
newvarname or newvarlist), the macro ‘typlist’ is also defined, containing the storage type of each new
variable, listed one after the other.

description of namelist:
type nothing

or
optionally type [
then type one of namelist name
optionally type (namelist specifiers)
type] (if you typed [at the start)

namelist specifiers are name=name id="text" local
min=# (namelist only) max=# (namelist only)

Examples: syntax namelist . . .
syntax [namelist] . . .
syntax name(id="equation name") . . .
syntax [namelist(id="equation name")] . . .
syntax namelist(name=eqlist id="equation list"). . .
syntax [name(name=eqname id="equation name")] . . .
syntax namelist(min=2 max=2) . . .

namelist is an alternative to varlist; it relaxes the restriction that the names the user specifies be of variables.
name is a shorthand for namelist(max=1).

namelist is for use when you want the command to have the nearly standard syntax of command name followed
by a list of names (not necessarily variable names), followed by if, in, options, etc. For instance, perhaps the
command is to be followed by a list of variable-label names.

If you type nothing, the command does not allow a namelist. Typing [and] means that the namelist is optional.
After the syntax command, the resulting namelist is returned in ‘namelist’ unless name=name is specified, in
which case the result is returned in ‘name’.

id= specifies the name of namelist and is used in error messages. The default is id=namelist. If namelist were
required and id= was not specified, and the user typed “mycmd if. . . ” (omitting the namelist), the error message
would be “namelist required”. If you specified id="equation name", the error message would be “equation name
required”.

name= specifies the name of the local macro to receive the namelist; not specifying the option is equivalent to
specifying name=namelist.

local specifies that the names that the user specifies satisfy the naming convention for local macro names. If this
option is not specified, standard naming convention is used (names may begin with a letter or underscore, may
thereafter also include numbers, and must not be longer than 32 characters). If the user specifies an invalid name,
an error message will be issued. If local is specified, specified names are allowed to begin with numbers but
may not be longer than 31 characters.

4 syntax — Parse Stata syntax

description of anything:
type nothing

or
optionally type [
type anything
optionally type (anything specifiers)
type] (if you typed [at the start)

anything specifiers are name=name id="text" equalok
everything

Examples: syntax anything . . .
syntax [anything] . . .
syntax anything(id="equation name") . . .
syntax [anything(id="equation name")] . . .
syntax anything(name=eqlist id="equation list") . . .
syntax [anything(name=eqlist id="equation list")] . . .
syntax anything(equalok) . . .
syntax anything(everything) . . .
syntax [anything(name=0 id=clist equalok)] . . .

anything is for use when you want the command to have the nearly standard syntax of command name followed
by something followed by if, in, options, etc. For instance, perhaps the command is to be followed by an
expression or expressions or a list of numbers.

If you type nothing, the command does not allow an “anything”. Typing [and] means the “anything” is optional.
After the syntax command, the resulting “anything list” is returned in ‘anything’ unless name=name is specified,
in which case the result is returned in ‘name’.

id= specifies the name of “anything” and is used only in error messages. For instance, if anything were required
and id= was not specified, and the user typed “mycmd if. . . ” (omitting the “anything”), the error message would
be “something required”. If you specified id="expression list", the error message would be “expression list
required”.

name= specifies the name of the local macro to receive the “anything”; not specifying the option is equivalent to
specifying name=anything.

equalok specifies that = is not to be treated as part of =exp in subsequent standard syntax but instead as part of
the anything.

everything specifies that if, in, and using are not to be treated as part of standard syntax but instead as part
of the anything.

varlist, varname, namelist, name, and anything are alternatives; you may specify at most one.

description of if:
type nothing

or
optionally type [
type if
optionally type /
type] (if you typed [at the start)

Examples: syntax . . . if . . .
syntax . . . [if] . . .
syntax . . . [if/] . . .
syntax . . . if/ . . .

If you type nothing, the command does not allow an if exp.

Typing [and] means that the if exp varlist is optional.

After the syntax command, the resulting if exp is returned in ‘if’. The macro contains if followed by the
expression, unless you specified /, in which case the macro contains just the expression.

syntax — Parse Stata syntax 5

description of in:
type nothing

or
optionally type [
type in
optionally type /
type] (if you typed [at the start)

Examples: syntax . . . in . . .
syntax . . . [in] . . .
syntax . . . [in/] . . .
syntax . . . in/ . . .

If you type nothing, the command does not allow an in range.

Typing [and] means that the in range is optional.

After the syntax command, the resulting in range is returned in ‘in’. The macro contains in followed by the
range, unless you specified /, in which case the macro contains just the range.

description of using:
type nothing

or
optionally type [
type using
optionally type /
type] (if you typed [at the start)

Examples: syntax . . . using . . .
syntax . . . [using] . . .
syntax . . . [using/] . . .
syntax . . . using/ . . .

If you type nothing, the command does not allow using filename.

Typing [and] means that the using filename is optional.

After the syntax command, the resulting filename is returned in ‘using’. The macro contains using followed by
the filename in quotes, unless you specified /, in which case the macro contains just the filename without quotes.

description of =exp:
type nothing

or
optionally type [
type =
optionally type /
type exp
type] (if you typed [at the start)

Examples: syntax . . . =exp . . .
syntax . . . [=exp] . . .
syntax . . . [=/exp] . . .
syntax . . . =/exp . . .

If you type nothing, the command does not allow an =exp.

Typing [and] means that the =exp is optional.

After the syntax command, the resulting expression is returned in ‘exp’. The macro contains =, a space, and the
expression, unless you specified /, in which case the macro contains just the expression.

6 syntax — Parse Stata syntax

description of weights:
type nothing

or
type [
type any of fweight aweight pweight iweight

optionally type /
type]

Examples: syntax . . . [fweight] . . .
syntax . . . [fweight pweight] . . .
syntax . . . [pweight fweight] . . .
syntax . . . [fweight pweight iweight/] . . .

If you type nothing, the command does not allow weights. A command may not allow both a weight and =exp.

You must type [and]; they are not optional. Weights are always optional.

The first weight specified is the default weight type.

After the syntax command, the resulting weight and expression are returned in ‘weight’ and ‘exp’. ‘weight’
contains the weight type or nothing if no weights were specified. ‘exp’ contains =, a space, and the expression,
unless you specified /, in which case the macro contains just the expression.

description of options:
type nothing

or
type [,
type option descriptors (these options will be optional)
optionally type *
type]

or
type ,
type option descriptors (these options will be required)
optionally type [
optionally type option descriptors (these options will be optional)
optionally type *
optionally type]

Examples: syntax . . . [, MYopt Thisopt]
syntax . . ., MYopt Thisopt
syntax . . ., MYopt [Thisopt]
syntax . . . [, MYopt Thisopt *]

If you type nothing, the command does not allow options.

The brackets distinguish optional from required options. All options can be optional, all options can be required,
or some can be optional and others be required.

After the syntax command, options are returned to you in local macros based on the first 31 letters of each option’s
name. If you also specify *, any remaining options are collected and placed, one after the other, in ‘options’.
If you do not specify *, an error is returned if the user specifies any options that you do not list.

option descriptors include the following; they are documented below.

optionally on
optionally off
optional integer value
optional real value
optional confidence interval
optional numlist
optional varlist
optional namelist
optional string
optional passthru

syntax — Parse Stata syntax 7

option descriptor optionally on:
type OPname (capitalization indicates minimal abbreviation)

Examples: syntax . . ., . . . replace . . .
syntax . . ., . . . REPLACE . . .
syntax . . ., . . . detail . . .
syntax . . ., . . . Detail . . .
syntax . . ., . . . CONStant . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name. Thus
option replace is returned in local macro ‘replace’; option detail, in local macro ‘detail’; and option
constant, in local macro ‘constant’.

The macro contains nothing if not specified, or else it contains the macro’s name, fully spelled out.

Warning: Be careful if the first two letters of the option’s name are no, such as the option called notice. You
must capitalize at least the N in such cases.

option descriptor optionally off:
type no
type OPname (capitalization indicates minimal abbreviation)

Examples: syntax . . ., . . . noreplace . . .
syntax . . ., . . . noREPLACE . . .
syntax . . ., . . . nodetail . . .
syntax . . ., . . . noDetail . . .
syntax . . ., . . . noCONStant . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name, excluding the
no. Thus option noreplace is returned in local macro ‘replace’; option nodetail, in local macro ‘detail’;
and option noconstant, in local macro ‘constant’.

The macro contains nothing if not specified, or else it contains the macro’s name, fully spelled out, with a no
prefixed. That is, in the noREPLACE example above, macro ‘replace’ contains nothing, or it contains noreplace.

option descriptor optional integer value:
type OPname (capitalization indicates minimal abbreviation)
type (integer
type # (unless the option is required) (the default integer value)
type)

Examples: syntax . . ., . . . Count(integer 3) . . .
syntax . . ., . . . SEQuence(integer 1) . . .
syntax . . ., . . . dof(integer -1) . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name.

The macro contains the integer specified by the user, or else it contains the default value.

option descriptor optional real value:
type OPname (capitalization indicates minimal abbreviation)
type (real
type # (unless the option is required) (the default value)
type)

Examples: syntax . . ., . . . Mean(real 2.5) . . .
syntax . . ., . . . SD(real -1) . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name.

The macro contains the real number specified by the user, or else it contains the default value.

8 syntax — Parse Stata syntax

option descriptor optional confidence interval:
type OPname (capitalization indicates minimal abbreviation)
type (cilevel)

Example: syntax . . ., . . . Level(cilevel) . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name.

If the user specifies a valid level for a confidence interval, the macro contains that value; see [R] level. If the user
specifies an invalid level, an error message is issued, and the return code is 198.

If the user does not type this option, the macro contains the default level obtained from c(level).

option descriptor optional numlist:
type OPname (capitalization indicates minimal abbreviation)
type (numlist
type ascending or descending or nothing
optionally type integer
optionally type missingokay
optionally type min=#
optionally type max=#
optionally type ># or >=# or nothing
optionally type <# or <=# or nothing
optionally type sort
type)

Examples: syntax . . ., . . . VALues(numlist) . . .
syntax . . ., . . . VALues(numlist max=10 sort) . . .
syntax . . ., . . . TIME(numlist >0) . . .
syntax . . ., . . . FREQuency(numlist >0 integer) . . .
syntax . . ., . . . OCCur(numlist missingokay >=0 <1e+9) . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name.

The macro contains the values specified by the user, but listed out, one after the other. For instance, the user might
specify time(1(1)4,10) so that the local macro ‘time’ would contain “1 2 3 4 10”.

min and max specify the minimum and maximum number of elements that may be in the list.

<, <=, >, and >= specify the range of elements allowed in the list.

integer indicates that the user may specify integer values only.

missingokay indicates that the user may specify missing values as list elements.

ascending specifies that the user must give the list in ascending order without repeated values. descending
specifies that the user must give the list in descending order without repeated values.

sort specifies that the list be sorted before being returned. Distinguish this from modifier ascending, which states
that the user must type the list in ascending order. sort says that the user may type the list in any order but it is
to be returned in ascending order. ascending states that the list may have no repeated elements. sort places no
such restriction on the list.

http://www.stata.com/manuals13/rlevel.pdf#rlevel

syntax — Parse Stata syntax 9

option descriptor optional varlist:
type OPname (capitalization indicates minimal abbreviation)
type (varlist or (varname
optionally type numeric or string
optionally type min=#
optionally type max=#
optionally type fv
optionally type ts
type)

Examples: syntax . . ., . . . ROW(varname) . . .
syntax . . ., . . . BY(varlist) . . .
syntax . . ., . . . Counts(varname numeric) . . .
syntax . . ., . . . TItlevar(varname string) . . .
syntax . . ., . . . Sizes(varlist numeric min=2 max=10) . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name.

The macro contains the names specified by the user, listed one after the other.

min indicates the minimum number of variables to be specified if the option is given. min=1 is the default.

max indicates the maximum number of variables that may be specified if the option is given. max=800 is the
default for varlist (you may set it to be larger), and max=1 is the default for varname.

numeric specifies that the variable list must consist entirely of numeric variables. string specifies that the variable
list must consist entirely of string variables, meaning str# or strL. str# and strL specify that the variable list
must consist entirely of str# or strL variables, respectively.

fv specifies that the variable list may contain factor variables.

ts specifies that the variable list may contain time-series operators.

option descriptor optional namelist:
type OPname (capitalization indicates minimal abbreviation)
type (namelist or (name
optionally type min=#
optionally type max=#
optionally type local
type)

Examples: syntax . . ., . . . GENerate(name) . . .
syntax . . ., . . . MATrix(name) . . .
syntax . . ., . . . REsults(namelist min=2 max=10) . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name.

The macro contains the variables specified by the user, listed one after the other.

Do not confuse namelist with varlist. varlist is the appropriate way to specify an option that is to receive
the names of existing variables. namelist is the appropriate way to collect names of other things—such as
matrices—and namelist is sometimes used to obtain the name of a new variable to be created. It is then your
responsibility to verify that the name specified does not already exist as a Stata variable.

min indicates the minimum number of names to be specified if the option is given. min=1 is the default.

max indicates the maximum number of names that may be specified if the option is given. The default is max=1
for name. For namelist, the default is the maximum number of variables allowed in Stata.

local specifies that the names the user specifies are to satisfy the naming convention for local macro names.

10 syntax — Parse Stata syntax

option descriptor optional string:
type OPname (capitalization indicates minimal abbreviation)
type (string
optionally type asis
type)

Examples: syntax . . ., . . . Title(string) . . .
syntax . . ., . . . XTRAvars(string) . . .
syntax . . ., . . . SAVing(string asis) . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name.

The macro contains the string specified by the user, or else it contains nothing.

asis specifies that the option’s arguments be returned just as the user typed them, with quotes (if specified) and
with any leading and trailing blanks. asis should be specified if the option’s arguments might contain suboptions
or expressions that contain quoted strings. If you specify asis, be sure to use compound double quotes when
referring to the macro.

option descriptor optional passthru:
type OPname (capitalization indicates minimal abbreviation)
type (passthru)

Examples: syntax . . ., . . . Title(passthru) . . .
syntax . . ., . . . SAVing(passthru) . . .

The result of the option is returned in a macro name formed by the first 31 letters of the option’s name.

The macro contains the full option—unabbreviated option name, parentheses, and argument—as specified by the
user, or else it contains nothing. For instance, if the user typed ti("My Title"), the macro would contain
title("My Title").

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
The args command
The syntax command

Introduction

Stata is programmable, making it possible to implement new commands. This is done with the
program definition statement:

program newcmd
. . .

end

The first duty of the program is to parse the arguments that it receives.

Programmers use positional argument passing for subroutines and for some new commands with
exceedingly simple syntax. It is so easy to program. If program myprog is to receive a variable name
(call it varname) and two numeric arguments (call them dof and beta), all they need to code is

program myprog
args varname dof beta
(the rest of the program would be coded in terms of ‘varname’, ‘dof’, and ‘beta’)
. . .

end

http://stata.com

syntax — Parse Stata syntax 11

The disadvantage of this is from the caller’s side, because problems would occur if the caller got the
arguments in the wrong order or did not spell out the variable name, etc.

The alternative is to use standard Stata syntax. syntax makes it easy to make new command
myprog have the syntax

myprog varname
[
, dof(#) beta(#)

]
and even to have defaults for dof() and beta():

program myprog
syntax varlist(max=1) [, Dof(integer 50) Beta(real 1.0)]
(the rest of the program would be coded in terms of ‘varlist’, ‘dof’, and ‘beta’)
. . .

end

The args command

args splits what the user typed into words and places the first word in the first macro specified;
the second, in the second macro specified; and so on:

program myprog
args arg1 arg2 arg3 . . .
do computations using local macros ‘arg1’, ‘arg2’, ‘arg3’, . . .

end

args never produces an error. If the user specified more arguments than the macros specified, the
extra arguments are ignored. If the user specified fewer arguments, the extra macros are set to contain
"".

A better version of this program would read
program myprog

version 13 ← new
args arg1 arg2 arg3 . . .
do computations using local macros ‘arg1’, ‘arg2’, ‘arg3’, . . .

end

Placing version 13 as the first line of the program ensures that the command will continue to work
with future versions of Stata; see [U] 16.1.1 Version and [P] version. We will include the version
line from now on.

Example 1

The following command displays the three arguments it receives:
. program argdisp

1. version 13
2. args first second third
3. display "1st argument = ‘first’"
4. display "2nd argument = ‘second’"
5. display "3rd argument = ‘third’"
6. end

. argdisp cat dog mouse
1st argument = cat
2nd argument = dog
3rd argument = mouse

. argdisp 3.456 2+5-12 X*3+cat
1st argument = 3.456
2nd argument = 2+5-12
3rd argument = X*3+cat

http://www.stata.com/manuals13/u16.pdf#u16.1.1Version
http://www.stata.com/manuals13/pversion.pdf#pversion

12 syntax — Parse Stata syntax

Arguments are defined by the spaces that separate them. “X*3+cat” is one argument, but if we had
typed “X*3 + cat”, that would have been three arguments.

If the user specifies fewer arguments than expected by args, the additional local macros are set
as empty. By the same token, if the user specifies too many, they are ignored:

. argdisp cat dog
1st argument = cat
2nd argument = dog
3rd argument =

. argdisp cat dog mouse cow
1st argument = cat
2nd argument = dog
3rd argument = mouse

Technical note
When a program is invoked, exactly what the user typed is stored in the macro ‘0’. Also the first

word of that is stored in ‘1’; the second, in ‘2’; and so on. args merely copies the ‘1’, ‘2’, . . .
macros. Coding

args arg1 arg2 arg3

is no different from coding

local arg1 ‘"‘1’"’
local arg2 ‘"‘2’"’
local arg3 ‘"‘3’"’

The syntax command

syntax is easy to use. syntax parses standard Stata syntax, which is

command varlist if exp in range [weight] using filename, options

Actually, standard syntax is a little more complicated than that because you can substitute other things
for varlist. In any case, the basic idea is that you code a syntax command describing which parts
of standard Stata syntax you expect to see. For instance, you might code

syntax varlist if in, title(string) adjust(real 1)

or

syntax [varlist] [if] [in] [, title(string) adjust(real 1)]

In the first example, you are saying that everything is required. In the second, everything is optional.
You can make some elements required and others optional:

syntax varlist [if] [in], adjust(real) [title(string)]

or

syntax varlist [if] [in] [, adjust(real 1) title(string)]

or many other possibilities. Square brackets denote that something is optional. Put them around what
you wish.

syntax — Parse Stata syntax 13

You code what you expect the user to type. syntax then compares that with what the user actually
did type, and, if there is a mismatch, syntax issues an error message. Otherwise, syntax processes
what the user typed and stores the pieces, split into categories, in macros. These macros are named
the same as the syntactical piece:

The varlist specified will go into ‘varlist’
The if exp will go into ‘if’
The in range will go into ‘in’
The adjust() option’s contents will go into ‘adjust’
The title() option’s contents will go into ‘title’

Go back to the section Syntax, continued; where each element is stored is explicitly stated. When a
piece is not specified by the user, the corresponding macro is cleared.

Example 2

The following program simply displays the pieces:

. program myprog
1. version 13
2. syntax varlist [if] [in] [, adjust(real 1) title(string)]
3. display "varlist contains |‘varlist’|"
4. display " if contains |‘if’|"
5. display " in contains |‘in’|"
6. display " adjust contains |‘adjust’|"
7. display " title contains |‘title’|"
8. end

. myprog
varlist required
r(100);

Well, that should not surprise us; we said that the varlist was required in the syntax command, so
when we tried myprog without explicitly specifying a varlist, Stata complained.

. myprog mpg weight
varlist contains |mpg weight|

if contains ||
in contains ||

adjust contains |1|
title contains ||

. myprog mpg weight if foreign
varlist contains |mpg weight|

if contains |if foreign|
in contains ||

adjust contains |1|
title contains ||

. myprog mpg weight in 1/20
varlist contains |mpg weight|

if contains ||
in contains |in 1/20|

adjust contains |1|
title contains ||

. myprog mpg weight in 1/20 if foreign
varlist contains |mpg weight|

if contains |if foreign|
in contains |in 1/20|

adjust contains |1|
title contains ||

http://www.stata.com/manuals13/perror.pdf#perrorRemarksandexamplesr(100)

14 syntax — Parse Stata syntax

. myprog mpg weight in 1/20 if foreign, title("My Results")
varlist contains |mpg weight|

if contains |if foreign|
in contains |in 1/20|

adjust contains |1|
title contains |My Results|

. myprog mpg weight in 1/20 if foreign, title("My Results") adjust(2.5)
varlist contains |mpg weight|

if contains |if foreign|
in contains |in 1/20|

adjust contains |2.5|
title contains |My Results|

That is all there is to it.

Example 3

After completing the last example, it would not be difficult to actually make myprog do something.
For lack of a better example, we will change myprog to display the mean of each variable, with said
mean multiplied by adjust():

program myprog
version 13
syntax varlist [if] [in] [, adjust(real 1) title(string)]
display
if "‘title’" != "" {

display "‘title’:"
}
foreach var of local varlist {

quietly summarize ‘var’ ‘if’ ‘in’
display %9s "‘var’" " " %9.0g r(mean)*‘adjust’

}
end

. myprog mpg weight

mpg 21.2973
weight 3019.459

. myprog mpg weight if foreign==1
mpg 24.77273

weight 2315.909

. myprog mpg weight if foreign==1, title("My title")

My title:
mpg 24.77273

weight 2315.909

. myprog mpg weight if foreign==1, title("My title") adjust(2)

My title:
mpg 49.54545

weight 4631.818

Technical note
myprog is hardly deserving of any further work, given what little it does, but let’s illustrate two

ideas that use it.

syntax — Parse Stata syntax 15

First, we will learn about the marksample command; see [P] mark. A common mistake is to
use one sample in one part of the program and a different sample in another part. The solution is
to create at the outset a variable that contains 1 if the observation is to be used and 0 otherwise.
marksample will do this correctly because marksample knows what syntax has just parsed:

program myprog
version 13
syntax varlist [if] [in] [, adjust(real 1) title(string)]
marksample touse ← new
display
if "‘title’" != "" {

display "‘title’:"
}
foreach var of local varlist {

quietly summarize ‘var’ if ‘touse’ ← changed
display %9s "‘var’" " " %9.0g r(mean)*‘adjust’

}
end

Second, we will modify our program so that what is done with each variable is done by a subroutine.
Pretend here that we are doing something more involved than calculating and displaying a mean.

We want to make this modification to show you the proper use of the args command. Passing
arguments by position to subroutines is convenient, and there is no chance of error due to arguments
being out of order (assuming that we wrote our program properly):

program myprog
version 13
syntax varlist [if] [in] [, adjust(real 1) title(string)]
marksample touse
display
if "‘title’" != "" {

display "‘title’:"
}
foreach var of local varlist {

doavar ‘touse’ ‘var’ ‘adjust’
}

end

program doavar
version 13
args touse name value
qui summarize ‘name’ if ‘touse’
display %9s "‘name’" " " %9.0g r(mean)*‘value’

end

http://www.stata.com/manuals13/pmark.pdf#pmark

16 syntax — Parse Stata syntax

Also see
[P] gettoken — Low-level parsing

[P] mark — Mark observations for inclusion

[P] numlist — Parse numeric lists

[P] program — Define and manipulate programs

[P] tokenize — Divide strings into tokens

[P] unab — Unabbreviate variable list

[TS] tsrevar — Time-series operator programming command

[U] 11 Language syntax
[U] 16.1.1 Version
[U] 18 Programming Stata
[U] 18.3.1 Local macros
[U] 18.3.5 Double quotes

http://www.stata.com/manuals13/pgettoken.pdf#pgettoken
http://www.stata.com/manuals13/pmark.pdf#pmark
http://www.stata.com/manuals13/pnumlist.pdf#pnumlist
http://www.stata.com/manuals13/pprogram.pdf#pprogram
http://www.stata.com/manuals13/ptokenize.pdf#ptokenize
http://www.stata.com/manuals13/punab.pdf#punab
http://www.stata.com/manuals13/tstsrevar.pdf#tstsrevar
http://www.stata.com/manuals13/u11.pdf#u11Languagesyntax
http://www.stata.com/manuals13/u16.pdf#u16.1.1Version
http://www.stata.com/manuals13/u18.pdf#u18ProgrammingStata
http://www.stata.com/manuals13/u18.pdf#u18.3.1Localmacros
http://www.stata.com/manuals13/u18.pdf#u18.3.5Doublequotes

