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is a reference to the reshape entry in the Data Management Reference Manual.
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intro — Introduction to power and sample-size analysis

Description Remarks and examples References Also see

Description
Power and sample-size (PSS) analysis is essential for designing a statistical study. It investigates

the optimal allocation of study resources to increase the likelihood of the successful achievement of
a study objective.

Remarks and examples
Remarks are presented under the following headings:

Power and sample-size analysis
Hypothesis testing
Components of PSS analysis

Study design
Statistical method
Significance level
Power
Clinically meaningful difference and effect size
Sample size
One-sided test versus two-sided test
Another consideration: Dropout

Sensitivity analysis
An example of PSS analysis in Stata

This entry describes statistical methodology for PSS analysis and terminology that will be used
throughout the manual. For a list of supported PSS methods and the description of the software,
see [PSS] power. To see an example of PSS analysis in Stata, see An example of PSS analysis in
Stata. For more information about PSS analysis, see Lachin (1981), Cohen (1988), Cohen (1992),
Wickramaratne (1995), Lenth (2001), Chow, Shao, and Wang (2008), and Julious (2010), to name a
few.

Power and sample-size analysis

Power and sample-size (PSS) analysis is a key component in designing a statistical study. It
investigates the optimal allocation of study resources to increase the likelihood of the successful
achievement of a study objective.

How many subjects do we need in a study to achieve its research objectives? A study with too
few subjects may have a low chance of detecting an important effect, and a study with too many
subjects may offer very little gain and will thus waste time and resources. What are the chances of
achieving the objectives of a study given available resources? Or what is the smallest effect that can
be detected in a study given available resources? PSS analysis helps answer all of these questions. In
what follows, when we refer to PSS analysis, we imply any of these goals.

We consider prospective PSS analysis (PSS analysis of a future study) as opposed to retrospective
PSS analysis (analysis of a study that has already happened).

1



2 intro — Introduction to power and sample-size analysis

Statistical inference, such as hypothesis testing, is used to evaluate research objectives of a study.
In this manual, we concentrate on the PSS analysis of studies that use hypothesis testing to investigate
the objectives of interest. The supported methods include one-sample and two-sample tests of means,
variances, proportions, correlations, and more. See [PSS] power for a full list of methods.

Before we discuss the components of PSS analysis, let us first revisit the basics of hypothesis
testing.

Hypothesis testing

Recall that the goal of hypothesis testing is to evaluate the validity of a hypothesis, a statement
about a population parameter of interest θ, a target parameter, based on a sample from the population.
For simplicity, we consider a simple hypothesis test comparing a population parameter θ with 0.
The two complementary hypotheses are considered: the null hypothesis H0: θ = 0, which typically
corresponds to the case of “no effect”, and the alternative hypothesis Ha: θ 6= 0, which typically
states that there is “an effect”. An effect can be a decrease in blood pressure after taking a new drug,
an increase in SAT scores after taking a class, an increase in crop yield after using a new fertilizer, a
decrease in the proportion of defective items after the installation of new equipment, and so on.

The data are collected to obtain evidence against the postulated null hypothesis in favor of the
alternative hypothesis, and hypothesis testing is used to evaluate the obtained data sample. The value
of a test statistic (a function of the sample that does not depend on any unknown parameters) obtained
from the collected sample is used to determine whether the null hypothesis can be rejected. If that
value belongs to a rejection or critical region (a set of sample values for which the null hypothesis will
be rejected) or, equivalently, falls above (or below) the critical values (the boundaries of the rejection
region), then the null is rejected. If that value belongs to an acceptance region (the complement of
the rejection region), then the null is not rejected. A critical region is determined by a hypothesis test.

A hypothesis test can make one of two types of errors: a type I error of incorrectly rejecting the
null hypothesis and a type II error of incorrectly accepting the null hypothesis. The probability of a
type I error is Pr(reject H0|H0 is true), and the probability of a type II error is commonly denoted
as β = Pr(fail to reject H0|H0 is false).

A power function is a function of θ defined as the probability that the observed sample belongs
to the rejection region of a test for a given parameter θ. A power function unifies the two error
probabilities. A good test has a power function close to 0 when the population parameter belongs
to the parameter’s null space (θ = 0 in our example) and close to 1 when the population parameter
belongs to the alternative space (θ 6= 0 in our example). In a search for a good test, it is impossible
to minimize both error probabilities for a fixed sample size. Instead, the type-I-error probability is
fixed at a small level, and the best test is chosen based on the smallest type-II-error probability.

An upper bound for a type-I-error probability is a significance level, commonly denoted as α, a
value between 0 and 1 inclusively. Many tests achieve their significance level—that is, their type-I-error
probability equals α, Pr(reject H0|H0 is true) = α—for any parameter in the null space. For other
tests, α is only an upper bound; see example 6 in [PSS] power oneproportion for an example of a
test for which the nominal significance level is not achieved. In what follows, we will use the terms
“significance level” and “type-I-error probability” interchangeably, making the distinction between
them only when necessary.

Typically, researchers control the type I error by setting the significance level to a small value
such as 0.01 or 0.05. This is done to ensure that the chances of making a more serious error are
very small. With this in mind, the null hypothesis is usually formulated in a way to guard against
what a researcher considers to be the most costly or undesirable outcome. For example, if we were
to use hypothesis testing to determine whether a person is guilty of a crime, we would choose the
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null hypothesis to correspond to the person being not guilty to minimize the chances of sending an
innocent person to prison.

The power of a test is the probability of correctly rejecting the null hypothesis when the null
hypothesis is false. Power is inversely related to the probability of a type II error as π = 1 − β =
Pr(reject H0|H0 is false). Minimizing the type-II-error probability is equivalent to maximizing power.
The notion of power is more commonly used in PSS analysis than is the notion of a type-II-error
probability. Typical values for power in PSS analysis are 0.8, 0.9, or higher depending on the study
objective.

Hypothesis tests are subdivided into one sided and two sided. A one-sided or directional test
asserts that the target parameter is large (an upper one-sided test H: θ > θ0) or small (H: θ ≤ θ0),
whereas a two-sided or nondirectional test asserts that the target parameter is either large or small
(H: θ 6= θ0). One-sided tests have higher power than two-sided tests. They should be used in place
of a two-sided test only if the effect in the direction opposite to the tested direction is irrelevant; see
One-sided test versus two-sided test below for details.

Another concept important for hypothesis testing is that of a p-value or observed level of significance.
P -value is a probability of obtaining a test statistic as extreme or more extreme as the one observed
in a sample assuming the null hypothesis is true. It can also be viewed as the smallest level of α
that leads to the rejection of the null hypothesis. For example, if the p-value is less than 0.05, a test
is considered to reject the null hypothesis at the 5% significance level.

For more information about hypothesis testing, see, for example, Casella and Berger (2002).

Next we review concepts specific to PSS analysis.

Components of PSS analysis

The general goal of PSS analysis is to help plan a study such that the chosen statistical method has
high power to detect an effect of interest if the effect exists. For example, PSS analysis is commonly
used to determine the size of the sample needed for the chosen statistical test to have adequate power
to detect an effect of a specified magnitude at a prespecified significance level given fixed values of
other study parameters. We will use the phrase “detect an effect” to generally mean that the collected
data will support the alternative hypothesis. For example, detecting an effect may be detecting that
the means of two groups differ, or that there is an association between the probability of a disease
and an exposure factor, or that there is a nonzero correlation between two measurements.

The general goal of PSS analysis can be achieved in several ways. You can

• compute sample size directly given specified significance level, power, effect size, and other
study parameters;

• evaluate the power of a study for a range of sample sizes or effect sizes for a given significance
level and fixed values of other study parameters;

• evaluate the magnitudes of an effect that can be detected with reasonable power for specific
sample sizes given a significance level and other study parameters;

• evaluate the sensitivity of the power or sample-size requirements to various study parameters.

The main components of PSS analysis are

• study design;

• statistical method;

• significance level, α;

• power, 1− β;
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• a magnitude of an effect of interest or clinically meaningful difference, often expressed as
an effect size, δ;

• sample size, N .

Below we describe each of the main components of PSS analysis in more detail.

Study design

A well-designed statistical study has a carefully chosen study design and a clearly specified
research objective that can be formulated as a statistical hypothesis. A study can be observational,
where subjects are followed in time, such as a cross-sectional study, or it can be experimental, where
subjects are assigned a certain procedure or treatment, such as a randomized, controlled clinical trial.
A study can involve one, two, or more samples. A study can be prospective, where the outcomes are
observed given the exposures, such as a cohort study, or it can be retrospective, where the exposures
are observed given the outcomes, such as a case–control study. A study can also use matching, where
subjects are grouped based on selected characteristics such as age or race. A common example of
matching is a paired study, consisting of pairs of observations that share selected characteristics.

Statistical method

A well-designed statistical study also has well-defined methods of analysis to be used to evaluate
the objective of interest. For example, a comparison of two independent populations may involve
an independent two-sample t test of means or a two-sample χ2 test of variances, and so on. PSS
computations are specific to the chosen statistical method and design. For example, the power of a
balanced or equal-allocation design is typically higher than the power of the corresponding unbalanced
design.

Significance level

A significance level α is an upper bound for the probability of a type I error. With a slight abuse
of terminology and notation, we will use the terms “significance level” and “type-I-error probability”
interchangeably, and we will also use α to denote the probability of a type I error. When the two
are different, such as for tests with discrete sampling distributions of test statistics, we will make a
distinction between them. In other words, unless stated otherwise, we will assume a size-α test, for
which Pr(rejectH0|H0 is true) = α for any θ in the null space, as opposed to a level-α test, for
which Pr(reject H0|H0 is true) ≤ α for any θ in the null space.

As we mentioned earlier, researchers typically set the significance level to a small value such as
0.01 or 0.05 to protect the null hypothesis, which usually represents a state for which an incorrect
decision is more costly.

Power is an increasing function of the significance level.

Power

The power of a test is the probability of correctly rejecting the null hypothesis when the null
hypothesis is false. That is, π = 1− β = Pr(reject H0|H0 is false). Increasing the power of a test
decreases the probability of a type II error, so a test with high power is preferred. Common choices
for power are 90% and 80%, depending on the study objective.

We consider prospective power, which is the power of a future study.
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Clinically meaningful difference and effect size

Clinically meaningful difference and effect size represent the magnitude of an effect of interest.
In the context of PSS analysis, they represent the magnitude of the effect of interest to be detected by
a test with a specified power. They can be viewed as a measure of how far the alternative hypothesis
is from the null hypothesis. Their values typically represent the smallest effect that is of clinical
significance or the hypothesized population effect size.

The interpretation of “clinically meaningful” is determined by the researcher and will usually
vary from study to study. For example, in clinical trials, if no prior knowledge is available about
the performance of the considered clinical procedure, then a standardized effect size (adjusted for
standard deviation) between 0.25 and 0.5 may be considered clinically meaningful.

The definition of effect size is specific to the study design, analysis endpoint, and employed statistical
model and test. For example, for a comparison of two independent proportions, an effect size may
be defined as the difference between two proportions, the ratio of the two proportions, or the odds
ratio. Effect sizes also vary in magnitude across studies: a treatment effect of 1% corresponding to an
increase in mortality may be clinically meaningful, whereas a treatment effect of 10% corresponding
to a decrease in a circumference of an ankle affected by edema may be of little importance. Effect
size is usually defined in such a way that power is an increasing function of it (or its absolute value).

More generally, in PSS analysis, effect size summarizes the disparity between the alternative and null
sampling distributions (sampling distributions under the alternative hypothesis and the null hypothesis,
respectively) of a test statistic. The larger the overlap between the two distributions, the smaller the
effect size and the more difficult it is to reject the null hypothesis, and thus there is less power to
detect an effect.

For example, consider a z test for a comparison of a mean µ with 0 from a population with a
known standard deviation σ. The null hypothesis is H0 : µ = 0, and the alternative hypothesis is
Ha: µ 6= 0. The test statistic is a sample mean or sample average. It has a normal distribution with
mean 0 and standard deviation σ as its null sampling distribution, and it has a normal distribution
with mean µ different from 0 and standard deviation σ as its alternative sampling distribution. The
overlap between these distributions is determined by the mean difference µ − 0 = µ and standard
deviation σ. The larger µ or, more precisely, the larger its absolute value, the larger the difference
between the two populations, and thus the smaller the overlap and the higher the power to detect the
differences µ. The larger the standard deviation σ, the more overlap between the two distributions
and the lower the power to detect the difference. Instead of being viewed as a function of µ and
σ, power can be viewed as a function of their combination expressed as the standardized difference
δ = (µ− 0)/σ. Then, the larger |δ|, the larger the power; the smaller |δ|, the smaller the power. The
effect size is then the standardized difference δ.

To read more about effect sizes in Stata, see [R] esize, although PSS analysis may sometimes use
different definitions of an effect size.

Sample size

Sample size is usually the main component of interest in PSS analysis. The sample size required to
successfully achieve the objective of a study is determined given a specified significance level, power,
effect size, and other study parameters. The larger the significance level, the smaller the sample size,
with everything else being equal. The higher the power, the larger the sample size. The larger the
effect size, the smaller the sample size.

When you compute sample size, the actual power (power corresponding to the obtained sample
size) will most likely be different from the power you requested, because sample size is an integer.
In the computation, the resulting fractional sample size that corresponds to the requested power is
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usually rounded to the nearest integer. To be conservative, to ensure that the actual power is at
least as large as the requested power, the sample size is rounded up. For multiple-sample designs,
fractional sample sizes may arise when you specify sample size to compute power or effect size. For
example, to accommodate an odd total sample size of, say, 51 in a balanced two-sample design, each
individual sample size must be 25.5. To be conservative, sample sizes are rounded down on input.
The actual sample sizes in our example would be 25, 25, and 50. See Fractional sample sizes in
[PSS] unbalanced designs for details about sample-size rounding.

For multiple samples, the allocation of subjects between groups also affects power. A balanced or
equal-allocation design, a design with equal numbers of subjects in each sample or group, generally
has higher power than the corresponding unbalanced or unequal-allocation design, a design with
different numbers of subjects in each sample or group.

One-sided test versus two-sided test

Among other things that affect power is whether the employed test is directional (upper or lower
one sided) or nondirectional (two sided). One-sided or one-tailed tests are more powerful than the
corresponding two-sided or two-tailed tests. It may be tempting to choose a one-sided test over a
two-sided test based on this fact. Despite having higher power, one-sided tests are generally not as
common as two-sided tests. The direction of the effect, whether the effect is larger or smaller than
a hypothesized value, is unknown in many applications, which requires the use of a two-sided test.
The use of a one-sided test in applications in which the direction of the effect may be known is
still controversial. The use of a one-sided test precludes the possibility of detecting an effect in the
opposite direction, which may be undesirable in some studies. You should exercise caution when you
decide to use a one-sided test, because you will not be able to rule out the effect in the opposite
direction, if one were to happen. The results from a two-sided test have stronger justification.

Another consideration: Dropout

During the planning stage of a study, another important consideration is whether the data collection
effort may result in missing observations. In clinical studies, the common term for this is dropout,
when subjects fail to complete the study for reasons unrelated to study objectives.

If dropout is anticipated, its rate must be taken into consideration when determining the required
sample size or computing other parameters. For example, if subjects are anticipated to drop out from
a study with a rate of Rd, an ad hoc way to inflate the estimated sample size n is as follows:
nd = n/(1− Rd)2. Similarly, the input sample size must be adjusted as n = nd(1− Rd)2, where
nd is the anticipated sample size.

Sensitivity analysis

Due to limited resources, it may not always be feasible to conduct a study under the original ideal
specification. In this case, you may vary study parameters to find an appropriate balance between the
desired detectable effect, sample size, available resources, and an objective of the study. For example,
a researcher may decide to increase the detectable effect size to decrease the required sample size,
or, rarely, to lower the desired power of the test. In some situations, it may not be possible to reduce
the required sample size, in which case more resources must be acquired before the study can be
conducted.

Power is a complicated function of all the components we described in the previous section—none
of the components can be viewed in isolation. For this reason, it is important to perform sensitivity
analysis, which investigates power for various specifications of study parameters, and refine the
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sample-size requirements based on the findings prior to conducting a study. Tables of power values
(see [PSS] power, table) and graphs of power curves (see [PSS] power, graph) may be useful for this
purpose.

An example of PSS analysis in Stata

Consider a study of math scores from the SAT exam. Investigators would like to test whether a
new coaching program increases the average SAT math score by 20 points compared with the national
average in a given year of 514. They do not anticipate the standard deviation of the scores to be
larger than the national value of 117. Investigators are planning to test the differences between scores
by using a one-sample t test. Prior to conducting the study, investigators would like to estimate the
sample size required to detect the anticipated difference by using a 5%-level two-sided test with 90%
power. We can use the power onemean command to estimate the sample size for this study; see
[PSS] power onemean for more examples.

Below we demonstrate PSS analysis of this example interactively, by typing the commands; see
[PSS] GUI for point-and-click analysis of this example.

We specify the reference or null mean value of 514 and the comparison or alternative value of 534
as command arguments following the command name. The values of standard deviation and power
are specified in the corresponding sd() and power() options. power onemean assumes a 5%-level
two-sided test, so we do not need to specify any additional options.

. power onemean 514 534, sd(117) power(0.9)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.1709

m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated sample size:

N = 362

The estimated required sample size is 362.

Investigators do not have enough resources to enroll that many subjects. They would like to estimate
the power corresponding to a smaller sample of 300 subjects. To compute power, we replace the
power(0.9) option with the n(300) option in the above command.

. power onemean 514 534, sd(117) n(300)

Estimated power for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 300

delta = 0.1709
m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated power:

power = 0.8392
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For a smaller sample of 300 subjects, the power decreases to 84%.

Investigators would also like to estimate the minimum detectable difference between the scores
given a sample of 300 subjects and a power of 90%. To compute the standardized difference between
the scores, or effect size, we specify both the power in the power() option and the sample size in
the n() option.

. power onemean 514, sd(117) power(0.9) n(300)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.9000

N = 300
m0 = 514.0000
sd = 117.0000

Estimated effect size and target mean:

delta = 0.1878
ma = 535.9671

The minimum detectable standardized difference given the requested power and sample size is 0.19,
which corresponds to an average math score of roughly 536 and a difference between the scores of
22.

Continuing their analysis, investigators want to assess the impact of different sample sizes and
score differences on power. They wish to estimate power for a range of alternative mean scores
between 530 and 550 with an increment of 5 and a range of sample sizes between 200 and 300 with
an increment of 10. They would like to see results on a graph.

We specify the range of alternative means as a numlist (see [U] 11.1.8 numlist) in parentheses as
the second command argument. We specify the range of sample sizes as a numlist in the n() option.
We request a graph by specifying the graph option.

. power onemean 514 (535(5)550), sd(117) n(200(10)300) graph

.7

.8

.9

1

P
ow

er
 (

1−
β)

200 220 240 260 280 300
Sample size (N)

535 540
545 550

Alternative mean (µa)

Parameters: α = .05, µ0 = 514, σ = 117

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one−sample mean test

The default graph plots the estimated power on the y axis and the requested sample size on the x
axis. A separate curve is plotted for each of the specified alternative means. Power increases as the



intro — Introduction to power and sample-size analysis 9

sample size increases or as the alternative mean increases. For example, for a sample of 220 subjects
and an alternative mean of 535, the power is approximately 75%; and for an alternative mean of 550,
the power is nearly 1. For a sample of 300 and an alternative mean of 535, the power increases to
87%. Investigators may now determine a combination of an alternative mean and a sample size that
would satisfy their study objective and available resources.

If desired, we can also display the estimated power values in a table by additionally specifying
the table option:

. power onemean 514 (530(5)550), sd(117) n(200(10)300) graph table
(output omitted )

The power command performs PSS analysis for a number of hypothesis tests for continuous
and binary outcomes; see [PSS] power and method-specific entries for more examples. See the
stpower command in [ST] stpower for PSS analysis of survival outcomes. Also, in the absence of
readily available PSS methods, consider performing PSS analysis by simulation; see, for example,
Feiveson (2002) and Hooper (2013) for examples of how you can do this in Stata.
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Also see
[PSS] GUI — Graphical user interface for power and sample-size analysis

[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power, table — Produce table of results from the power command

[PSS] power, graph — Graph results from the power command

[PSS] unbalanced designs — Specifications for unbalanced designs

[PSS] Glossary
[ST] stpower — Sample size, power, and effect size for survival analysis



Title

GUI — Graphical user interface for power and sample-size analysis

Description Menu Remarks and examples Also see

Description
This entry describes the graphical user interface (GUI) for the power command. See [PSS] power

for a general introduction to the power command.

Menu
Statistics > Power and sample size

Remarks and examples
Remarks are presented under the following headings:

PSS Control Panel
Example with PSS Control Panel

PSS Control Panel

You can perform PSS analysis interactively by typing the power command or by using a point-
and-click GUI available via the PSS Control Panel.

The PSS Control Panel can be accessed by selecting Statistics > Power and sample size from
the Stata menu. It includes a tree-view organization of the PSS methods.

12
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The left pane organizes the methods, and the right pane displays the methods corresponding to the
selection in the left pane. On the left, the methods are organized by the type of population parameter,
such as mean or proportion; the type of outcome, such as continuous or binary; the type of analysis,
such as t test or χ2 test; and the type of sample, such as one sample or two samples. You click on
one of the methods shown in the right pane to launch the dialog box for that method.

By default, methods are organized by Population parameter. We can find the method we want
to use by looking for it in the right pane, or we can narrow down the type of method we are looking
for by selecting one of the expanded categories in the left pane.

For example, if we are interested in proportions, we can click on Proportions within Population
parameter to see all methods comparing proportions in the right pane.

We can expand Proportions to further narrow down the choices by clicking on the symbol to the
left of Proportions.
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Or we can choose a method by the type of analysis by expanding Analysis type and selecting,
for example, t tests:

We can also locate methods by searching the titles of methods. You specify the search string of
interest in the Filter box at the top right of the PSS Control Panel. For example, if we type “proportion”
in the Filter box while keeping the focus on Analysis type, only methods with a title containing
“proportion” will be listed in the right pane.
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We can specify multiple words in the Filter box, and only methods with all the specified words
in their titles will appear. For example, if we type “two proportions”, only methods with the words
“two” and “proportions” in their titles will be shown:

The search is performed within the group of methods selected by the choice in the left pane. In the
above example, the search was done within Analysis type. When you select one of the top categories
in the left pane, the same set of methods appears in the right pane but in the order determined by
the specific organization. To search all methods, you can first select any of the four top categories,
and you will get the same results but possibly in a slightly different order determined by the selected
top-level category.
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Example with PSS Control Panel

In An example of PSS analysis in Stata in [PSS] intro, we performed PSS analysis interactively by
typing commands. We replicate the analysis by using the PSS Control Panel and dialog boxes.

We first launch the PSS Control Panel from the Statistics > Power and sample size menu. We
then narrow down to the desired dialog box by first choosing Sample in the left pane, then choosing
One sample within that, and then choosing Mean. In the right pane, we see Test comparing one
mean to a reference value.
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We invoke the dialog box by clicking on the method title in the right pane. The following appears:

Following the example from An example of PSS analysis in Stata in [PSS] intro, we now compute
sample size. The first step is to choose which parameter to compute. The Compute drop-down box
specifies Sample size, so we leave it unchanged. The next step is to specify error probabilities. The
default significance level is already set to our desired value of 0.05, so we leave it unchanged. We
change power from the default value of 0.8 to 0.9. We then specify a null mean of 514, an alternative
mean of 534, and a standard deviation of 117 in the Effect size group of options. We leave everything
else unchanged and click on the Submit button to obtain results.
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The following command is displayed in the Results window and executed:

. power onemean 514 534, sd(117) power(0.9)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.1709

m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated sample size:

N = 362

We can verify that the command and results are exactly the same as what we specified in An example
of PSS analysis in Stata in [PSS] intro.
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Continuing our PSS analysis, we now want to compute power for a sample of 300 subjects. We
return to the dialog box and select Power under Compute. The only thing we need to specify is the
sample size of 300:

The following command is issued after we click on the Submit button:

. power onemean 514 534, sd(117) n(300)

Estimated power for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 300

delta = 0.1709
m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated power:

power = 0.8392
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To compute effect size, we select Effect size and target mean under Compute. All the
previously used values for power and sample size are preserved, so we do not need to specify
anything additional.

We click on the Submit button and get the following:

. power onemean 514, sd(117) power(0.9) n(300)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.9000

N = 300
m0 = 514.0000
sd = 117.0000

Estimated effect size and target mean:

delta = 0.1878
ma = 535.9671
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To produce the graph from An example of PSS analysis in Stata, we first select Power under
Compute. Then we specify the numlists for sample size and alternative mean in the respective edit
boxes:
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We also check the Graph the results box on the Graph tab:

We click on the Submit button and obtain the following command and graph:

. power onemean 514 (535(5)550), sd(117) n(200(10)300) graph

.7

.8

.9

1

P
ow

er
 (

1−
β)

200 220 240 260 280 300
Sample size (N)

535 540
545 550

Alternative mean (µa)

Parameters: α = .05, µ0 = 514, σ = 117

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one−sample mean test
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Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] intro — Introduction to power and sample-size analysis

[PSS] Glossary



Title

power — Power and sample-size analysis for hypothesis tests

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas Reference
Also see

Syntax

Compute sample size

power method . . .
[
, power(numlist) power options . . .

]

Compute power

power method . . . , n(numlist)
[

power options . . .
]

Compute effect size and target parameter

power method . . . , n(numlist) power(numlist)
[

power options . . .
]

method Description

One sample

onemean One-sample mean test (one-sample t test)
oneproportion One-sample proportion test
onecorrelation One-sample correlation test
onevariance One-sample variance test

Two independent samples

twomeans Two-sample means test (two-sample t test)
twoproportions Two-sample proportions test
twocorrelations Two-sample correlations test
twovariances Two-sample variances test

Two paired samples

pairedmeans Paired-means test (paired t test)
pairedproportions Paired-proportions test (McNemar’s test)

Analysis of variance

oneway One-way ANOVA
twoway Two-way ANOVA
repeated Repeated-measures ANOVA

24
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power options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(n1 | n2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value of the estimated parameter; default is
method specific

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
Options n1(), n2(), nratio(), and compute() are available only for two-independent-samples methods.
Iteration options are available only with computations requiring iteration.
notitle does not appear in the dialog box.

Menu
Statistics > Power and sample size
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Description

The power command is useful for planning studies. It performs power and sample-size analysis for
studies that use hypothesis testing to form inferences about population parameters. You can compute
sample size given power and effect size, power given sample size and effect size, or the minimum
detectable effect size and the corresponding target parameter given power and sample size. You can
display results in a table ([PSS] power, table) and on a graph ([PSS] power, graph).

Options

� � �
Main �

alpha(numlist) sets the significance level of the test. The default is alpha(0.05).

power(numlist) sets the power of the test. The default is power(0.8). If beta() is specified, this
value is set to be 1− beta(). Only one of power() or beta() may be specified.

beta(numlist) sets the probability of a type II error of the test. The default is beta(0.2). If power()
is specified, this value is set to be 1−power(). Only one of beta() or power() may be specified.

n(numlist) specifies the total number of subjects in the study to be used for power or effect-size
determination. If n() is specified, the power is computed. If n() and power() or beta() are
specified, the minimum effect size that is likely to be detected in a study is computed.

n1(numlist) specifies the number of subjects in the control group to be used for power or effect-size
determination.

n2(numlist) specifies the number of subjects in the experimental group to be used for power or
effect-size determination.

nratio(numlist) specifies the sample-size ratio of the experimental group relative to the control group,
N2/N1 for power or effect-size determination for two-sample tests. The default is nratio(1),
meaning equal allocation between the two groups.

compute(n1 | n2) requests that the power command compute one of the group sample sizes given
the other one instead of the total sample size for two-sample tests. To compute the control-group
sample size, you must specify compute(n1) and the experimental-group sample size in n2().
Alternatively, to compute the experimental-group sample size, you must specify compute(n2)
and the control-group sample size in n1().

nfractional specifies that fractional sample sizes be allowed. When this option is specified, fractional
sample sizes are used in the intermediate computations and are also displayed in the output.

Also see the description and the use of options n(), n1(), n2(), nratio(), and compute() for
two-sample tests in [PSS] unbalanced designs.

direction(upper | lower) specifies the direction of the effect for effect-size determination. The
default is direction(upper), which means that the postulated value of the parameter is larger
than the hypothesized value. direction(lower) means that the postulated value is lower than
the hypothesized value.

onesided indicates a one-sided test. The default is two sided.

parallel reports results in parallel over the list of numbers supplied to command arguments and
options allowing numlist. By default, results are computed over all combinations of the number
lists. If the specified number lists are of different sizes, the last value in each of the shorter lists
will be used in the remaining computations.
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� � �
Table �

notable, table, and table() control whether or not results are displayed in a tabular format.
table is implied if any number list contains more than one element. notable is implied with
graphical output—when either the graph or graph() option is specified. table() is used to
produce custom tables. See [PSS] power, table for details.

saving(filename
[
, replace

]
) creates a Stata data file (.dta file) containing the table values

with variable names corresponding to the displayed columns. replace specifies that filename be
overwritten if it exists. saving() is only appropriate with tabular output.

� � �
Graph �

graph and graph() produce graphical output; see [PSS] power, graph for details.

The following options control an iteration procedure used by the power command for solving nonlinear
equations.

� � �
Iteration �

init(#) specifies an initial value for the estimated parameter. Each power method sets its own
default value. See the documentation entry of the method for details.

iterate(#) specifies the maximum number of iterations for the Newton method. The default is
iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter estimates have
converged. The default is tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for
details.

ftolerance(#) specifies the tolerance used to determine whether the proposed solution of a
nonlinear equation is sufficiently close to 0 based on the squared Euclidean distance. The default
is ftolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

log and nolog specify whether an iteration log is to be displayed. The iteration log is suppressed
by default. Only one of log, nolog, dots, or nodots may be specified.

dots and nodots specify whether a dot is to be displayed for each iteration. The iteration dots are
suppressed by default. Only one of dots, nodots, log, or nolog may be specified.

The following option is available with power but is not shown in the dialog box:

notitle prevents the command title from displaying.

Remarks and examples
Remarks are presented under the following headings:

Using the power command
Specifying multiple values of study parameters

One-sample tests
Two-sample tests
Paired-sample tests
Analysis of variance models
Tables of results
Power curves

This section describes how to perform power and sample-size analysis using the power command.
For a software-free introduction to power and sample-size analysis, see [PSS] intro.
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Using the power command

The power command computes sample size, power, or minimum detectable effect size and the
corresponding target parameter for various hypothesis tests.

All computations are performed for a two-sided hypothesis test where, by default, the significance
level is set to 0.05. You may change the significance level by specifying the alpha() option. You
can specify the onesided option to request a one-sided test.

By default, the power command computes sample size for the default power of 0.8. You may
change the value of power by specifying the power() option. Instead of power, you can specify the
probability of a type II error in the beta() option.

To compute power, you must specify the sample size in the n() option.

To compute power or sample size, you must also specify a magnitude of the effect desired to
be detected by a hypothesis test. power’s methods provide several ways in which an effect can be
specified. For example, for a one-sample mean test, you can specify either the target mean or the
difference between the target mean and a reference mean; see [PSS] power onemean.

You can also compute the smallest magnitude of the effect or the minimum detectable effect size
(MDES) and the corresponding target parameter that can be detected by a hypothesis test given power
and sample size. To compute MDES, you must specify both the desired power in the power() option
or the probability of a type II error in the beta() option and the sample size in the n() option.
In addition to the effect size, power also reports the estimated value of the parameter of interest,
such as the mean under the alternative hypothesis for a one-sample test or the experimental-group
proportion for a two-sample test of independent proportions. By default, when the postulated value
is larger than the hypothesized value, the power command assumes an effect in the upper direction,
the direction(upper) option. You may request an estimate of the effect in the opposite, lower,
direction by specifying the direction(lower) option.

For hypothesis tests comparing two independent samples, you can compute one of the group sizes
given the other one instead of the total sample size. In this case, you must specify the label of the
group size you want to compute in the compute() option and the value of the other group size in
the respective n#() option. For example, if we wanted to find the size of the second group given the
size of the first group, we would specify the combination of options compute(n2) and n1(#).

A balanced design is assumed by default for two independent-sample tests, but you can request
an unbalanced design. For example, you can specify the allocation ratio n2/n1 between the two
groups in the nratio() option or the individual group sizes in the n1() and n2() options. See
[PSS] unbalanced designs for more details about various ways of specifying an unbalanced design.

For sample-size determination, the reported integer sample sizes may not correspond exactly to
the specified power because of rounding. To obtain conservative results, the power command rounds
up the sample size to the nearest integer so that the corresponding power is at least as large as the
requested power. You can specify the nfractional option to obtain the corresponding fractional
sample size.

Some of power’s computations require iteration. The defaults chosen for the iteration procedure
should be sufficient for most situations. In a rare situation when you may want to modify the defaults,
the power command provides options to control the iteration procedure. The most commonly used
is the init() option for supplying an initial value of the estimated parameter. This option can be
useful in situations where the computations are sensitive to the initial values. If you are performing
computations for a large number of combinations of various study parameters, you may consider
reducing the default maximum number of iterations of 500 in the iterate() option so that the
command is not spending time on calculations in difficult-to-compute regions of the parameter space.
By default, power suppresses the iteration log. If desired, you can specify the log option to display
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the iteration log or the dots option to display iterations as dots to monitor the progress of the iteration
procedure.

The power command can produce results for one study scenario or for multiple study scenarios when
multiple values of the parameters are specified; see Specifying multiple values of study parameters
below for details.

For a single result, power displays results as text. For multiple results or if the table option
is specified, power displays results in a table. You can also display multiple results on a graph by
specifying the graph option. Graphical output suppresses the table of the results; use the table option
to also see the tabular output. You can customize the default tables and graphs by specifying suboptions
within the respective options table() and graph(); see [PSS] power, table and [PSS] power, graph
for details.

You can also save the tabular output to a Stata dataset by using the saving() option.

Specifying multiple values of study parameters

The power command can produce results for one study scenario or for multiple study scenarios
when multiple values of the parameters are supplied to the supported options. The options that support
multiple values specified as a numlist are marked with a star in the syntax diagram.

For example, the power() option supports multiple values. You can specify multiple powers as
individual values, power(0.8 0.85 0.9), or as a range of values, power(0.8(0.05)0.9); see
[U] 11.1.8 numlist for other specifications.

In addition to options, you may specify multiple values of command arguments, values specified
after the command name. For example, let #1 and #2 be the first and the second command arguments
in

. power method #1 #2, . . .

If we want to specify multiple values for the command arguments, we must enclose these values
in parentheses. For example,

. power method (1 2) (1 2 3), . . .

or, more generally,

. power method (numlist) (numlist), . . .

When multiple values are specified in multiple options or for multiple command arguments, the
power command computes results for all possible combinations formed by the values from every
option and command argument. In some cases, you may want to compute results in parallel for
specific sets of values of the specified parameters. To request this, you can specify the parallel
option. If the specified number lists are of varying sizes, numlist with the maximum size determines
the number of final results produced by power. The last value from numlist of smaller sizes will be
used in the subsequent computations.

For example,

. power method (1 2), power(0.8 0.9)

is equivalent to

. power method 1, power(0.8)

. power method 2, power(0.8)

. power method 1, power(0.9)

. power method 2, power(0.9)
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When the parallel option is specified,

. power method (1 2), power(0.8 0.9) parallel

is equivalent to

. power method 1, power(0.8)

. power method 2, power(0.9)

When the parallel option is specified and numlist is of different sizes, the last value of the
shorter numlist is used in the subsequent computations. For example,

. power method (1 2 3), power(0.8 0.9) parallel

is equivalent to

. power method 1, power(0.8)

. power method 2, power(0.9)

. power method 3, power(0.9)

One-sample tests

The power command provides PSS computations for four one-sample tests. power onemean
performs PSS analysis for a one-sample mean test; power oneproportion performs PSS analysis
for a one-sample proportion test; power onecorrelation performs PSS analysis for a one-sample
correlation test; and power onevariance performs PSS analysis for a one-sample variance test.

power onemean provides PSS computations for a one-sample t test assuming known or unknown
population standard deviation. It also provides a way to adjust computations for a finite population
sample. See [PSS] power onemean.

power oneproportion provides PSS computations for a test that compares one proportion with a
reference value. By default, the computations are based on a large-sample z test that uses the normal
approximation of the distribution of the test statistic. You may choose between two large-sample
tests: the score test or Wald test. You may also compute power for the small-sample binomial test
by specifying the test(binomial) option. See [PSS] power oneproportion.

power onecorrelation provides PSS computations for a test that compares one correlation with a
reference value. The computations are based on a Fisher’s z transformation of a correlation coefficient.
See [PSS] power onecorrelation.

power onevariance provides PSS computations for a test that compares one variance with a
reference value. The computations are based on a χ2 test of the ratio of the variance to its reference
value. You can perform computations in the variance or standard deviation metric. See [PSS] power
onevariance.

All one-sample methods compute sample size given power and target parameter, power given
sample size and target parameter, or MDES and the corresponding target parameter given power and
sample size.

For PSS determination, an effect may be supplied by specifying the null and alternative values of
the target parameter as command arguments #0 and #a:

. power onesample #0 #a, . . .

Instead of the alternative value #a, you can specify the ratio of the alternative value to the null
value in the ratio() option and the null value as #0 for power onevariance,

. power onevariance #0, ratio(#) . . .
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or you can specify the difference between the alternative value and the null value in the diff()
option and the null value as #0 for other methods,

. power onesample #0, diff(#) . . .

For sample-size determination, the reported sample size is rounded up to the nearest integer. This
ensures that the corresponding actual power is at least as large as the specified power. You can specify
the nfractional option to obtain the corresponding fractional sample size, or you can recompute
the actual power using the reported rounded value; see Fractional sample sizes in [PSS] unbalanced
designs for details.

Below we show a quick example of PSS analysis for a one-sample mean test. See entries of the
one-sample methods for more examples.

Example 1: PSS analysis for a one-sample mean test

A group of pediatricians would like to study the exposure of infants to television. The group
wants to investigate whether the average number of hours watched per day by infants between 3 and
12 months of age is greater than 2 hours. Before conducting a study, pediatricians would like to
determine how many infants they need to enroll in the study. The analysis will use the one-sample
t test to compare the mean of the obtained sample with the reference value. An earlier pilot study
reported an average of 2.5 hours watched per day with a standard deviation of 0.8. Pediatricians
would like to compute the sample size required to detect a mean of 2.5 using a two-sided test with
5% significance level and 80% power. Although pediatricians suspect that the effect is in the upper
direction—more than two hours watched on average—they prefer to obtain the required sample size
for a two-sided test instead of a one-sided test.

We use power onemean to compute the required sample size. We specify the reference or null
value of 2 and the comparison or alternative value of 2.5 as command arguments. We also specify the
standard deviation of 0.8 in the sd() option. We omit the alpha(0.05) and power(0.8) options
because the desired values are the defaults for these options. The default test is two sided, so we do
not need to supply any additional information to the command.

. power onemean 2 2.5, sd(0.8)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250

m0 = 2.0000
ma = 2.5000
sd = 0.8000

Estimated sample size:

N = 23

All power commands have a similar output format. Information about the test and tested hypothesis is
displayed first. The input and implied values of the study parameters are displayed next under Study
parameters. The estimated parameters, such as the sample size in this example, are displayed last.

Pediatricians need to enroll 23 infants in the study to detect a standardized difference of 0.625
between the alternative mean of 2.5 and the null mean of 2 given a standard deviation of 0.8 using
a 5%-level two-sided one-sample t test with 80% power.
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The pediatricians believe that they have resources to enroll more infants. They wish to compute
the power that corresponds to the sample size of 50. To compute the corresponding power, we specify
a sample size of 50 in the n() option:

. power onemean 2 2.5, sd(0.8) n(50)

Estimated power for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 50

delta = 0.6250
m0 = 2.0000
ma = 2.5000
sd = 0.8000

Estimated power:

power = 0.9911

The power increases to 99% for a larger sample of 50 infants.

The pediatricians also want to find out what is the smallest mean difference they can detect with
the larger sample of 50 infants while keeping the power at 80%. They assume the effect to be in
the upper direction for this computation. To compute the minimum detectable difference, we specify
both the sample size in the n() option and the power in the power() option.

. power onemean 2, sd(0.8) n(50) power(0.8)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 50
m0 = 2.0000
sd = 0.8000

Estimated effect size and target mean:

delta = 0.4042
ma = 2.3233

The smallest standardized difference that can be detected given the study parameters is about 0.4,
with a corresponding mean of 2.32.

Two-sample tests

The power command provides PSS computations for four two-sample tests. power twomeans
performs PSS analysis for a two-sample means test; power twoproportions performs PSS analysis
for a two-sample proportions test; power twocorrelations performs PSS analysis for a two-sample
correlations test; and power twovariances performs PSS analysis for a two-sample variances test.

power twomeans provides PSS computations for a two-sample means test that compares the means
of two independent populations. The computations provided assume known or unknown and equal or
unequal population standard deviations of the two groups. See [PSS] power twomeans.
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power twoproportions provides PSS computations for a two-sample proportions test that compares
the proportions in two independent populations with binary outcomes. Three tests are supported: the
large-sample Pearson’s χ2 test, the large-sample likelihood-ratio test, and the small-sample Fisher’s
exact test. Several effect specifications are available. For example, you can specify the effect of
interest as a risk difference, or a relative risk, or an odds ratio. See [PSS] power twoproportions.

power twocorrelations provides PSS computations for a two-sample correlations test that
compares the correlation coefficients of two independent populations. The computations are based on
a Fisher’s z transformation of a correlation coefficient. See [PSS] power twocorrelations.

power twovariances provides PSS computations for a two-sample variances test that compares
the variances of two independent populations. The computations are based on an F test of the ratio of
variances. You can perform computations in the variance or standard deviation metric. See [PSS] power
twovariances.

All two-sample methods compute sample size given power and the control-group and experimental-
group values of the target parameter, power given sample size and the control-group and experimental-
group values of the target parameter, or MDES and the corresponding target value of the parameter
in the experimental group given power, sample size, and the control-group parameter value.

To compute sample size or power, you can specify the magnitude of the effect of interest in
two ways: by directly specifying the alternative values of the target parameter in two groups or by
specifying the control-group alternative value and the corresponding relation of the experimental-group
value to the control-group alternative value.

The two alternative values are specified as command arguments: the alternative value of the target
parameter in the control or reference group, #a1, and the alternative value of the target parameter in
the experimental or comparison group, #a2:

. power twosample #a1 #a2, . . .

The experimental-group alternative value, #a2, may be omitted if an option containing the relationship
between the two alternative values is specified. For example, for power twomeans and power
twocorrelations, such an option is diff(), and it specifies the difference between the experimental-
group and control-group alternative values:

. power twomeans #a1, diff(#) . . .

For power twovariances, such an option is ratio(), and it contains the ratio of the experimental-
group alternative value to the control-group value:

. power twovariances #a1, ratio(#) . . .

power twoproportions provides several alternative specifications in which a difference between
the two populations may be expressed. For example, you can express the “difference” as an odds
ratio of the experimental group to the control group,

. power twoproportions #a1, oratio(#) . . .

or as a relative risk,

. power twoproportions #a1, rrisk() . . .

In addition to the total sample size, two-sample methods provide a way to solve for one of the
group sizes when the other group size is fixed. This can be achieved by specifying the compute()
option. To compute the size of the first group, you must specify the compute(n1) option and the
size of the second group in the n2() option. To compute the size of the second group, you must
specify the compute(n2) option and the size of the first group in the n1() option.
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To compute power, you can specify a total sample size in the n() option, group sample sizes in
the n1() and n2() options, or one of the group sample sizes and its ratio, n2/n1, in the nratio()
option; see [PSS] unbalanced designs for more specifications.

Below we show a quick example of PSS analysis for a two-sample means test. See entries of the
two-sample methods for more examples.

Example 2: PSS analysis for a two-sample mean test

A pharmaceutical company would like to conduct a study to compare a new weight-loss drug with
an older drug. Investigators are planning to use a two-sample t test to compare the average weight loss
for the two drugs. The average weight loss of people taking the old drug for 3 months is 12 pounds,
with a standard deviation of 5.5 pounds. The new drug is expected to produce an average weight loss
of 16 pounds, with a standard deviation of 5 pounds for the same period of time. Investigators want
to find out how many subjects they need to recruit into the study to detect the specified difference
using a 5% level two-sided test with 90% power.

We use power twomeans to perform PSS analyses. We specify the control-group mean 12 and
the experimental-group mean 16 as command arguments after the command name. We specify the
respective standard deviations in the sd1() and sd2() options. The default power is set to 0.8, so
we specify power(0.9) to request 90% power.

. power twomeans 12 16, sd1(5.5) sd2(5) power(0.9)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 4.0000

m1 = 12.0000
m2 = 16.0000

sd1 = 5.5000
sd2 = 5.0000

Estimated sample sizes:

N = 76
N per group = 38

We need a sample of 76 subjects, 38 per group, to detect a difference of 4 between the control-group
mean of 12 and the experimental-group mean of 16 given the respective standard deviations of 5.5
and 5 with 90% power using a 5%-level two-sided two-sample means t test.

The default test is two sided. You may specify the onesided option to request a one-sided test.
The default design is also balanced; see [PSS] unbalanced designs for examples of unbalanced designs.

The investigators hope to keep the sample size under 60 and would like to compute the power
corresponding to this sample size. To compute the corresponding power, we specify the n(60) option
instead of the power() option:
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. power twomeans 12 16, sd1(5.5) sd2(5) n(60)

Estimated power for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 60

N per group = 30
delta = 4.0000

m1 = 12.0000
m2 = 16.0000

sd1 = 5.5000
sd2 = 5.0000

Estimated power:

power = 0.8259

The power decreases to 83% for the smaller sample of 60 subjects.

To keep the power at 90%, the investigators want to compute the smallest difference between the
experimental-group mean and the control-group mean (in the upper direction) given the sample of 60
subjects. For this computation, we specify both options n(60) and power(0.9):

. power twomeans 12, sd1(5.5) sd2(5) n(60) power(0.9)

Performing iteration ...

Estimated experimental-group mean for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1; m2 > m1

Study parameters:

alpha = 0.0500
power = 0.9000

N = 60
N per group = 30

m1 = 12.0000
sd1 = 5.5000
sd2 = 5.0000

Estimated effect size and experimental-group mean:

delta = 4.4744
m2 = 16.4744

The smallest detectable mean difference is 4.47, with a corresponding value of the experimental-group
mean of 16.47.

Paired-sample tests

The power command provides PSS computations for two tests of paired samples. power paired-
means performs PSS analysis for a two-sample paired-means test, and power pairedproportions
performs PSS analysis for a two-sample paired-proportions test.

power pairedmeans provides PSS computations for a two-sample paired t test assuming known
or unknown population standard deviation of the differences between paired observations. You can
specify standard deviations of each group and a correlation between paired observations, or you can
directly specify the standard deviation of the differences between observations. You can obtain results
for a nonzero null hypothesis of a difference between the two paired means. The command also
provides a way to adjust computations for a finite population sample. See [PSS] power pairedmeans.
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power pairedproportions provides PSS computations for a two-sample paired-proportions
test that compares proportions in two paired (correlated) samples. The computations are based on
McNemar’s test of marginal homogeneity. You can specify either the discordant proportions or the
marginal proportions. A number of effect specifications are available. For example, you can specify
the effect of interest as a relative risk or an odds ratio. See [PSS] power pairedproportions.

Both paired methods compute sample size given power and target parameter, power given sample
size and target parameter, or MDES and the corresponding target parameter given power and sample
size.

For power and sample-size determination of power pairedmeans, an effect may be supplied
by specifying the alternative values of the two means, pretreatment and posttreatment, as command
arguments ma1 and ma2:

power pairedmeans ma1 ma2, . . .

Instead of the alternative value ma2, you can specify the difference between the two alternative
values in the altdiff() option and the alternative pretreatment mean value ma1:

power pairedmeans ma1, altdiff() . . .

You may omit both alternative values and specify only the difference between them in the
altdiff() option:

power pairedmeans, altdiff() . . .

By default, the null value of the difference between the pretreatment and posttreatment means is
zero, but you may change it by specifying the nulldiff() option.

For PSS determination of power pairedproportions, there are a number of ways of specifying
an effect of interest; see Alternative ways of specifying effect in [PSS] power pairedproportions.
Two main specifications include the specification of discordant proportions and the specification of
marginal probabilities. Specifically, you can supply the information about the effect of interest as
discordant proportions p12 and p21,

power pairedproportions p12 p21 , . . .

or as marginal proportions p1+ and p+1:

power pairedproportions p1+ p+1 , corr(numlist) . . .

When you specify marginal proportions, you must also specify the correlation between paired
observations in the corr() option.

For sample-size determination, the reported sample size is rounded up to the nearest integer. This
ensures that the corresponding actual power is at least as large as the specified power. You can specify
the nfractional option to obtain the corresponding fractional sample size or you can recompute
the actual power using the reported rounded value; see Fractional sample sizes in [PSS] unbalanced
designs for details.

Below we show a quick example of PSS analyses for a two-sample paired-means test. See [PSS] power
pairedmeans and [PSS] power pairedproportions for more examples.

Example 3: PSS analysis for a two-sample paired-means test

A forester would like to study the effects of a fertilizer treatment on heights of Virginia pine trees.
The trees are planted in pairs with only one of them receiving the fertilizer treatment. The average
height of untreated trees is 27.5 feet, with a standard deviation of 4.5 feet. The fertilizer treatment is
expected to increase the average height to 30 feet, with the same standard deviation of 4.5 feet. The
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correlation between the paired tree heights is expected to be 0.4. The forester would like to know
how many pairs of pine trees need to be planted so that a 5%-level two-sided paired-means t test
detects the anticipated difference with 80% power.

We use power pairedmeans for power and sample-size analysis. We supply the alternative
pretreatment and posttreatment means of 27.5 and 30, respectively, as command arguments after the
command name. The standard deviations of the two groups are the same, so we specify their common
value in the sd() option. We specify the correlation of 0.4 in the corr() option. The default value
for power is 0.8 and for significance level is 0.05, so we omit the corresponding options power(0.8)
and alpha(0.05).

. power pairedmeans 27.5 30, sd(4.5) corr(0.4)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test assuming sd1 = sd2 = sd
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 27.5000
power = 0.8000 ma2 = 30.0000
delta = 0.5072 sd = 4.5000

d0 = 0.0000 corr = 0.4000
da = 2.5000

sd_d = 4.9295

Estimated sample size:

N = 33

The forester needs 33 pairs of pine trees to run the experiment.

The forester has resources to plant more trees and would like to compute the power corresponding
to the larger sample. To compute power given sample size, we specify sample size in the n() option:

. power pairedmeans 27.5 30, sd(4.5) corr(0.4) n(50)

Estimated power for a two-sample paired-means test
Paired t test assuming sd1 = sd2 = sd
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 27.5000
N = 50 ma2 = 30.0000

delta = 0.5072 sd = 4.5000
d0 = 0.0000 corr = 0.4000
da = 2.5000

sd_d = 4.9295

Estimated power:

power = 0.9400

The power increases to 0.94.

The forester may also wish to know the smallest detectable difference between average tree heights
of the fertilized group and of the control group that can be detected with 80% power and sample size
of 50. To compute this value, we specify both options n(50) and power(0.8):
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. power pairedmeans 27.5, sd(4.5) corr(0.4) n(50) power(0.8)

Performing iteration ...

Estimated target parameters for a two-sample paired-means test
Paired t test assuming sd1 = sd2 = sd
Ho: d = d0 versus Ha: d != d0; da > d0

Study parameters:

alpha = 0.0500 ma1 = 27.5000
power = 0.8000 sd = 4.5000

N = 50 corr = 0.4000
d0 = 0.0000

sd_d = 4.9295

Estimated effect size and target parameters:

delta = 0.4042
da = 1.9924

ma2 = 29.4924

The smallest detectable difference is 1.99, with a corresponding value of the average tree height for
the fertilized trees of 29.5.

Analysis of variance models

The power command provides PSS computations for three types of analysis of variance (ANOVA)
designs: one way, two way, and repeated measures. power oneway performs PSS analysis for a
one-way ANOVA. power twoway performs PSS analysis for a two-way ANOVA. power repeated
performs PSS analysis for a repeated-measures ANOVA.

power oneway provides PSS computations for a one-way ANOVA model. You can choose between
the overall F test of the equality of group means and a test of a mean contrast. You can either specify
group means or specify their variability in the computations. See [PSS] power oneway.

power twoway provides PSS computations for a two-way fixed-effects ANOVA model. You can
choose the overall F test of the main effect of a row factor, a column factor, or a row-by-column
interaction. You can either specify cell means or specify the variance explained by the tested effect.
See [PSS] power twoway.

power repeated provides PSS computations for one-way and two-way fixed-effects repeated-
measures ANOVA models. You can choose the overall F test of the main effect of a between-subjects
factor, a within-subject factor, or a between–within factor interaction. You can either specify cell
means or specify the variance explained by the tested effect. See [PSS] power repeated.

All methods compute sample size given power and effect size, power given sample size and effect
size, or effect size given power and sample size.

For power and sample-size determination of power oneway, an effect may be supplied by specifying
the alternative values of group means as command arguments ma1, ma2, ma3, and so on:

power oneway ma1 ma2

[
ma3 . . .

]
, . . .

Instead of the alternative group means, you can specify the variance of the group means in the
varmeans() option and the number of groups in the ngroups() option:

power oneway, ngroups() varmeans() . . .
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For power and sample-size determination of power twoway and power repeated, an effect may
be supplied by specifying the alternative values of cell means as command arguments ma1,1, ma1,2,
and so on, in a matrix form:

power twoway ma1,1 ma1,2

[
. . .
]
\ ma2,1 ma2,2

[
. . .
]
, . . .

power repeated ma1,1 ma1,2

[
. . .
] [

\ ma2,1 ma2,2

[
. . .
] ]
, . . .

Instead of the alternative cell means, you can specify the variance of the tested effect in the
vareffect() option and the dimensions of the cell-means matrix: number of rows and columns for
power twoway and number of groups and repeated measures for power repeated:

power twoway, nrows() ncols() factor() vareffect() . . .

power repeated, ngroups() nrepeated() factor() vareffect() . . .

The means can also be supplied as a matrix at the command line. For example, suppose that we
have three groups.

power oneway ma1 ma2 ma3, . . .

The above command would be equivalent to

matrix means = (ma1,ma2,ma3)

power oneway means, . . .

There are also other alternative specifications of an effect with these commands. See the specific
entry of each command.

For sample-size determination, the reported sample size is rounded up to the nearest integer. This
ensures that the corresponding actual power is at least as large as the specified power. You can specify
the nfractional option to obtain the corresponding fractional sample size, or you can recompute
the actual power using the reported rounded value; see Fractional sample sizes in [PSS] unbalanced
designs for details.

Below we show a quick example of PSS analysis for a one-way ANOVA model. See [PSS] power
oneway, [PSS] power twoway, and [PSS] power repeated for more examples.

Example 4: PSS analysis for a one-way ANOVA model

Researchers would like to compare the effects of four drugs on systolic blood pressure. They
would like to use a one-way ANOVA model to test the equality of mean blood-pressure measurements
across four drugs. To conduct a study, the researchers need an estimate for the number of subjects to
be enrolled in a study. From a previous pilot study, the variance between group means was estimated
to be 57, and the error variance was estimated to be 115. The researchers would like to compute
the required sample size to detect the effect size of 0.7040 =

√
57/115 with 80% power using a

5%-level F test of the equality of means assuming a balanced design.

We use power oneway to compute the sample size. We specify the number of groups and the
estimates of variances in the corresponding options. The default value for power is 0.8 and for
significance level is 0.05, so we omit the corresponding options power(0.8) and alpha(0.05).
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. power oneway, ngroups(4) varmeans(57) varerror(115)

Estimated sample size for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7040

N_g = 4
Var_m = 57.0000
Var_e = 115.0000

Estimated sample sizes:

N = 28
N per group = 7

The researchers need to recruit 28 subjects, 7 subjects per group, for this study.

Unfortunately, the researchers can afford to recruit only 20 subjects. They wish to compute the
power corresponding to this smaller sample size. To compute power, we additionally specify sample
size in the n() option:

. power oneway, n(20) ngroups(4) varmeans(57) varerror(115)

Estimated power for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
N = 20

N per group = 5
delta = 0.7040

N_g = 4
Var_m = 57.0000
Var_e = 115.0000

Estimated power:

power = 0.6400

The power decreases to 0.64.

The researchers are not satisfied with such a low power. They now would like to compute the
smallest effect size and the corresponding variance of means that can be detected with the power of
80% and the sample size of 20. To compute effect size, we specify both power and sample size in
respective options:
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. power oneway, n(20) power(0.8) ngroups(4) varerror(115)

Performing iteration ...

Estimated between-group variance for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 20
N per group = 5

N_g = 4
Var_e = 115.0000

Estimated effect size and between-group variance:

delta = 0.8353
Var_m = 80.2329

The smallest detectable effect size is 0.8353, with a corresponding value of the between-group variance
of 80.2329.

Tables of results
When power is used to perform computations for a single set of study parameters, the results can

be displayed either as text or in a table. The default is to display results as text:

. power onemean 0 0.2

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

m0 = 0.0000
ma = 0.2000
sd = 1.0000

Estimated sample size:

N = 199

You can specify the table option to display results in a table:

. power onemean 0 0.2, table

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 199 .2 0 .2 1
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For multiple sets of study parameters, when command arguments or options contain number lists,
the results are automatically displayed in a table:

. power onemean 0 (0.2 0.5)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 199 .2 0 .2 1

.05 .8 34 .5 0 .5 1

In this example we specified two values for the second argument.

Default tables can be modified by specifying the table() option. For example, we can change
the order in which the columns are displayed:

. power onemean 0 (0.2 0.5), table(alpha power N m0 ma sd delta)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N m0 ma sd delta

.05 .8 199 0 .2 1 .2

.05 .8 34 0 .5 1 .5

Or we can change column labels:
. power onemean 0 (0.2 0.5), table(, labels(N "Sample size"))

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power Sample size delta m0 ma sd

.05 .8 199 .2 0 .2 1

.05 .8 34 .5 0 .5 1

Or we can select which columns we want to display:
. power onemean 0 (0.2 0.5), table(alpha beta N m0 ma sd)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha beta N m0 ma sd

.05 .2 199 0 .2 1

.05 .2 34 0 .5 1

For more examples, see [PSS] power, table.
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Power curves
During the planning stage of a study, it is difficult to decide on a number of subjects to be enrolled

in a study on the basis of only one set of study parameters. It is common to investigate the effect of
various study scenarios on power. Power curves, or plots of estimated power versus one of the study
parameters, are commonly used for this purpose.

The power command provides the graph and graph() options to produce power curves.

More precisely, when graph is specified, the estimated parameter such as power or sample size
is plotted on the y axis, and the varying parameter is plotted on the x axis.

For example, we compute power and plot it as a function of sample size for a range of sample-size
values between 100 and 200 with a step size of 10:

. power onemean 0 0.2, n(100(10)200) graph
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t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one−sample mean test

Or we can compute sample size and plot it as a function of the alternative mean when the mean
ranges between 0.2 and 1 with a step size of 0.1:

. power onemean 0 (0.2(0.1)1), graph

0

50

100

150

200

S
am

pl
e 

si
ze

 (
N

)

.2 .4 .6 .8 1
Alternative mean (µa)

Parameters: α = .05, 1−β = .8, µ0 = 0, σ = 1

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated sample size for a one−sample mean test
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Or we can compute the alternative mean for a given power of 80% and a range of sample-size
values between 100 and 200 with a step size of 10, and plot it against the sample size:

. power onemean 0, n(100(10)200) power(0.8) graph
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Parameters: α = .05, 1−β = .8, µ0 = 0, σ = 1

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0; µa > µ0

Estimated target mean for a one−sample mean test

The above graphs are the default graphs produced by power, graph. Similarly to tabular output,
you can customize graphical output by specifying the graph() option.

For example, we modify the look of the default graph by using the graph(nosimplelabels
legend(title(""))) option. nosimplelabels requests that the graph legend include the column
symbol and an equal sign; legend(title("")) requests that the legend not have a title.

. power onemean 0 (0.2(0.1)1), sd(1 1.5) graph(nosimplelabels legend(title("")))
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By default, when a graph is produced, the tabular output is suppressed. You can specify the table
option if you also want to see results in a table.

For more examples, see [PSS] power, graph.



power — Power and sample-size analysis for hypothesis tests 45

Stored results
power stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1

r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value of the estimated parameter
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) the name of the specified method
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results

Also see Stored results in the method-specific manual entries for additional stored results.

Methods and formulas
By default, the power command rounds sample sizes to integers and uses integer values in the

computations. To ensure conservative results, the commands round down the input sample sizes and
rounds up the output sample sizes. See Fractional sample sizes in [PSS] unbalanced designs for
details.

Some of power’s methods require iteration. For example, the sample size for a two-sided test
is usually solved iteratively from the two-sided power equation. Most methods use Mata function
solvenl() and its Newton’s method described in Newton-type methods in [M-5] solvenl( ) to solve a
nonlinear power equation. Other methods use a bisection method to find a root of a nonlinear power
equation.

See Methods and formulas in the method-specific manual entries for details.
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Reference
Batistatou, E., C. Roberts, and S. Roberts. 2014. Sample size and power calculations for trials and quasi-experimental

studies with clustering. Stata Journal 14: 159–175.

Also see
[PSS] intro — Introduction to power and sample-size analysis

[PSS] Glossary
[ST] stpower — Sample size, power, and effect size for survival analysis

http://www.stata-journal.com/article.html?article=st0329
http://www.stata-journal.com/article.html?article=st0329
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power, graph — Graph results from the power command

Syntax Menu Description Suboptions
Remarks and examples Also see

Syntax

Produce default graph

power . . ., graph . . .

Graph power against sample size

power . . ., graph(y(power) x(N)) . . .

Graph sample size against target parameter

power . . ., graph(y(N) x(target)) . . .

Graph effect size against sample size

power . . ., graph(y(delta) x(N)) . . .

Produce other custom graphs[
power

]
. . ., graph(graphopts) . . .

47
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graphopts Description

Main

ydimension(dimlist
[
, dimopts

]
) use dimlist to define y axis

xdimension(dimlist
[
, dimopts

]
) use dimlist to define x axis

plotdimension(dimlist
[
, dimopts

]
) create plots for groups in dimlist

bydimension(dimlist
[
, dimopts

]
) create subgraphs for groups in dimlist

graphdimension(dimlist
[
, dimopts

]
) create graphs for groups in dimlist

horizontal swap x and y axes
schemegrid do not apply default x and y grid lines
name(name | stub

[
, replace

]
) name of graph, or stub if multiple graphs

Labels

yregular place regularly spaced ticks and labels on the y axis
xregular place regularly spaced ticks and labels on the x axis
yvalues place ticks and labels on the y axis for each distinct value
xvalues place ticks and labels on the x axis for each distinct value
collabels(colspec) change default labels for columns
nolabels label groups with their values, not their labels
allsimplelabels forgo column label and equal signs in all labels
nosimplelabels include column label and equal signs in all labels
eqseparator(string) replace equal sign separator with string
separator(string) separator for labels when multiple columns are specified

in a dimension
noseparator do not use a separator
format(% fmt) format for converting numeric values to labels

Plot

plotopts(plot options) affect rendition of all plots
plot#opts(plot options) affect rendition of #th plot
recast(plottype) plot all plots using plottype

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options
byopts(byopts) how subgraphs are combined, labeled, etc.
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dimlist may contain any of the following columns:

column Description

alpha significance level
power power
beta type II error probability
N total number of subjects
N1 number of subjects in the control group
N2 number of subjects in the experimental group
nratio ratio of sample sizes, experimental to control
delta effect size
target target parameter
method columns columns specific to the method specified with power

colspec is

column "label"
[

column "label"
[
. . .
] ]

dimopts Description

labels(lablist) list of quoted strings to label each level of the dimension
elabels(elablist) list of enumerated labels
nolabels label groups with their values, not their labels
allsimplelabels forgo column name and equal signs in all labels
nosimplelabels include column name and equal signs in all labels
eqseparator(string) replace equal sign separator with string in the dimension
separator(string) separator for labels when multiple columns are specified

in the dimension
noseparator do not use a separator
format(% fmt) format for converting numeric values to labels

where lablist is defined as

"label"
[
"label"

[
. . .
] ]

elablist is defined as

# "label"
[

# "label"
[
. . .
] ]

and the #s are the levels of the dimension.

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options change look of the line
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Menu

Statistics > Power and sample size

Description

The graph() option of power specifies that results of the power command be graphed.

While there are many options for controlling the look of the graph, you will often merely need
to specify the graph option on your power command.

Suboptions

The following are suboptions within the graph() option of the power command.

� � �
Main �

ydimension(), xdimension(), plotdimension(), bydimension(), and graphdimension()
specify the dimension to be used for the graph’s y axis, x axis, plots, by() subgraphs, and graphs.

The default dimensions are based on your analysis. The y dimension is power for power determina-
tion, sample size for sample-size determination, and target parameter for effect-size determination.
If there is only one column containing multiple values, this column is plotted on the x dimension.
Otherwise, the x dimension is sample size for power determination, target parameter for sample-size
determination, and sample size for effect-size determination. Other columns that contain multiple
values are used as plot dimensions. See Default graphs below for details. You may override the
defaults and explicitly control which columns are used on each dimension of the graph using these
dimension suboptions.

Each of these suboptions supports suboptions that control the labeling of the dimension—axis
labels for ydimension() and xdimension(), plot labels for plotdimension(), subgraph titles
for bydimension(), and graph titles for graphdimension().

For examples using the dimension suboptions, see Changing default graph dimensions below.

ydimension(dimlist
[
, dimopts

]
) specifies the columns for the y axis in dimlist and controls

the content of those labels with dimopts.

xdimension(dimlist
[
, dimopts

]
) specifies the columns for the x axis in dimlist and controls

the content of those labels with dimopts.

plotdimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the plots and optionally specifies in dimopts the content of the plots’ labels.

bydimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the by() subgraphs and optionally specifies in dimopts the content of the subgraphs’ titles.

graphdimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the graphs and optionally specifies in dimopts the content of the graphs’ titles.

See the definition of columns in graph in [PSS] Glossary.

horizontal reverses the default x and y axes. By default, the values computed by power are plotted
on the y axis, and the x axis represents one of the other columns. Specifying horizontal swaps
the axes.
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One common use is to put sample size on the x axis even when it is the value computed by power.
This suboption can also be useful with the long labels produced when the parallel option is
specified with power.

See Parallel plots below for an example of the horizontal suboption.

schemegrid specifies that x and y grid lines not always be drawn on the power graph. Instead,
whether grid lines are drawn will be determined by the current scheme.

name(name | stub
[
, replace

]
) specifies the name of the graph or graphs. If the graphdimension()

suboption is specified, then the argument of name() is taken to be stub, and graphs named stub1,
stub2, . . . are created.

replace specifies that existing graphs of the same name may be replaced.

If name() is not specified, default names are used, and the graphs may be replaced by subsequent
power graphs or other graphing commands.

� � �
Labels �

All the suboptions listed under the Labels tab may be specified directly within the graph() option. All
of them except yregular, xregular, yvalues, and xvalues may be specified as dimopts within
ydimension(), xdimension(), plotdimension(), bydimension(), and graphdimension().
When suboptions are specified in one of the dimension options, only the labels for that dimension are
affected. When suboptions are specified outside the dimension options, all labels on all dimensions
are affected. Specifications within the dimension options take precedence.

yregular and yvalues specify how tick marks and labels are to be placed on the y axis.

yregular specifies that regularly spaced ticks and labels be placed on the y axis.

yvalues specifies that a tick and label be placed for each distinct value.

If neither is specified, an attempt is made to choose the most reasonable option based on your
results. Labeling may also be specified using the standard graph twoway axis labeling rules and
options.

xregular and xvalues do the same for tick marks and labels to be placed on the x axis.

collabels(colspec) specifies labels to be used on the graph for the specified columns. For example,
collabels(N "N") specifies that wherever the column N is used on a graph—axis label, plot
label, graph title, legend title, etc.—“N” be shown rather than the default label “Sample size”.

Multiple columns may be relabeled by typing, for example,

collabels(N "N" ma "Alternative mean")

and SMCL tags for Greek characters and other typesetting can be used by typing, for example,

collabels(alpha "{&alpha}" ma "{&mu}{sub:a}")

See the definition of columns in graph in [PSS] Glossary.

nolabels specifies that value labels not be used to construct graph labels and titles for the levels in
the dimension. By default, if a column in a dimension has value labels, those labels are used to
construct labels and titles for axis ticks, plots, subgraphs, and graphs.

allsimplelabels and nosimplelabels control whether a graphs’ labels and titles include just
the values of the columns or also include column labels and equal signs. The default depends on
whether the dimension is an axis dimension or one of the plot, by, and graph dimensions. It also
depends on whether the values for the level of the dimension are labeled. An example of a simple
label is “power” or “.8” and of a nonsimple label is “power=.8”.
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In power, graph simple labels are almost universally best for x and y axes and also best for
most plot labels. Labels with an equal sign are typically preferred for subgraph and graph titles.
These are the defaults used by power, graph. The allsimplelabels and nosimplelabels
suboptions let you override the default labeling.

allsimplelabels specifies that all titles and labels use just the value or value label of the column.

nosimplelabels specifies that all titles and labels include dimname= before the value or value
label.

eqseparator(string) specifies a custom separator between column labels and values in labels. Use
string in place of the default equal sign.

separator(string) and noseparator control the separator between label sections when more than
one column is used to specify a dimension. The default separator is a comma followed by a space,
but no separator may be requested with noseparator, or the default may be changed to any
string with separator().

For example, if bydimension(a b) is specified, the subgraph labels in our graph legend might be
“a=1, b=1”, “a=1, b=2”, . . . . Specifying separator(:) would create labels “a=1:b=1”, “a=1:b=2”,
. . . .

format(% fmt) specifies how numeric values are to be formatted for display as axis labels, labels on
plots, and titles on subgraphs, and graphs.

� � �
Plot �

plotopts(plot options) affects the rendition of all plots. The plot options can affect the size and
color of markers, whether and how the markers are labeled, and whether and how the points are
connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

These settings may be overridden for specific plots by using the plot#opts() suboption.

plot#opts(plot options) affects the rendition of the #th plot. The plot options can affect the size
and color of markers, whether and how the markers are labeled, and whether and how the points
are connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

recast(plottype) specifies that results be plotted using plottype. plottype may be scatter, line,
connected, area, bar, spike, dropline, or dot; see [G-2] graph twoway. When recast()
is specified, the plot-rendition options appropriate to the specified plottype may be used in lieu
of plot options. For details on those suboptions, follow the appropriate link from [G-2] graph
twoway.

You may specify recast() within a plotopts() or plot#opts() suboption. It is better, however,
to specify it as documented here, outside those suboptions. When it is specified outside those
suboptions, you have greater access to the plot-specific rendition suboptions of your specified
plottype.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

If multiple graphs are drawn by a single power command or if plot specifies plots with multiple
y variables, for example, scatter y1 y2 x, then the graph’s legend will not clearly identify all
the plots and will require customization using the legend() suboption; see [G-3] legend options.
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� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options
for titling the graph (see [G-3] title options); for saving the graph to disk (see [G-3] saving option);
for controlling the labeling and look of the axes (see [G-3] axis options); for controlling the look,
contents, position, and organization of the legend (see [G-3] legend options); for adding lines
(see [G-3] added line options) and text (see [G-3] added text options); and for controlling other
aspects of the graph’s appearance (see [G-3] twoway options).

The label() suboption of the legend() option has no effect on power, graph. Use the order()
suboption instead.

byopts(byopts) affects the appearance of the combined graph when bydimension() is specified or
when the default graph has subgraphs, including the overall graph title, the position of the legend,
and the organization of subgraphs. See [G-3] by option.

Remarks and examples

Remarks are presented under the following headings:

Using power, graph
Graph symbols
Default graphs
Changing default graph dimensions
Changing the look of graphs
Parallel plots

power, graph produces power curves and other graphical output from the power command.
Power graphs are useful for visualizing the results of sensitivity analysis, which investigates the effect
of varying study parameters on power, sample size, or other components of the study. The true values
of study parameters are usually unknown. Power and sample-size analysis uses best guesses for these
values. It is important to evaluate the sensitivity of the computed power or sample size to the chosen
values of study parameters. For example, to evaluate variability of power values, you can compute
powers for various ranges of values for the parameters of interest and display the resulting powers
in a table (see [PSS] power, table) or plot them on a graph.

Using power, graph

In most cases, you will probably be satisfied with the graphs that power produces by default when
you specify the graph option. For other cases, power, graph() offers many options for you to
produce the graph you desire.

Think of power, graph() as graphing the columns of power, table. One of the columns will
be placed on the x axis, another will be placed on the y axis, and, if you have more columns with
varying values, separate plots will be created for each. Similarly, we use the terms “column symbol”,
“column name”, and “column label” to refer to symbols, names, and labels that appear in tables when
tabular output is requested.

By default, power, graph plots the column corresponding to the estimated parameter on the y
axis: power, when power is computed; N, when sample size is computed; and target, when the
target parameter is computed. When there is only one varying column, the x axis uses this column
by default. When there are multiple varying columns, the default x axis depends on what is being
computed.



54 power, graph — Graph results from the power command

If power is computed (power determination), the default x axis is either the sample size, if sample
size varies, or the target parameter, if the target parameter varies and sample size does not vary. If
neither the sample size nor the target parameter varies, the power is plotted against one of the other
varying parameters.

If sample size is computed (sample-size determination), the default x axis is either the target
parameter, if the target parameter varies, or the power, if power varies and the target parameter does
not vary. If neither the target parameter nor the power varies, the sample size is plotted against one
of the other varying parameters.

If target parameter is computed (effect-size determination), the default x axis is either sample size,
if sample size varies, or power, if power varies and sample size does not vary. If neither sample
size nor power varies, the target parameter is plotted against one of the other varying parameters.
You can also plot the effect size delta instead of the target parameter target by specifying the
ydimension(delta) suboption within graph(); see example 4. The graphs of delta may not
reflect all the unique combinations of other study parameters, because effect size is not necessarily a
one-to-one function of the constituent study parameters.

power, graph() provides great flexibility for customizing graphical output. You can make minor
changes such as modifying the graph or axes titles or modifying the line color and style, or you can
completely redesign the graph by changing the axes and style of the graph. The Graph Editor can
also be used for additional customization; see [G-1] graph editor.

When you produce a graph, the table of results is suppressed. You can request that the table be
displayed in addition to the graph by specifying the table option with graph().

Graph symbols

Whenever space allows, such as on y and x axes, graphical output displays extended column labels,
which include column labels and column symbols in parentheses. In other cases, such as in legend
labels or by graph titles, graphical output includes only column (parameter) symbols for readability.

The following common symbols are used. See the documentation entry of the specified power
method for additional symbols specific to that method.

Symbol Description

α significance level
β probability of a type II error
1− β power
N total sample size
N1 sample size of the control group
N2 sample size of the experimental group
δ effect size
method symbols symbols specific to the method specified with power

Default graphs

We start with a demonstration of several default power graphs and then show how you can produce
custom power graphs in the subsequent sections.
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In what follows, we graph the results of power and sample-size analysis for a two-sided 0.05-
level one-sample t test comparing the population mean with a hypothesized value; see [PSS] power
onemean.

Example 1: Power curves

When we compute power given a range of sample sizes, power, graph plots power on the y axis
and sample size on the x axis.

. power onemean 0 1, n(10(2)40) graph
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t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one−sample mean test

Figure 1.

As expected, power increases as sample size increases.

The default axis labels include column labels and column symbols in parentheses. The labels
can be changed as we show in example 6. The values of constant parameters are displayed in the
note titled “Parameters”: significance level α is 0.05, effect size δ (the standardized mean difference
(µa−µ0)/σ for a one-sample t test) is 1, null mean µ0 is 0, alternative mean µa is 1, and standard
deviation σ is 1.
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In addition to varying sample size, we may compute powers for different alternative values of the
mean.

. power onemean 0 (0.8 1), n(10(2)40) graph
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Figure 2.

For a given sample size, the larger the alternative value, the higher the power.

power, graph displays two power curves corresponding to the specified alternative values on one
plot. The first curve is displayed in navy, and the second curve is displayed in maroon. The default
colors of the lines and, in general, the overall look of the graph are determined by the current graph
scheme. The scheme used here is s2gcolor; see [G-2] set scheme for details. We also show how to
change the default look of the curves in example 7.

We can obtain power curves for varying values of several parameters. For example, below we
compute powers for varying values of alternative mean, sample size, and standard deviation.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) graph
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Estimated power for a one−sample mean test

Figure 3.

The larger the standard deviation, the lower the power. This can be seen more easily in figure 10 and
figure 19.
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power, graph plots a separate curve for each unique combination of the values of the alternative
mean and standard deviation on one plot. Alternatively, you can display curves on separate plots (by
graphs) or even on separate graphs; see example 5. Instead of the extended legend label, as displayed
in figure 2, the title of the legend now displays only column symbols because the legend contains
more than one column. For an alternative look of the legend, see figure 16.

If we specify only one sample size in the previous figure, the values of the alternative mean will
be plotted on the x axis. You can try this yourself if you would like.

Example 2: Sample-size curves

Instead of power curves, we can plot estimated sample sizes for a range of power values to get
an idea of how the requirement on sample size changes for powers of interest.

. power onemean 0 1, power(0.8(0.05)0.95) graph
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Figure 4.

The sample size increases as the power increases.

The look of this graph is the same as that of the graph in figure 1, except sample size is plotted
on the y axis and power is plotted on the x axis.
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We may want to investigate how other study parameters such as alternative mean and standard
deviation affect the sample-size requirement for given powers.

. power onemean 0 (0.3(0.1)1), power(0.8 0.9) sd(1 1.5) graph
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Figure 5.

The larger the alternative mean, or more precisely, the larger the standardized difference between the
alternative and null means, the larger the required sample size.

When multiple study parameters each contain multiple values, as in the above figure, the default
x axis for sample-size curves is the target parameter (the alternative mean in our example) provided
that the target parameter varies. You can plot a different parameter on the x axis such as standard
deviation; see example 4 about how to change the default axes.

Example 3: “Effect-size” curves

What we mean by “effect-size” curves are curves with an effect of interest, which may or may
not be the actual effect size, plotted on the y axis. In fact, power, graph by default plots the target
parameter on the y axis.

We can plot the alternative mean (the target parameter), or more precisely, the smallest value of
the alternative mean that can be detected using the considered t test, against sample size for specified
values of power and default values of other study parameters.
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. power onemean 0, power(0.8 0.9) n(10(2)40) graph
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Figure 6.

The larger the sample size and the smaller the power, the smaller the values of the alternative mean
that can be detected by the test. The default x axis is the sample size whenever the sample size varies.

If desired, you can plot the actual effect size instead of the target parameter on the y axis; see
example 4 for details.

Changing default graph dimensions

So far, we have demonstrated the graphs that power, graph produces by default. In this section,
we demonstrate how you can modify the default graphs.

We can use power, graph() to modify graphs by specifying suboptions to control the look of
the graph.

Example 4: Changing default graph axes

The default y axis corresponds to the computed study parameter—power for power determination,
sample size for sample-size determination, and target parameter for effect-size determination. You
would rarely need to change this dimension. One example when this may be useful is when you want
to plot the estimated probability of a type II error, β, instead of the estimated power.

Following figure 1, let’s plot the estimated probability of a type II error instead of power on the y
axis. We specify the name of the column to be displayed on the y axis, beta, in the ydimension()
suboption of power’s graph() option. We use the minimum abbreviation y() of the suboption.
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. power onemean 0 1, n(10(2)40) graph(y(beta))
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Figure 7.

The probability of a type II error decreases as the sample size increases. This is expected considering
the relationship between power, 1− β, and β.

In example 3, we plotted the minimum detectable values of the target parameter, alternative mean,
against sample size. Instead of the alternative mean, we can plot the corresponding effect size, delta.

. power onemean 0, power(0.8 0.9) n(10(2)40) graph(y(delta))
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Figure 8.

The effect size is now plotted on the y axis. The y values are the same as in figure 6 because the
effect size corresponds to the alternative mean when the null mean is 0 and the standard deviation
is 1. Note also that for a one-sample t test, the computed effect size is not affected by the specified
values of the null mean or standard deviation, so the effect-size curves will stay the same if you vary
these parameters.

When the ydimension() suboption is specified, the y axis is replaced with the specified column, and
the column corresponding to the default y axis is used as a plot dimension. When the ydimension()
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suboption contains delta, the target column is omitted from the graph. When the ydimension()
suboption contains beta, the power column is omitted from the graph.

In figure 2, by default, the power is plotted against varying values of the sample size, and a separate
curve is plotted for each of the varying values of the alternative mean. We can change the default
x axis by specifying the xdimension() suboption (abbreviated to x()) within power’s graph()
option.

. power onemean 0 (0.3(0.1)1), n(10 20 40) graph(x(ma))
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Figure 9.

The x axis now contains the values of the alternative mean, and a separate curve is now plotted for
each sample size.

When the xdimension() suboption is specified, the x axis is replaced with the specified column, and
the column corresponding to the default x axis is used as a plot dimension. When the xdimension()
suboption contains delta, the target column is omitted from the graph. When the xdimension()
suboption contains beta, the power column is omitted from the graph.

Example 5: By graphs and multiple graphs

Let’s return to figure 3 demonstrating multiple power curves on one graph. Suppose we want
to more easily see the impact of standard deviation on power given an alternative mean value.
We can produce a separate plot for each of the mean values by specifying the column ma in the
bydimension() suboption (abbreviated to by()) within power’s graph() option.
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. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) graph(by(ma))
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Figure 10.

For examples of how to modify the look of a by graph, see example 8.

In the presence of many varying parameters, even by graphs may look crowded. In this case, you
may consider producing multiple by graphs. In the example above, suppose that we also want to vary
the significance level α. We add the alpha(0.05 0.1) option to the previous command.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) alpha(0.05 0.1) graph(by(ma))
(output omitted )

The above command produces a graph containing two by graphs. Each by graph contains four curves
in which each corresponds to a unique combination of values of the standard deviation and significance
level. We leave this for you to verify.
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This is a lot of information for a single graph to convey, so instead, we request that a separate
graph be produced for each of the significance levels by specifying the graphdimension(alpha)
suboption (abbreviated to graph()) within power’s graph() option.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) alpha(0.05 0.1)
> graph(by(ma) graph(alpha))
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Figure 11.

Changing the look of graphs

Example 6: Modifying axis labels

Reasonable defaults for axis labels are chosen based on your results. You can modify the defaults
by using any of power, graph()’s labeling suboptions or graph twoway’s axis label options; see
[G-3] axis label options.
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For example, we can request that ticks and labels of the y and x axes be placed for each distinct
value instead of using equally spaced values as in figure 1.

. power onemean 0 1, n(10(2)20) graph(yvalues xvalues ylabel(, format(%4.3f)))
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Figure 12.

In this example, we specified fewer sample sizes to obtain a more readable graph. To further improve
readability, we also changed the default format of the values on the y axis to show only three decimal
points by using ylabel(, format(%4.3f)).

We can use ylabel() and xlabel() to add text labels for some of the axis values. For example,
suppose that our budget is 30 subjects. We can use xlabel() to label the sample-size value of 30
as “Budgeted”.

. power onemean 0 1, n(10(2)40) graph(xlabel(30 "Budgeted", add))
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Figure 13.

We can use ytitle() and xtitle() to change the axis titles.
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. power onemean 0 1, n(10(2)20) graph(ytitle("Power") xtitle("Sample size")
> title("Estimated power") subtitle("") note(""))
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Figure 14.

In addition to modifying the axis titles, we also shortened the default title and suppressed the default
subtitle and note.

You may find the collabels() suboption useful to override the default column labels. The
specified column labels will be used wherever the corresponding column is used on the graph.

For example, change the default labels of the power, sample-size, and alternative-mean columns
to, respectively, “Power”, “N”, and “Alternative mean” in figure 2 as follows:

. power onemean 0 (0.8 1), n(10(2)40)
> graph(collabels(N "N" power "Power" ma "Alternative mean"))
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Figure 15.

For overlaid plots, we may consider alternative labeling of the plotted curves in the legend by
using the nosimplelabels suboption (abbreviated to nosimple). We also suppress the legend title
and request that an equality sign with a space on each side be used as a separator.
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. power onemean 0 (0.8 1), n(10(2)40)
> graph(nosimple legend(title("")) eqsep(" = "))
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Figure 16.

Example 7: Plot options

We can use the plotopts() and plot#opts() suboptions within graph() to modify the default
look of the plotted lines. If there are multiple curves, the plotopts() suboption will apply changes
to all curves. Use the corresponding plot#opts() suboption to change the look of only the specific,
#th, curve.

Here are a few examples of using these suboptions.
. power onemean 0 (0.1(0.1)1), graph(plotopts(mlabel(N) mlabpos(1)))
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Figure 17.

We specified mlabel() within the plotopts() suboption to label each data point on the graph
with its corresponding sample-size value. mlabpos() was used to place the marker labels at the one
o’clock position.
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For plots containing multiple curves such as in figure 3, the plotopts() suboption controls the
look of all curves. For example, we can change the marker symbol from the default solid circle to a
solid triangle.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) graph(plotopts(msymbol(T)))
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Figure 18.

To control the look of each curve, we can use multiple plot#opts() suboptions. For example,
we can request that the curves corresponding to the same standard deviation be plotted using the
same color:

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5)
> graph(plot3opts(color(navy)) plot4opts(color(maroon)))
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Figure 19.
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Example 8: Modifying the look of by graphs

The look of by graphs is controlled by the byopts() suboption specified within power’s graph()
option.

For example, in figure 10, we can specify yrescale within the byopts() suboption to allow the
scales of the two by graphs to differ. We use the alternative means of 0.5 and 1 instead of 0.8 and 1
to demonstrate differences between scales.

. power onemean 0 (0.5 1), n(10(2)40) sd(1 1.5) graph(by(ma) byopts(yrescale))
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Figure 20.

We can use byopts() to change the overall graph title and subtitle.

. power onemean 0 (0.5 1), n(10(2)40) sd(1 1.5) graph(by(ma) byopts(yrescale
> title("Power vs sample size") subtitle("")))
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Figure 21.

Note that if you use title() and subtitle() outside byopts(), you will change the title and
subtitle of the individual by graphs and not the overall graph.
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Parallel plots

Sometimes, you may be interested in comparing powers of parallel sets of parameters, that is,
parameters that vary in parallel instead of being nested. In this situation, the results represent a
collection of data points rather than a curve and are displayed on the graph as a scatterplot without
connecting points.

For such parallel plots, the default display of the results on the y axis may be cumbersome. A
more appealing look may be a graph that swaps the y and x axes, the horizontal graph. Such a look
may be achieved by specifying the horizontal suboption within graph().

. power onemean 0 (0.1(0.1)0.9), sd(1(0.1)1.9) parallel
> graph(x(ma sd) horizontal nosimple ytitle(""))
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Figure 22.

To improve the look of the horizontal graph, we requested that the labels on the y axis include the
parameter symbol by specifying the nosimplelabels suboption, and we also suppressed the y-axis
title.

Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power, table — Produce table of results from the power command



Title

power, table — Produce table of results from the power command

Syntax Menu Description Suboptions
Remarks and examples Stored results Also see

Syntax

Produce default table

power . . ., table . . .

Suppress table

power . . ., notable . . .

Produce custom table

power . . ., table(
[

colspec
] [

, tableopts
]
) . . .

where colspec is

column
[
:label

] [
column

[
:label

] [
. . .
] ]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

tableopts Description

Table

add add columns to the default table
labels(labspec) change default labels for specified columns; default labels are column

names
widths(widthspec) change default column widths; default is specific to each column
formats(fmtspec) change default column formats; default is specific to each column
noformat do not use default column formats
separator(#) draw a horizontal separator line every # lines; default is separator(0),

meaning no separator lines
divider draw divider lines between columns
byrow display rows as computations are performed; seldom used

noheader suppress table header; seldom used
continue draw a continuation border in the table output; seldom used

noheader and continue are not shown in the dialog box.

70
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column Description

alpha significance level
power power
beta type II error probability
N total number of subjects
N1 number of subjects in the control group
N2 number of subjects in the experimental group
nratio ratio of sample sizes, experimental to control
delta effect size
target target parameter
all display all supported columns

method columns columns specific to the method specified with power

By default, the following columns are displayed:
alpha, power, and N are always displayed;
N1 and N2 are displayed for two-sample methods;
delta is displayed when defined by the method;
additional columns specific to each power method may be displayed.

Menu
Statistics > Power and sample size

Description

power, table displays results in a tabular format. table is implied if any of the power command’s
arguments or options contain more than one element. The table option is useful if you are producing
graphs and would like to see the table as well or if you are producing results one case at a time
using a loop and wish to display results in a table. The notable option suppresses table results; it
is implied with the graphical output of power, graph; see [PSS] power, graph.

Suboptions
The following are suboptions within the table() option of the power command.

� � �
Table �

add requests that the columns specified in colspec be added to the default table. The columns are
added to the end of the table.

labels(labspec) specifies the labels to be used in the table for the specified columns. labspec is

column "label"
[

column "label"
[
. . .
] ]

labels() takes precedence over the specification of column labels in colspec.

widths(widthspec) specifies column widths. The default values are the widths of the default column
formats plus one. If the noformat option is used, the default for each column is nine. The column
widths are adjusted to accommodate longer column labels and larger format widths. widthspec is
either a list of values including missing values (numlist) or
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column #
[

column #
[
. . .
] ]

For the value-list specification, the number of specified values may not exceed the number of
columns in the table. A missing value (.) may be specified for any column to indicate the default
width. If fewer widths are specified than the number of columns in the table, the last width specified
is used for the remaining columns.

The alternative column-list specification provides a way to change widths of specific columns.

formats(fmtspec) specifies column formats. The default is %7.0g for integer-valued columns and
%7.4g for real-valued columns. fmtspec is either a string value-list of formats that may include
empty strings or a column list:

column "fmt"
[

column "fmt"
[
. . .
] ]

For the value-list specification, the number of specified values may not exceed the number of
columns in the table. An empty string ("") may be specified for any column to indicate the default
format. If fewer formats are specified than the number of columns in the table, the last format
specified is used for the remaining columns.

The alternative column-list specification provides a way to change formats of specific columns.

noformat requests that the default formats not be applied to the column values. If this suboption is
specified, the column values are based on the column width.

separator(#) specifies how often separator lines should be drawn between rows of the table. The
default is separator(0), meaning that no separator lines should be displayed.

divider specifies that divider lines be drawn between columns. The default is no dividers.

byrow specifies that table rows be displayed as computations are performed. By default, the table is
displayed after all computations are performed. This suboption may be useful when the computation
of each row of the table takes a long time.

The following suboptions are available but are not shown in the dialog box:

noheader prevents the table header from displaying. This suboption is useful when the command is
issued repeatedly, such as within a loop.

continue draws a continuation border at the bottom of the table. This suboption is useful when the
command is issued repeatedly, such as within a loop.

Remarks and examples
Remarks are presented under the following headings:

Using power, table
Default tables
Modifying default tables
Custom tables

power, table displays results from the power command in a table. This is useful for sensitivity
analysis, which investigates the effect of varying study parameters on power, sample size, or other
components of the study. The true values of study parameters are usually unknown. PSS analysis uses
best guesses for these values. It is important to evaluate the sensitivity of the computed power or
sample size to the chosen values of study parameters. For example, to evaluate variability of power
values, you can compute powers for various ranges of values for the parameters of interest and display
the resulting powers in a table or plot them on a graph (see [PSS] power, graph).
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Using power, table

If you specify the table option or include more than one element in command arguments or in
options allowing multiple values, the power command displays results in a tabular form. If desired,
you can suppress the table by specifying the notable option. The table option is useful if you are
producing graphical output or if you are producing results one case at a time, such as within a loop,
and wish to display results in a table; see example 4 below.

Each method specified with the power command has its own default table. Among the columns
that are always included in the default table are significance level (alpha), power (power), total
sample size (N), and effect size (delta)—if effect size is defined by the method. For two-sample
methods, the columns containing the sample sizes of the control and experimental groups, N1 and
N2, respectively, are also included after the total sample size.

You can build your own table by specifying the columns and, optionally, their labels in the table()
option. You can also add columns to the default table by specifying add within power’s table()
option. The columns are displayed in the order they are specified. Each method provides its own list
of supported columns; see the description of the table() option for each method. You can further
customize the table by specifying various suboptions within power’s table() option.

The default column labels are the column names. You can provide your own column labels in colspec
or by specifying table()’s suboption labels(). Labels containing spaces should be enclosed in
quotes, and labels containing quotes should be enclosed in compound quotes. The labels() suboption
is useful for changing the labels of existing columns; see example 2 below for details.

The default formats are %7.4g for real-valued columns and %7.0g for integer-valued columns.
If the noformat suboption is specified, the default column widths are nine characters. You can
use formats() to change the default column formats and widths() to change the default column
widths. The formats() and widths() suboptions provide two alternative specifications, a value-list
specification or a column-list specification. The value-list specification accepts a list of values—strings
for formats and numbers for widths—corresponding to each column of the displayed table. Empty
strings ("") for formats and missing values (.) for widths are allowed and denote the default values. It
is an error to specify more values than the number of displayed columns. If fewer values are specified,
then the last value specified is used for the remaining columns. The column-list specification includes
a list of pairs containing a column name followed by the corresponding value of the format or width.
This specification is useful if you want to modify the formats or the widths of only selected columns.
For column labels or formats exceeding the default column width, the widths of the respective columns
are adjusted to accommodate the column labels and the specified formats.

If you specify the noformat suboption, the default formats are ignored, and the format of a column
is determined by the column width: if the column width is #, the displayed format is %(# - 2).#g.
For example, if the column width is 9, the displayed format is %7.0g.

You may further customize the look of the table by using separator(#) to include separator lines
after every # lines and by using the divider suboption to include divider lines between columns.

The noheader and continue suboptions are useful when you are building your own table within
a loop; see example 4 in Custom tables.

In what follows, we demonstrate the default and custom tables of the results from power and
sample-size analysis for a two-sided 0.05-level one-sample t test comparing the population mean with
a hypothesized value; see [PSS] power onemean.
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Default tables
If there is only one set of results, the power command displays those results as text. When the

power command has multiple sets of results, they are automatically displayed in a table. You can
also specify the table option at any time to request that results be displayed in a table.

The displayed columns are specific to the chosen method of analysis and to the options specified
with the command. The columns that always appear in the table include the significance level (alpha),
power (power), and total sample size (N). If the concept of effect size is defined for the chosen
method, the effect size (delta) is also displayed in the default table.

Example 1: Default tables from power onemean

Suppose we want to explore the requirements on the sample size for a one-sample mean comparison
test to detect means of different magnitudes. For simplicity, we consider only two target mean values,
1 and 2, and keep all other study parameters of power onemean at their default values: power at
80%, two-sided significance level at 0.05, and the estimate of the population standard deviation at 1.
We use a zero null value of the mean. See [PSS] power onemean for details.

. power onemean 0 (1 2)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 10 1 0 1 1

.05 .8 5 2 0 2 1

As we mentioned earlier, the alpha, power, N, and delta columns are usually displayed in the
default table. The power onemean command additionally displays columns containing the null mean,
the alternative mean, and the standard deviation.

If we need to account for finite population, we can specify the fpc() option with power onemean.
The default table will contain an additional column, fpc.

. power onemean 0 (1 2), fpc(500)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd fpc

.05 .8 10 1 0 1 1 500

.05 .8 5 2 0 2 1 500

If there is only one set of results, the power command displays those results as text. If desired,
you can request a table by specifying the table option.
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. power onemean 0 1, table

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 10 1 0 1 1

Modifying default tables

We can modify labels, widths, and formats of the default columns by specifying the corresponding
suboptions within the table() option. We can also add columns to the default table by using
table()’s suboption add.

Example 2: Modifying default tables from power onemean

We can change the default labels of all or selected columns by using the labels() suboption
within power’s table() option. For example, we can change the labels of the sample-size columns
and standard deviation columns of the first table in example 1 to “Sample size” and “Std. Dev.”,
respectively.

. power onemean 0 (1 2), table(, labels(N "Sample size" sd "Std. Dev."))

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power Sample size delta m0 ma Std. Dev.

.05 .8 10 1 0 1 1

.05 .8 5 2 0 2 1

We can also change default column formats and widths by using the formats() and widths()
suboptions.

. power onemean 0 (1 2), n(5) table(, labels(N "Sample size" sd "Std. Dev.")
> widths(N 14 sd 14) formats(power "%7.5f"))

Estimated power for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power Sample size delta m0 ma Std. Dev.

.05 0.40139 5 1 0 1 1

.05 0.90888 5 2 0 2 1

For this table, we switched from a sample-size determination to power determination by specifying
the n() option. We changed the default column widths of the sample-size columns and standard
deviation columns to 14. We also changed the default %7.4g format of the power column to %7.5f.
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We can add columns to the default table by listing the names of the columns in the table()
option and specifying its suboption add.

. power onemean 0 (1 2), table(diff, add)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd diff

.05 .8 10 1 0 1 1 1

.05 .8 5 2 0 2 1 2

We added the column diff, which contains the difference between the alternative and hypothesized
values of the mean, to the default table produced by power onemean.

Custom tables
We can use the table() option to build custom tables, which contain the columns you want in the

order you want. You can also build a table within a foreach or forvalues loop as we demonstrate
in example 4 below. This is useful in the case when you want to obtain multiple sets of results over
parameters of the power command that do not allow the numlist specification.

Example 3: Producing custom tables

As an example of a custom table, we produce a table containing only four columns: significance
level, power, sample size, and effect size.

. power onemean 0 (1 2), table(alpha:"Significance level"
> power:Power N:"Sample size" delta:"Effect size", widths(. 15))

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Significance level Power Sample size Effect size

.05 .8 10 1

.05 .8 5 2

To improve the look of the table, we also specified the widths(. 15) suboption to increase the
column widths of the last 3 columns to 15, leaving the width of the first column, the significance
level, at its default value.
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We can use the all qualifier to request that all table columns supported by the method be
displayed.

. power onemean 0 (1 2), table(_all)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power beta N delta m0 ma diff sd

.05 .8 .2 10 1 0 1 1 1

.05 .8 .2 5 2 0 2 2 1

Example 4: Building table using a loop

Some options of power commands may not allow the numlist specification. In this case, you
can build a table manually by using a loop such as foreach (see [P] foreach) or forvalues (see
[P] forvalues) loop. One way to do this is to write a program that loops over parameters of interest.
We demonstrate a program that loops over varying values of the alternative mean of power onemean.
You can easily adapt this program to meet your needs.

program dotable
args ma
numlist "‘ma’" // expand the numeric list in macro ma
local ma "‘r(numlist)’"
local nvals : list sizeof ma
local i 1
foreach val of local ma { // loop over numeric values in ma

if (‘i’==1) {
power onemean 0 ‘val’, table(, continue)

}
else if (‘i’<‘nvals’) {

power onemean 0 ‘val’, table(, noheader continue) notitle
}
else {

power onemean 0 ‘val’, table(, noheader) notitle
}
local ++i

}
end

The dotable program accepts one argument, ma, which may contain one or more numeric values of
the alternative mean specified as a numlist. The program uses combinations of continue, noheader,
and notitle to display a table. The first call to power onemean requests that the table be displayed
without the bottom line by specifying the continue suboption within table(). The subsequent calls
(except the last) specify the continue suboption, the notitle option with power onemean, and
noheader within the table() option to request that neither the output before the table nor the table
header be displayed. The last call omits the continue suboption so that the bottom line is displayed.
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As a result, we obtain the following table:

. dotable "1(1)4"

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 10 1 0 1 1

.05 .8 5 2 0 2 1

.05 .8 4 3 0 3 1

.05 .8 3 4 0 4 1

Stored results
power, table stores the following in r() in addition to other results stored by power:

Scalars
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise

Macros
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power, graph — Graph results from the power command
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power onemean — Power analysis for a one-sample mean test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power onemean m0 ma

[
, power(numlist) options

]

Compute power

power onemean m0 ma , n(numlist)
[

options
]

Compute effect size and target mean

power onemean m0 , n(numlist) power(numlist)
[

options
]

where m0 is the null (hypothesized) mean or the value of the mean under the null hypothesis, and
ma is the alternative (target) mean or the value of the mean under the alternative hypothesis. m0

and ma may each be specified either as one number or as a list of values in parentheses (see
[U] 11.1.8 numlist).

79
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗diff(numlist) difference between the alternative mean and the null mean,

ma −m0; specify instead of the alternative mean ma
∗sd(numlist) standard deviation; default is sd(1)

knownsd request computation assuming a known standard deviation;
default is to assume an unknown standard deviation

∗fpc(numlist) finite population correction (FPC) as a sampling rate or
as a population size

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for sample size or mean;
default is to use normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
m0 null mean µ0

ma alternative mean µa
diff difference between the alternative and null means µa − µ0

sd standard deviation σ
fpc FPC as population size Npop

FPC as sampling rate γ
target target parameter; synonym for ma
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns diff and fpc are shown in the default table if specified.

Menu
Statistics > Power and sample size

Description
power onemean computes sample size, power, or target mean for a one-sample mean test. By

default, it computes sample size for given power and the values of the mean parameters under the
null and alternative hypotheses. Alternatively, it can compute power for given sample size and values
of the null and alternative means or the target mean for given sample size, power, and the null mean.
Also see [PSS] power for a general introduction to the power command using hypothesis tests.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power. The nfractional option is
allowed only for sample-size determination.

diff(numlist) specifies the difference between the alternative mean and the null mean, ma−m0. You
can specify either the alternative mean ma as a command argument or the difference between the
two means in diff(). If you specify diff(#), the alternative mean is computed as ma = m0 +
#. This option is not allowed with the effect-size determination.

sd(numlist) specifies the sample standard deviation or the population standard deviation. The default
is sd(1). By default, sd() specifies the sample standard deviation. If knownsd is specified, sd()
specifies the population standard deviation.

knownsd requests that the standard deviation be treated as known in the computation. By default, the
standard deviation is treated as unknown, and the computation is based on a t test, which uses a
Student’s t distribution as a sampling distribution of the test statistic. If knownsd is specified, the
computation is based on a z test, which uses a normal distribution as the sampling distribution of
the test statistic.
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fpc(numlist) requests that a finite population correction be used in the computation. If fpc() has
values between 0 and 1, it is interpreted as a sampling rate, n/N , where N is the total number of
units in the population. If fpc() has values greater than n, it is interpreted as a population size.
It is an error for fpc() to have values between 1 and n or to have a mixture of sampling rates
and population sizes.

direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the mean for the effect-size determination. The default is to use a closed-form normal
approximation to compute an initial value of the sample size or mean.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power onemean but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power onemean
Computing sample size
Computing power
Computing effect size and target mean
Performing hypothesis tests on mean

This entry describes the power onemean command and the methodology for power and sample-
size analysis for a one-sample mean test. See [PSS] intro for a general introduction to power and
sample-size analysis, and see [PSS] power for a general introduction to the power command using
hypothesis tests.

Introduction

There are many examples of studies where a researcher would like to compare an observed mean
with a hypothesized mean. A company that provides preparatory classes for a standardized exam
would like to see if the mean score of students who take its classes is higher than the national
average. A fitness center would like to know if its average clients’ weight loss is greater than zero
after six months. Or a government agency would like to know if a job training program results in
higher wages than the national average.
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This entry describes power and sample-size analysis for the inference about the population mean
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: µ = µ0 versus
the two-sided alternative hypothesis Ha: µ 6= µ0, the upper one-sided alternative Ha: µ > µ0, or the
lower one-sided alternative Ha: µ < µ0.

The considered one-sample mean tests rely on the assumption that a random sample is normally
distributed or that the sample size is large. Different test statistics can be based on whether the variance
of the sampling process is known a priori. In the case of a known variance, the test statistic follows
a standard normal distribution under the null hypothesis, and the corresponding test is known as a
z test. In the case of an unknown variance, an estimate of the population variance is used to form a
test statistic, which follows a Student’s t distribution under the null hypothesis, and the corresponding
test is known as a t test.

The random sample is typically drawn from an infinite population. When the sample is drawn
from a population of a fixed size, sampling variability must be adjusted for a finite population size.

The power onemean command provides power and sample-size analysis for the comparison of a
mean with a reference value using a t test or a z test.

Using power onemean

power onemean computes sample size, power, or target mean for a one-sample mean test. All
computations are performed for a two-sided hypothesis test where, by default, the significance level
is set to 0.05. You may change the significance level by specifying the alpha() option. You can
specify the onesided option to request a one-sided test.

By default, all computations are based on a t test, which assumes an unknown standard deviation,
and use the default value of 1 as the estimate of the standard deviation. You may specify other values
for the standard deviation in the sd() option. For a known standard deviation, you can specify the
knownsd option to request a z test.

To compute sample size, you must specify the means under the null and alternative hypotheses,
m0 and ma, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the means under the
null and alternative hypotheses, m0 and ma, respectively.

Instead of the alternative mean, ma, you may specify the difference ma − m0 between the
alternative mean and the null mean in the diff() option when computing sample size or power.

To compute effect size, the standardized difference between the alternative and null means, and
the corresponding target mean, you must specify the sample size in the n() option, the power in the
power() option, the null mean m0, and, optionally, the direction of the effect. The direction is upper
by default, direction(upper), which means that the target mean is assumed to be larger than the
specified null mean value. This is also equivalent to the assumption of a positive effect size. You can
change the direction to lower, which means that the target mean is assumed to be smaller than the
specified null value, by specifying the direction(lower) option. This is equivalent to assuming a
negative effect size.

By default, the computed sample size is rounded up. You can specify the nfractional option to
see the corresponding fractional sample size; see Fractional sample sizes in [PSS] unbalanced designs
for an example. The nfractional option is allowed only for sample-size determination.

Some of power onemean’s computations require iteration. For example, when the standard deviation
is unknown, computations use a noncentral Student’s t distribution. Its degrees of freedom depends
on the sample size, and the noncentrality parameter depends on the sample size and effect size.
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Therefore, the sample-size and effect-size determinations require iteration. The default initial values
of the estimated parameters are obtained by using a closed-form normal approximation. They may
be changed by specifying the init() option. See [PSS] power for the descriptions of other options
that control the iteration procedure.

All computations assume an infinite population. For a finite population, use the fpc() option
to specify a sampling rate or a population size. When this option is specified, a finite population
correction is applied to the population standard deviation. The correction factor depends on the sample
size; therefore, computing sample size for a finite population requires iteration even for a known
standard deviation. The initial value for the sample size is based on the corresponding sample size
assuming an infinite population.

In the following sections, we describe the use of power onemean accompanied by examples for
computing sample size, power, and target mean.

Computing sample size

To compute sample size, you must specify the means under the null and alternative hypotheses,
m0 and ma, respectively, and, optionally, the power of the test in the power() option. A default
power of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-sample mean test

Consider an example from Tamhane and Dunlop (2000, 209) that discusses the effectiveness of
coaching programs in improving the verbal part of SAT scores. Previous studies found that students
retaking the SAT exams without any coaching program improve their scores by 15 points on average
with a standard deviation of about 40 points. A new coaching program claims to improve the SAT
scores by 40 points above the average. The changes in scores are assumed to be approximately
normally distributed. The parameter of interest in this example is the mean change in the test scores.
To test the claim, investigators wish to conduct another study and compute the sample size that is
required to detect a mean change in scores of 40 points with 80% power using a 5%-level two-sided
test. We assume that the true population standard deviation is unknown and use its estimate from
previous studies to compute the sample size:

. power onemean 15 40, sd(40)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Estimated sample size:

N = 23

We find that a sample of 23 subjects is required to detect a shift of 40 points in average SAT scores
given the standard deviation of 40 points with 80% power using a 0.05-level two-sided test.
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As we mentioned in Using power onemean and as is also indicated in the output, sample-size
computation requires iteration when the standard deviation is unknown. The iteration log is suppressed
by default, but you can display it by specifying the log option.

Example 2: Specifying difference between means

Instead of the alternative mean change of 40 as in example 1, we can specify the difference of 25
between the mean changes in scores under the alternative and null hypotheses in the diff() option
and obtain the same results.

. power onemean 15, diff(25) sd(40)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250

m0 = 15.0000
ma = 40.0000

diff = 25.0000
sd = 40.0000

Estimated sample size:

N = 23

When we specify the diff() option, the difference between the alternative and null values is also
reported in the output.

Example 3: Known variance

If we know the population standard deviation, we can use the knownsd option to request a z test.
. power onemean 15 40, sd(40) knownsd

Performing iteration ...

Estimated sample size for a one-sample mean test
z test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Estimated sample size:

N = 21

The output now indicates that the computation is based on a z test instead of a t test. We find that
a smaller sample of 21 subjects is required to detect the same effect size as in example 1 when the
standard deviation is known.
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Computing power

To compute power, you must specify the sample size in the n() option and the means under the
null and alternative hypotheses, m0 and ma, respectively.

Example 4: Power of a one-sample mean test

Continuing example 1, we will suppose that we are designing a new study and anticipate to obtain
a sample of 30 subjects. To compute the power corresponding to this sample size given the study
parameters from example 1, we specify the sample size of 30 in the n() option:

. power onemean 15 40, n(30) sd(40)

Estimated power for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 30

delta = 0.6250
m0 = 15.0000
ma = 40.0000
sd = 40.0000

Estimated power:

power = 0.9112

With a larger sample size, the power of the test increases to about 91.12%.

Example 5: Multiple values of study parameters

To investigate the effect of a finite population size on power, we can specify a list of population
sizes in the fpc() option:

. power onemean 15 40, n(30) sd(40) fpc(100 500 1000)

Estimated power for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd fpc

.05 .9769 30 .625 15 40 40 100

.05 .9267 30 .625 15 40 40 500

.05 .919 30 .625 15 40 40 1000

As expected, when the population size increases, the power tends to get closer to that obtained by
assuming an infinite population size.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.
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Example 6: Reproducing published results from a text book

We can also reproduce the example from Tamhane and Dunlop (2000, 213–214). The authors
consider a one-sided test with a 0.132 significance level and a known standard deviation and compute
the power to be 95.3%. We can replicate their example by typing

. power onemean 15 40, n(20) sd(40) alpha(0.132) onesided knownsd

Estimated power for a one-sample mean test
z test
Ho: m = m0 versus Ha: m > m0

Study parameters:

alpha = 0.1320
N = 20

delta = 0.6250
m0 = 15.0000
ma = 40.0000
sd = 40.0000

Estimated power:

power = 0.9533

Computing effect size and target mean

Effect size δ for a one-sample mean test is defined as the ratio of the difference between the
alternative and null values of the mean to the standard deviation, δ = (µa − µ0)/σ.

Sometimes, we may be interested in determining the smallest effect and the corresponding alternative
or target mean that yield a statistically significant result for prespecified sample size and power. In
this case, power, sample size, and null mean must be specified. In addition, you must also decide
on the direction of the effect: upper, which means µa > µ0, or lower, which means µa < µ0. The
direction may be specified in the direction() option; direction(upper) is the default.

Example 7: Minimum detectable value of the mean change in SAT scores

Continuing with example 4, we may also be interested to find the smallest mean change in SAT
scores that can be detected with a power of 80% given a sample of 30 subjects. To compute this,
we specify only the null value of 15 as the command argument and also specify the sample size
and power in the n(30) and power(0.8) options, respectively. We use the same value of 40 for the
standard deviation as in example 4.

. power onemean 15, n(30) power(0.8) sd(40)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 30
m0 = 15.0000
sd = 40.0000

Estimated effect size and target mean:

delta = 0.5292
ma = 36.1694
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The estimated smallest mean change in SAT scores is 36.17, which corresponds to the effect size of
0.53. Compared with example 1, for the same power of 80%, this example shows a smaller difference
between the mean SAT scores of the two programs for a larger sample of 30 subjects.

In the above, we assumed the effect to be in the upper direction. By symmetry, the effect size in
the lower direction will be −0.53, which can also be obtained by specifying direction(lower) in
the above example.

Performing hypothesis tests on mean

In this section, we briefly demonstrate the use of the ttest command for testing hypotheses about
means; see [R] ttest for details. Suppose we wish to test the hypothesis that the mean is different
from a reference value on the collected data. We can use the ttest command to do this. Below we
demonstrate the use of this command for the analysis of sat.dta.

Example 8: Testing for mean

Suppose that we wish to test whether the mean verbal SAT score is equal to 600. We use the
ttest command to do this as follows:

. use http://www.stata-press.com/data/r13/sat
(Artificial SAT data)

. ttest score == 600

One-sample t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

score 75 504.8 15.24616 132.0356 474.4214 535.1786

mean = mean(score) t = -6.2442
Ho: mean = 600 degrees of freedom = 74

Ha: mean < 600 Ha: mean != 600 Ha: mean > 600
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

We find statistical evidence to reject the null hypothesis of H0 : µSAT = 600 versus a two-sided
alternative Ha: µSAT 6= 600 at the 5% significance level; the p-value < 0.0000.

We use the estimates based on this study to perform a sample-size analysis we would have
conducted before the study.

. power onemean 600 505, sd(132)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.7197

m0 = 600.0000
ma = 505.0000
sd = 132.0000

Estimated sample size:

N = 18
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We find that the sample size required to detect a mean score of 505 with 80% power using a 5%-level
two-sided test is only 18. The current sample contains 75 subjects, which would allow us to detect
a potentially smaller (in absolute value) difference between the alternative and null means.

Stored results
power onemean stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(m0) mean under the null hypothesis
r(ma) mean under the alternative hypothesis
r(diff) difference between the alternative and null means
r(sd) standard deviation
r(knownsd) 1 if option knownsd is specified; 0 otherwise
r(fpc) finite population correction (if specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for the sample size or mean
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) onemean
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results

Methods and formulas
Let x1, . . . , xn be a sequence of n independent and identically distributed random variables drawn

from a normal population with mean µ and variance σ2. Let

x =
1

n

n∑
i=1

xi and s2 =
1

n− 1

n∑
i=1

(xi − x)2

denote the sample mean and the sample variance, respectively. Let µ0 and µa denote the null and
alternative values of the mean parameter, respectively.
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A one-sample mean test involves testing the null hypothesis H0: µ = µ0 versus the two-sided
alternative hypothesis Ha : µ 6= µ0, the upper one-sided alternative Ha : µ > µ0, or the lower
one-sided alternative Ha: µ < µ0.

If the nfractional option is not specified, the computed sample size is rounded up.

The following formulas are based on Chow, Shao, and Wang (2008).

Known standard deviation
In the case of a known standard deviation, the sampling distribution of the test statistic z =√
n(x−µ0)/σ under the null hypothesis follows the standard normal distribution, and the corresponding

test is known as a z test.

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution.

The power π = 1− β is computed using

π =


Φ (
√
nδ − z1−α) for an upper one-sided test

Φ (−
√
nδ − z1−α) for a lower one-sided test

Φ
(√
nδ − z1−α/2

)
+ Φ

(
−
√
nδ − z1−α/2

)
for a two-sided test

(1)

where Φ(·) is the cdf of the standard normal distribution and δ = (µa − µ0)/σ is the effect size.

The sample size n for a one-sided test is computed by inverting a one-sided power equation from
(1):

n =

(
z1−α − zβ

δ

)2

(2)

Similarly, the absolute value of the effect size for a one-sided test is computed as follows:

|δ| = (z1−α − zβ)√
n

(3)

Note that the magnitude of the effect size is the same regardless of the direction of the test.

The minimum detectable value of the mean for a one-sided test is computed as
µa = µ0 + (z1−α− zβ)σ/

√
n when µa > µ0 and as µa = µ0− (z1−α− zβ)σ/

√
n when µa < µ0.

Sample size and minimum detectable value of the mean for a two-sided test are computed
iteratively using the two-sided power equation from (1). The initial values are obtained from (2) and
(3), correspondingly, with α/2 in place of α.

Unknown standard deviation
In the case of an unknown standard deviation, an unbiased estimator s is used in place of σ in

the definition of a z test statistic. The sampling distribution of the test statistic t =
√
n(x− µ0)/s

under the null hypothesis follows a Student’s t distribution with n− 1 degrees of freedom, and the
corresponding test is known as a t test.

Let tn−1,α denote the αth quantile of a Student’s t distribution with n − 1 degrees of freedom.
Under the alternative hypothesis, the test statistic follows a noncentral Student’s t distribution, and
the power is computed using
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π =


1− Tn−1,λ (tn−1,1−α) for an upper one-sided test
Tn−1,λ (−tn−1,1−α) for a lower one-sided test
1− Tn−1,λ

(
tn−1,1−α/2

)
+ Tn−1,λ

(
−tn−1,1−α/2

)
for a two-sided test

(4)

where Tn−1,λ (·) is the cumulative noncentral Student’s t distribution with a noncentrality parameter
λ =
√
nδ.

Sample size and minimum detectable value of the mean are obtained by iteratively solving nonlinear
equations in (4), for n and δ, respectively. The default initial values for the iterative procedure are
calculated from (2) and (3), respectively, assuming a normal distribution.

Finite population size

The above formulas assume that the random sample is drawn from an infinite population. In cases
when the size of the population is known, we need to make the following adjustment to the standard
deviation,

σfpc = σ

√(
1− n

N

)
where σfpc is the population standard deviation adjusted for finite population size. The correction
factor depends on the sample size; therefore, computing sample size in this case requires iteration.
The initial value for the sample size is based on the corresponding normal approximation with infinite
population size.
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Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[R] ttest — t tests (mean-comparison tests)
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Syntax Menu Description Options
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Syntax

Compute sample size

power twomeans m1 m2

[
, power(numlist) options

]

Compute power

power twomeans m1 m2 , n(numlist)
[

options
]

Compute effect size and experimental-group mean

power twomeans m1 , n(numlist) power(numlist)
[

options
]

where m1 is the mean of the control (reference) group, and m2 is the mean of the experimental
(comparison) group. m1 and m2 may each be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).

92
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(n1 | n2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗diff(numlist) difference between the experimental-group mean and the

control-group mean, m2 −m1; specify instead of the
experimental-group mean m2

∗sd(numlist) common standard deviation of the control and the
experimental groups assuming equal standard deviations in
both groups; default is sd(1)

∗sd1(numlist) standard deviation of the control group; requires sd2()
∗sd2(numlist) standard deviation of the experimental group; requires sd1()

knownsds request computation assuming known standard deviations for
both groups; default is to assume unknown standard
deviations

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph
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Iteration

init(#) initial value for sample sizes or experimental-group mean
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
m1 control-group mean µ1

m2 experimental-group mean µ2

diff difference between the control-group mean and µ2 − µ1

the experimental-group mean
sd common standard deviation σ
sd1 control-group standard deviation σ1

sd2 experimental-group standard deviation σ2

target target parameter; synonym for m2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns nratio, diff, sd, sd1, and sd2 are shown in the default table if specified.

Menu
Statistics > Power and sample size
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Description
power twomeans computes sample size, power, or the experimental-group mean for a two-sample

means test. By default, it computes sample size for the given power and the values of the control-group
and experimental-group means. Alternatively, it can compute power for given sample size and values
of the control-group and experimental-group means or the experimental-group mean for given sample
size, power, and the control-group mean. Also see [PSS] power for a general introduction to the
power command using hypothesis tests.

Options

� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see
[PSS] power.

diff(numlist) specifies the difference between the experimental-group mean and the control-group
mean, m2−m1. You can specify either the experimental-group mean m2 as a command argument
or the difference between the two means in diff(). If you specify diff(#), the experimental-
group mean is computed as m2 = m1 + #. This option is not allowed with the effect-size
determination.

sd(numlist) specifies the common standard deviation of the control and the experimental groups
assuming equal standard deviations in both groups. The default is sd(1).

sd1(numlist) specifies the standard deviation of the control group. If you specify sd1(), you must
also specify sd2().

sd2(numlist) specifies the standard deviation of the experimental group. If you specify sd2(), you
must also specify sd1().

knownsds requests that standard deviations of each group be treated as known in the computations.
By default, standard deviations are treated as unknown, and the computations are based on a
two-sample t test, which uses a Student’s t distribution as a sampling distribution of the test
statistic. If knownsds is specified, the computation is based on a two-sample z test, which uses
a normal distribution as the sampling distribution of the test statistic.

direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. For sample-size determination,
the estimated parameter is either the control-group size N1 or, if compute(n2) is specified,
the experimental-group size N2. For the effect-size determination, the estimated parameter is the
experimental-group mean m2. The default initial values for a two-sided test are obtained as a
closed-form solution for the corresponding one-sided test with the significance level α/2. The



96 power twomeans — Power analysis for a two-sample means test

default initial values for the t test computations are based on the corresponding large-sample
normal approximation.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power twomeans but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twomeans
Computing sample size
Computing power
Computing effect size and experimental-group mean
Testing a hypothesis about two independent means

This entry describes the power twomeans command and the methodology for power and sample-
size analysis for a two-sample means test. See [PSS] intro for a general introduction to power
and sample-size analysis and [PSS] power for a general introduction to the power command using
hypothesis tests.

Introduction
The analysis of means is one of the most commonly used approaches in a wide variety of statistical

studies. Many applications lead to the study of two independent means, such as studies comparing
the average mileage of foreign and domestic cars, the average SAT scores obtained from two different
coaching classes, the average yields of a crop due to a certain fertilizer, and so on. The two populations
of interest are assumed to be independent.

This entry describes power and sample-size analysis for the inference about two population means
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: µ2 = µ1 versus
the two-sided alternative hypothesis Ha: µ2 6= µ1, the upper one-sided alternative Ha: µ2 > µ1, or
the lower one-sided alternative Ha: µ2 < µ1.

The considered two-sample tests rely on the assumption that the two random samples are normally
distributed or that the sample size is large. Suppose that the two samples are normally distributed. If
variances of the considered populations are known a priori, the test statistic has a standard normal
distribution under the null hypothesis, and the corresponding test is referred to as a two-sample z test.
If variances of the two populations are not known, then the null sampling distribution of the test
statistic depends on whether the two variances are assumed to be equal. If the two variances are
assumed to be equal, the test statistic has an exact Student’s t distribution under the null hypothesis.
The corresponding test is referred to as a two-sample t test. If the two variances are not equal, then
the distribution can only be approximated by a Student’s t distribution; the degrees of freedom is
approximated using Satterthwaite’s method. We refer to this test as Satterthwaite’s t test. For a large
sample, the distribution of the test statistic is approximately normal, and the corresponding test is a
large-sample z test.

The power twomeans command provides power and sample-size analysis for the above tests.
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Using power twomeans

power twomeans computes sample size, power, or experimental-group mean for a two-sample
means test. All computations are performed for a two-sided hypothesis test where, by default, the
significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test. By default, all computations
assume a balanced or equal-allocation design; see [PSS] unbalanced designs for a description of how
to specify an unbalanced design.

By default, all computations are for a two-sample t test, which assumes equal and unknown
standard deviations. By default, the common standard deviation is set to one but may be changed by
specifying the sd() option. To specify different standard deviations, use the respective sd1() and
sd2() options. These options must be specified together and may not be used in combination with
sd(). When sd1() and sd2() are specified, the computations are based on Satterthwaite’s t test,
which assumes unequal and unknown standard deviations. If standard deviations are known, use the
knownsds option to request that computations be based on a two-sample z test.

To compute the total sample size, you must specify the control-group mean m1, the experimental-
group mean m2, and, optionally, the power of the test in the power() option. The default power is
set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(n1) option and the sample
size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(n2) option and the sample size of the control group in
the n1() option.

To compute power, you must specify the total sample size in the n() option, the control-group
mean m1, and the experimental-group mean m2.

Instead of the experimental-group mean m2, you may specify the difference m2−m1 between the
experimental-group mean and the control-group mean in the diff() option when computing sample
size or power.

To compute effect size, the difference between the experimental-group mean and the null mean,
and the experimental-group mean, you must specify the total sample size in the n() option, the power
in the power() option, the control-group mean m1, and, optionally, the direction of the effect. The
direction is upper by default, direction(upper), which means that the experimental-group mean
is assumed to be larger than the specified control-group value. You can change the direction to be
lower, which means that the experimental-group mean is assumed to be smaller than the specified
control-group value, by specifying the direction(lower) option.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS] unbalanced designs for more details.

In the following sections, we describe the use of power twomeans accompanied by examples for
computing sample size, power, and experimental-group mean.

Computing sample size

To compute sample size, you must specify the control-group mean m1, the experimental-group
mean m2, and, optionally, the power of the test in the power() option. A default power of 0.8 is
assumed if power() is not specified.
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Example 1: Sample size for a two-sample means test

Consider a study investigating the effects of smoking on lung function of males. The response
variable is forced expiratory volume (FEV), measured in liters (L), where better lung function implies
higher values of FEV. We wish to test the null hypothesis H0: µ1 = µ2 versus a two-sided alternative
hypothesisHa: µ1 6= µ2, where µ1 and µ2 are the mean FEV for nonsmokers and smokers, respectively.

Suppose that the mean FEV from previous studies was reported to be 3 L for nonsmokers and
2.7 L for smokers. We are designing a new study and wish to find out how many subjects we need
to enroll so that the power of a 5%-level two-sided test to detect the specified difference between
means is at least 80%. We assume equal numbers of subjects in each group and a common standard
deviation of 1.

. power twomeans 3 2.7

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000
sd = 1.0000

Estimated sample sizes:

N = 352
N per group = 176

We need a total sample of 352 subjects, 176 per group, to detect the specified mean difference between
the smoking and nonsmoking groups with 80% power using a two-sided 5%-level test.

The default computation is for the case of equal and unknown standard deviations, as indicated
by the output. You can specify the knownsds option to request the computation assuming known
standard deviations.

Example 2: Sample size assuming unequal standard deviations

Instead of assuming equal standard deviations as in example 1, we use the estimates of the standard
deviations from previous studies as our hypothetical values. The standard deviation of FEV for the
nonsmoking group was reported to be 0.8 L and that for the smoking group was reported to be 0.7 L.
We specify standard deviations in the sd1() and sd2() options.
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. power twomeans 3 2.7, sd1(0.8) sd2(0.7)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000

sd1 = 0.8000
sd2 = 0.7000

Estimated sample sizes:

N = 200
N per group = 100

The specified standard deviations are smaller than one, so we obtain a smaller required total sample
size of 200 compared with example 1.

Example 3: Specifying difference between means

Instead of the mean FEV of 2.7 for the smoking group as in example 2, we can specify the
difference between the two means of 2.7− 3 = −0.3 in the diff() option.

. power twomeans 3, sd1(0.8) sd2(0.7) diff(-0.3)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000

diff = -0.3000
sd1 = 0.8000
sd2 = 0.7000

Estimated sample sizes:

N = 200
N per group = 100

We obtain the same results as in example 2. The difference between means is now also reported in
the output following the individual means.

Example 4: Computing one of the group sizes

Suppose we anticipate a sample of 120 nonsmoking subjects. We wish to compute the required
number of subjects in the smoking group, keeping all other study parameters as in example 2.
We specify the number of subjects in the nonsmoking group in the n1() option and specify the
compute(n2) option.
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. power twomeans 3 2.7, sd1(0.8) sd2(0.7) n1(120) compute(n2)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000

sd1 = 0.8000
sd2 = 0.7000
N1 = 120

Estimated sample sizes:

N = 202
N2 = 82

We need a sample of 82 smoking subjects given a sample of 120 nonsmoking subjects.

Example 5: Unbalanced design

By default, power twomeans computes sample size for a balanced or equal-allocation design. If
we know the allocation ratio of subjects between the groups, we can compute the required sample
size for an unbalanced design by specifying the nratio() option.

Continuing with example 2, we will suppose that we anticipate to recruit twice as many smokers
than nonsmokers; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required
sample size for the specified unbalanced design.

. power twomeans 3 2.7, sd1(0.8) sd2(0.7) nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000

sd1 = 0.8000
sd2 = 0.7000

N2/N1 = 2.0000

Estimated sample sizes:

N = 237
N1 = 79
N2 = 158

We need a total sample size of 237 subjects, which is larger than the required total sample size for
the corresponding balanced design from example 2.

Also see Two samples in [PSS] unbalanced designs for more examples of unbalanced designs for
two-sample tests.
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Computing power

To compute power, you must specify the total sample size in the n() option, the control-group
mean m1, and the experimental-group mean m2.

Example 6: Power of a two-sample means test

Continuing with example 1, we will suppose that we have resources to enroll a total of only 250
subjects, assuming equal-sized groups. To compute the power corresponding to this sample size given
the study parameters from example 1, we specify the total sample size in n():

. power twomeans 3 2.7, n(250)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 250

N per group = 125
delta = -0.3000

m1 = 3.0000
m2 = 2.7000
sd = 1.0000

Estimated power:

power = 0.6564

With a total sample of 250 subjects, we obtain a power of only 65.64%.

Example 7: Multiple values of study parameters

In this example, we assess the effect of varying the common standard deviation (assuming equal
standard deviations in both groups) of FEV on the power of our study.

Continuing with example 6, we compute powers for a range of common standard deviations
between 0.5 and 1.5 with the step size of 0.1. We specify the corresponding numlist in the sd()
option.

. power twomeans 3 2.7, sd(0.5(0.1)1.5) n(250)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

alpha power N N1 N2 delta m1 m2 sd

.05 .9972 250 125 125 -.3 3 2.7 .5

.05 .976 250 125 125 -.3 3 2.7 .6

.05 .9215 250 125 125 -.3 3 2.7 .7

.05 .8397 250 125 125 -.3 3 2.7 .8

.05 .747 250 125 125 -.3 3 2.7 .9

.05 .6564 250 125 125 -.3 3 2.7 1

.05 .5745 250 125 125 -.3 3 2.7 1.1

.05 .5036 250 125 125 -.3 3 2.7 1.2

.05 .4434 250 125 125 -.3 3 2.7 1.3

.05 .3928 250 125 125 -.3 3 2.7 1.4

.05 .3503 250 125 125 -.3 3 2.7 1.5
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The power decreases from 99.7% to 35.0% as the common standard deviation increases from 0.5 to
1.5 L.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Computing effect size and experimental-group mean

Effect size δ for a two-sample means test is defined as the difference between the experimental-group
mean and the control-group mean δ = µ2 − µ1.

Sometimes, we may be interested in determining the smallest effect and the corresponding
experimental-group mean that yield a statistically significant result for prespecified sample size and
power. In this case, power, sample size, and control-group mean must be specified. In addition,
you must also decide on the direction of the effect: upper, meaning m2 > m1, or lower, meaning
m2 < m1. The direction may be specified in the direction() option; direction(upper) is the
default.

Example 8: Minimum detectable change in the experimental-group mean

Continuing with example 6, we compute the smallest change in the mean of the smoking group
that can be detected given a total sample of 250 subjects and 80% power, assuming equal-group
allocation. To solve for the mean FEV of the smoking group, after the command name, we specify
the nonsmoking-group mean of 3, total sample size n(250), and power power(0.8).

Because our initial study was based on the hypothesis that FEV for the smoking group is lower
than that of the nonsmoking group, we specify the direction(lower) option to compute the
smoking-group mean that is lower than the specified nonsmoking-group mean.

. power twomeans 3, n(250) power(0.8) direction(lower)

Performing iteration ...

Estimated experimental-group mean for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1; m2 < m1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 250
N per group = 125

m1 = 3.0000
sd = 1.0000

Estimated effect size and experimental-group mean:

delta = -0.3558
m2 = 2.6442

We find that the minimum detectable value of the effect size is −0.36, which corresponds to the
mean FEV of 2.64 for the smoking group.



power twomeans — Power analysis for a two-sample means test 103

Testing a hypothesis about two independent means

After data are collected, we can use the ttest command to test the equality of two independent
means using a t test; see [R] ttest for details. In this section, we demonstrate the use of ttesti,
the immediate form of the test command, which can be used to test a hypothesis using summary
statistics instead of the actual data values.

Example 9: Two-sample t test

Consider an example from van Belle et al. (2004, 129), where newborn infants were divided into
two groups: a treatment group, where infants received daily “walking stimulus” for eight weeks, and
a control group, where no stimulus was provided. The goal of this study was to test whether receiving
the walking stimulus during stages of infancy induces the walking ability to develop sooner.

The average number of months before the infants started walking was recorded for both groups.
The authors provide estimates of the average of 10.125 months for the treatment group with estimated
standard deviation of 1.447 months and 12.35 months for the control group with estimated standard
deviation of 0.9618 months. The sample sizes for treatment and control groups were 6 and 5,
respectively. We supply these estimates to the ttesti command and use the unequal option to
perform a t test assuming unequal variances.

. ttesti 6 10.125 1.447 5 12.35 0.9618, unequal

Two-sample t test with unequal variances

Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

x 6 10.125 .5907353 1.447 8.606467 11.64353
y 5 12.35 .43013 .9618 11.15577 13.54423

combined 11 11.13636 .501552 1.66346 10.01884 12.25389

diff -2.225 .7307394 -3.887894 -.562106

diff = mean(x) - mean(y) t = -3.0449
Ho: diff = 0 Satterthwaite’s degrees of freedom = 8.66326

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0073 Pr(|T| > |t|) = 0.0145 Pr(T > t) = 0.9927

We reject the null hypothesis of H0: µC = µT against the two-sided alternative Ha: µC 6= µT at
the 5% significance level; the p-value = 0.0145.

We use the estimates of this study to perform a sample-size analysis we would have conducted
before a new study. In our analysis, we assume equal-group allocation.
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. power twomeans 10.125 12.35, power(0.8) sd1(1.447) sd2(0.9618)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.2250

m1 = 10.1250
m2 = 12.3500

sd1 = 1.4470
sd2 = 0.9618

Estimated sample sizes:

N = 14
N per group = 7

We find that the sample size required to detect a difference of 2.225 (12.35− 10.125 = 2.225) given
the control-group standard deviation of 1.447 and the experimental-group standard deviation of 0.9618
using a 5%-level two-sided test is 7 in each group.

Stored results
power twomeans stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1

r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(m1) control-group mean
r(m2) experimental-group mean
r(diff) difference between the experimental- and control-group means
r(sd) common standard deviation of the control and experimental groups
r(sd1) standard deviation of the control group
r(sd2) standard deviation of the experimental group
r(knownsds) 1 if option knownsds is specified; 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for sample sizes or experimental-group mean
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise
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Macros
r(type) test
r(method) twomeans
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results

Methods and formulas
Consider two independent samples with n1 subjects in the control group and n2 subjects in the

experimental group. Let x11, . . . , x1n1 be a random sample of size n1 from a normal population with
mean µ1 and variance σ2

1 . Let x21, . . . , x2n2 be a random sample of size n2 from a normal population
with mean µ2 and variance σ2

2 . Let effect size δ be the difference between the experimental-group
mean and the control-group mean, δ = µ2 − µ1. The sample means and variances for the two
independent samples are

x1 =
1

n1

n1∑
i=1

x1i and s2
1 =

1

n1 − 1

n1∑
i=1

(x1i − x1)2

x2 =
1

n2

n2∑
i=1

x2i and s2
2 =

1

n2 − 1

n2∑
i=1

(x2i − x2)2

where xj and s2
j are the respective sample means and sample variances of the two samples.

A two-sample means test involves testing the null hypothesis H0: µ2 = µ1 versus the two-sided
alternative hypothesis Ha : µ2 6= µ1, the upper one-sided alternative Ha : µ2 > µ1, or the lower
one-sided alternative Ha: µ2 < µ1.

The two-sample means test can be performed under four different assumptions: 1) population
variances are known and not equal; 2) population variances are known and equal; 3) population
variances are unknown and not equal; and 4) population variances are unknown and equal.

Let σD denote the standard deviation of the difference between the two sample means. The test
statistic of the form

TS =
(x2 − x1)− (µ2 − µ1)

σD
(1)

is used in each of the four cases described above. Each case, however, determines the functional form
of σD and the sampling distribution of the test statistic (1) under the null hypothesis.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and power can be viewed as
a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS] unbalanced designs for details.

The following formulas are based on Armitage, Berry, and Matthews (2002); Chow, Shao, and
Wang (2008); and Dixon and Massey (1983).
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Known standard deviations
Below we present formulas for the computations that assume unequal standard deviations. When

standard deviations are equal, the corresponding formulas are special cases of the formulas below
with σ1 = σ2 = σ.

When the standard deviations of the control and the experimental groups are known, the test
statistic in (1) is a z test statistic

z =
(x2 − x1)− (µ2 − µ1)√

σ2
1/n1 + σ2

2/n2

with σD =
√
σ2

1/n1 + σ2
2/n2. The sampling distribution of this test statistic under the null hypothesis

is standard normal. The corresponding test is referred to as a z test.

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of a standard normal distribution.

The power π = 1− β is computed using

π =


Φ
(

δ
σD
− z1−α

)
for an upper one-sided test

Φ
(
− δ
σD
− z1−α

)
for a lower one-sided test

Φ
(

δ
σD
− z1−α/2

)
+ Φ

(
− δ
σD
− z1−α/2

)
for a two-sided test

(2)

where Φ(·) is the cdf of a standard normal distribution.

For a one-sided test, the control-group sample size n1 is computed as follows:

n1 =

(
z1−α − zβ
µ2 − µ1

)2(
σ2

1 +
σ2

2

R

)
(3)

For a one-sided test, if one of the group sizes is known, the other one is computed using the
following formula. For example, to compute n1 given n2, we use the following formula:

n1 =
σ2

1(
µ2−µ1

z1−α−zβ

)2

− σ2
2

n2

(4)

For a two-sided test, sample sizes are computed by iteratively solving the two-sided power equation
in (2). The default initial values for the iterative procedure are calculated from the respective equations
(3) and (4), with α replaced with α/2.

The absolute value of the effect size for a one-sided test is obtained by inverting the corresponding
one-sided power equation in (2):

|δ| = σD(z1−α − zβ)

Note that the magnitude of the effect size is the same regardless of the direction of the test.

The experimental-group mean for a one-sided test is then computed as

µ2 =

{
µ1 + (z1−α − zβ)

√
σ2

1/n1 + σ2
2/n2 when µ2 > µ1

µ1 − (z1−α − zβ)
√
σ2

1/n1 + σ2
2/n2 when µ2 < µ1
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For a two-sided test, the experimental-group mean is computed by iteratively solving the two-sided
power equation in (2) for µ2. The default initial value is obtained from the corresponding one-sided
computation with α/2.

Unknown standard deviations
When the standard deviations of the control group and the experimental group are unknown, the

test statistic in (1) is a t test statistic

t =
(x2 − x1)− (µ2 − µ1)

sD

where sD is the estimated standard deviation of the sample mean difference. The sampling distribution
of this test statistic under the null hypothesis is (approximately) a Student’s t distribution with ν
degrees of freedom. Parameters ν and sD are defined below, separately for the case of equal and
unequal standard deviations.

Let tν,α denote the αth quantile of a Student’s t distribution with ν degrees of freedom. Under the
alternative hypothesis, the test statistic follows a noncentral Student’s t distribution with ν degrees
of freedom and noncentrality parameter λ.

The power is computed from the following equations:

π =


1− Tν,λ (tν,1−α) for an upper one-sided test
Tν,λ (−tν,1−α) for a lower one-sided test
1− Tν,λ

(
tν,1−α/2

)
+ Tν,λ

(
−tν,1−α/2

)
for a two-sided test

(5)

In the equations above, λ = |µ2 − µ1|/sD.

Sample sizes and the experimental-group mean are obtained by iteratively solving the nonlinear
equation (5) for n1, n2, and µ2, respectively. For sample-size and effect-size computations, the default
initial values for the iterative procedure are calculated using the corresponding formulas assuming
known standard deviations from the previous subsection.

Unequal standard deviations

In the case of unequal standard deviations,

sD =
√
s2

1/n1 + s2
2/n2

and the degrees of freedom ν of the test statistic is obtained by Satterthwaite’s formula:

ν =

(
s21
n1

+
s22
n2

)2

(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

The sampling distribution of the test statistic under the null hypothesis is an approximate Student’s
t distribution. We refer to the corresponding test as Satterthwaite’s t test.
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Equal standard deviations

In the case of equal standard deviations,

sD = sp
√

1/n1 + 1/n2

where sp =
{∑n1

i=1(x1i − x1)2 +
∑n2

i=1(x2i − x2)2
}
/(n1 +n2− 2) is the pooled-sample standard

deviation.

The degrees of freedom ν is

ν = n1 + n2 − 2

The sampling distribution of the test statistic under the null hypothesis is exactly a Student’s t
distribution. We refer to the corresponding test as a two-sample t test.
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Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power oneway — Power analysis for one-way analysis of variance

[PSS] power twoway — Power analysis for two-way analysis of variance

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[R] ttest — t tests (mean-comparison tests)
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power pairedmeans — Power analysis for a two-sample paired-means test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power pairedmeans ma1 ma2 , corrspec
[
power(numlist) options

]

Compute power

power pairedmeans ma1 ma2 , corrspec n(numlist)
[

options
]

Compute effect size and target mean difference

power pairedmeans
[
ma1

]
, corrspec n(numlist) power(numlist)

[
options

]

where corrspec is one of

sddiff()

corr()
[
sd()

]
corr()

[
sd1() sd2()

]
ma1 is the alternative pretreatment mean or the pretreatment mean under the alternative hypothesis,

and ma2 is the alternative posttreatment mean or the value of the posttreatment mean under the
alternative hypothesis. ma1 and ma2 may each be specified either as one number or as a list of
values in parentheses (see [U] 11.1.8 numlist).

109
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗nulldiff(numlist) null difference, the difference between the posttreatment mean

and the pretreatment mean under the null hypothesis;
default is nulldiff(0)

∗altdiff(numlist) alternative difference da = ma2 −ma1, the difference between
the posttreatment mean and the pretreatment mean under the
alternative hypothesis

∗sddiff(numlist) standard deviation σd of the differences; may not be combined
with corr()

∗corr(numlist) correlation between paired observations; required unless
sddiff() is specified

∗sd(numlist) common standard deviation; default is sd(1) and
requires corr()

∗sd1(numlist) standard deviation of the pretreatment group; requires corr()
∗sd2(numlist) standard deviation of the posttreatment group; requires corr()

knownsd request computation assuming a known standard deviation σd;
default is to assume an unknown standard deviation

∗fpc(numlist) finite population correction (FPC) as a sampling rate or
population size

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph
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Iteration

init(#) initial value for sample size or mean difference; default is to
use normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
d0 null mean difference d0

da alternative mean difference da
ma1 alternative pretreatment mean µa1

ma2 alternative posttreatment mean µa2

sd d standard deviation of the differences σd
sd common standard deviation σ
sd1 standard deviation of the pretreatment group σ1

sd2 standard deviation of the posttreatment group σ2

corr correlation between paired observations ρ
fpc FPC as a population size Npop

FPC as a sampling rate γ
target target parameter; synonym for da
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns ma1, ma2, sd, sd1, sd2, corr, and fpc are shown in the default table if specified.

Menu
Statistics > Power and sample size
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Description
power pairedmeans computes sample size, power, or target mean difference for a two-sample

paired-means test. By default, it computes sample size for given power and the values of the null
and alternative mean differences. Alternatively, it can compute power for given sample size and the
values of the null and alternative mean differences or the target mean difference for given sample
size, power, and the null mean difference. Also see [PSS] power for a general introduction to the
power command using hypothesis tests.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power. The nfractional option is
allowed only for sample-size determination.

nulldiff(numlist) specifies the difference between the posttreatment mean and the pretreatment
mean under the null hypothesis. The default is nulldiff(0), which means that the pretreatment
mean equals the posttreatment mean under the null hypothesis.

altdiff(numlist) specifies the alternative difference da = ma2 −ma1, the difference between the
posttreatment mean and the pretreatment mean under the alternative hypothesis. This option is the
alternative to specifying the alternative means ma1 and ma2. If ma1 is specified in combination
with altdiff(#), then ma2 = # +ma1.

sddiff(numlist) specifies the standard deviation σd of the differences. Either sddiff() or corr()
must be specified.

corr(numlist) specifies the correlation between paired, pretreatment and posttreatment, observations.
This option along with sd1() and sd2() or sd() is used to compute the standard deviation of
the differences unless that standard deviation is supplied directly in the sddiff() option. Either
corr() or sddiff() must be specified.

sd(numlist) specifies the common standard deviation of the pretreatment and posttreatment groups.
Specifying sd(#) implies that both sd1() and sd2() are equal to #. Options corr() and sd()
are used to compute the standard deviation of the differences unless that standard deviation is
supplied directly with the sddiff() option. The default is sd(1).

sd1(numlist) specifies the standard deviation of the pretreatment group. Options corr(), sd1(),
and sd2() are used to compute the standard deviation of the differences unless that standard
deviation is supplied directly with the sddiff() option.

sd2(numlist) specifies the standard deviation of the posttreatment group. Options corr(), sd1(),
and sd2() are used to compute the standard deviation of the differences unless that standard
deviation is supplied directly with the sddiff() option.

knownsd requests that the standard deviation of the differences σd be treated as known in the
computations. By default, the standard deviation is treated as unknown, and the computations are
based on a paired t test, which uses a Student’s t distribution as a sampling distribution of the
test statistic. If knownsd is specified, the computation is based on a paired z test, which uses a
normal distribution as the sampling distribution of the test statistic.

fpc(numlist) requests that a finite population correction be used in the computation. If fpc() has
values between 0 and 1, it is interpreted as a sampling rate, n/N , where N is the total number of
units in the population. If fpc() has values greater than n, it is interpreted as a population size.
It is an error for fpc() to have values between 1 and n or to have a mixture of sampling rates
and population sizes.
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direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the mean difference for the effect-size determination. The default is to use a closed-form
normal approximation to compute an initial value of the sample size or mean difference.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power pairedmeans but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power pairedmeans
Computing sample size
Computing power
Computing effect size and target mean difference
Testing a hypothesis about two correlated means

This entry describes the power pairedmeans command and the methodology for power and
sample-size analysis for a two-sample paired-means test. See [PSS] intro for a general introduction to
power and sample-size analysis and [PSS] power for a general introduction to the power command
using hypothesis tests.

Introduction
The analysis of paired means is commonly used in settings such as repeated-measures designs with

before and after measurements on the same individual or cross-sectional studies of paired measurements
from twins. For example, a company might initiate a voluntary exercise program and would like to
test that the average weight loss of participants from beginning to six months is greater than zero. Or
a school district might design an intensive remedial program for students with low math scores and
would like to know if the students’ math scores improve from the pretest to the posttest. For paired
data, the inference is made on the mean difference accounting for the dependence between the two
groups.

This entry describes power and sample-size analysis for the inference about the population mean
difference performed using hypothesis testing. Specifically, we consider the null hypothesisH0: d = d0

versus the two-sided alternative hypothesis Ha: d 6= d0, the upper one-sided alternative Ha: d > d0,
or the lower one-sided alternative Ha: d < d0. The parameter d is the mean difference between the
posttreatment mean µ2 and pretreatment mean µ1.
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A two-sample paired-means test assumes that the two correlated samples are drawn from two normal
populations or that the sample size is large. When the population variances are known, the sampling
distribution of the test statistic under the null hypothesis is standard normal, and the corresponding
test is known as a paired z test. If the population variances are unknown, the sampling distribution
of the test statistic under the null hypothesis is Student’s t, and the corresponding test is known as a
paired t test.

The random sample is typically drawn from an infinite population. When the sample is drawn
from a population of a fixed size, sampling variability must be adjusted for a finite population size.

The power pairedmeans command provides power and sample-size analysis for the comparison
of two correlated means using a paired t test or a paired z test.

Using power pairedmeans

power pairedmeans computes sample size, power, or target mean difference for a two-sample
paired-means test. All computations are performed for a two-sided hypothesis test where, by default,
the significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test.

By default, all computations are based on a paired t test, which assumes an unknown standard
deviation of the differences. For a known standard deviation, you can specify the knownsd option to
request a paired z test.

For all computations, you must specify either the standard deviation of the differences in the
sddiff() option or the correlation between the paired observations in the corr() option. If you
specify the corr() option, then individual standard deviations of the pretreatment and posttreatment
groups may also be specified in the respective sd1() and sd2() options. By default, their values
are set to 1. When the two standard deviations are equal, you may specify the common standard
deviation in the sd() option instead of specifying them individually.

To compute sample size, you must specify the pretreatment and posttreatment means under the
alternative hypothesis, ma1 and ma2, respectively, and, optionally, the power of the test in the
power() option. The default power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the pretreatment and
posttreatment means under the alternative hypothesis, ma1 and ma2, respectively.

Instead of the alternative means ma1 and ma2, you can specify the difference ma2−ma1 between
the alternative posttreatment mean and the alternative pretreatment mean in the altdiff() option
when computing sample size or power.

By default, the difference between the posttreatment mean and the pretreatment mean under the
null hypothesis is set to zero. You may specify other values in the nulldiff() option.

To compute effect size, the standardized difference between the alternative and null mean differences,
and target mean difference, you must specify the sample size in the n() option, the power in the
power() option, and, optionally, the direction of the effect. The direction is upper by default,
direction(upper), which means that the target mean difference is assumed to be larger than the
specified null value. This is also equivalent to the assumption of a positive effect size. You can change
the direction to be lower, which means that the target mean difference is assumed to be smaller than
the specified null value, by specifying the direction(lower) option. This is equivalent to assuming
a negative effect size.

By default, the computed sample size is rounded up. You can specify the nfractional option to
see the corresponding fractional sample size; see Fractional sample sizes in [PSS] unbalanced designs
for an example. The nfractional option is allowed only for sample-size determination.
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Some of power pairedmeans’s computations require iteration. For example, when the standard
deviation of the differences is unknown, computations use a noncentral Student’s t distribution. Its
degrees of freedom depends on the sample size, and the noncentrality parameter depends on the
sample size and effect size. Therefore, the sample-size and effect-size determinations require iteration.
The default initial values of the estimated parameters are obtained by using a closed-form normal
approximation. They may be changed by specifying the init() option. See [PSS] power for the
descriptions of other options that control the iteration procedure.

All computations assume an infinite population. For a finite population, use the fpc() option
to specify a sampling rate or a population size. When this option is specified, a finite population
correction is applied to the standard deviation of the differences. The correction factor depends on
the sample size; therefore, computing sample size in this case requires iteration. The initial value for
sample-size determination in this case is based on the corresponding normal approximation with a
finite population size.

In the following sections, we describe the use of power pairedmeans accompanied by examples
for computing sample size, power, and target mean difference.

Computing sample size

To compute sample size, you must specify the pretreatment and posttreatment means under the
alternative hypothesis, ma1 and ma2, respectively, or the difference between them in altdiff()
and, optionally, the power of the test in the power() option. A default power of 0.8 is assumed if
power() is not specified.

Example 1: Sample size for a two-sample paired-means test

Consider a study of low birthweight (LBW) infants as in Howell (2002, 186). The variable of
interest is the Bayley mental development index (MDI) of infants when they are 6-, 12-, and 24-months
old. Previous research suggested that the MDI scores for LBW children might decline significantly
between 6 and 24 months of age. Suppose we would like to conduct a similar study where the null
hypothesis of interest is no difference between 6-month and 24-month MDI scores, H0: d = 0, and
the two-sided alternative is Ha: d 6= 0, implying the existence of a difference.

In this example, we use the estimates from Howell (2002, 193) as our study parameters. The mean
MDI score of a 6-month group was estimated to be 111. We want to obtain the minimum sample size
that is required to detect the mean MDI score of 106.71 in a 24-month group with a power of 80%
using a 5%-level two-sided test. The standard deviation of the differences was previously estimated
to be 16.04. To compute the sample size, we specify the alternative means after the command name
and standard deviation of the differences in sddiff().
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. power pairedmeans 111 106.71, sddiff(16.04)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
power = 0.8000 ma2 = 106.7100
delta = -0.2675

d0 = 0.0000
da = -4.2900

sd_d = 16.0400

Estimated sample size:

N = 112

As we mentioned in the previous section, sample-size determination requires iteration in the case of
an unknown standard deviation. By default, power pairedmeans suppresses the iteration log, which
may be displayed by specifying the log option.

A sample of 112 subjects is required for the test to detect the resulting difference of −4.29 with
a power of 80%.

Study parameters are divided into two columns. The parameters that are always displayed are
listed in the first column, and the parameters that are displayed only if they are specified are listed
in the second column.

In this example, we specified optional command arguments containing the alternative pretreatment
mean ma1 and the alternative posttreatment mean ma2. Because these arguments are optional, they
are listed in the second column.

Example 2: Specifying mean differences

Instead of the individual alternative means, we can specify their difference, 106.71−111 = −4.29,
in the altdiff() option.

. power pairedmeans, altdiff(-4.29) sddiff(16.04)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.2675

d0 = 0.0000
da = -4.2900

sd_d = 16.0400

Estimated sample size:

N = 112

We obtain the same results as in example 1.
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Example 3: Specifying individual standard deviations

Howell (2002) also reported the group-specific standard deviations: 13.85 in the 6-month group
and 12.95 in the 24-month group. Using the values of individual standard deviations and the standard
deviation of the differences from the previous example, we obtain the correlation between the 6-month
group and the 24-month group to be (13.852 + 12.952 − 16.042)/(2× 13.85× 12.95) = 0.285. To
compute the sample size, we specify the group-specific standard deviations in sd1() and sd2() and
the correlation in corr().

. power pairedmeans 111 106.71, corr(0.285) sd1(13.85) sd2(12.95)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
power = 0.8000 ma2 = 106.7100
delta = -0.2675 sd1 = 13.8500

d0 = 0.0000 sd2 = 12.9500
da = -4.2900 corr = 0.2850

sd_d = 16.0403

Estimated sample size:

N = 112

We obtain the same sample size as in example 1.

The correlation and standard deviations are reported in the second column.

Example 4: Specifying common standard deviation

If standard deviations in both groups are equal, we may specify the common standard deviation
in option sd(). As a demonstration, we use the average of the individual standard deviations
(13.85 + 12.95)/2 = 13.4 as our common standard deviation.

. power pairedmeans 111 106.71, corr(0.285) sd(13.4)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test assuming sd1 = sd2 = sd
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
power = 0.8000 ma2 = 106.7100
delta = -0.2677 sd = 13.4000

d0 = 0.0000 corr = 0.2850
da = -4.2900

sd_d = 16.0241

Estimated sample size:

N = 112

The resulting standard deviation of the differences of 16.0241 is close to our earlier estimate of 16.04,
so the computed sample size is the same as the sample size in example 1.
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Example 5: Nonzero null

In all the previous examples, we assumed that the difference between the 6-month and 24-
month means is zero under the null hypothesis. For a nonzero null hypothesis, you can specify the
corresponding null value in the nulldiff() option.

Continuing with example 2, we will suppose that we are testing the nonzero null hypothesis of
H0: d = d0 = −1. We compute the sample size as follows:

. power pairedmeans, nulldiff(-1) altdiff(-4.29) sddiff(16.04)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.2051

d0 = -1.0000
da = -4.2900

sd_d = 16.0400

Estimated sample size:

N = 189

Compared with example 2, the absolute value of the effect size delta decreases to 0.2051, and thus
a larger sample of 189 subjects is required to detect this smaller effect.

Computing power

To compute power, you must specify the sample size in the n() option and the pretreatment and
posttreatment means under the alternative hypothesis, ma1 and ma2, respectively, or the difference
between them in the altdiff() option.

Example 6: Power of a two-sample paired-means test

Continuing with example 1, we will suppose that because of limited resources, we anticipate to
obtain a sample of only 100 subjects. To compute power, we specify the sample size in the n()
option:

. power pairedmeans 111 106.71, n(100) sddiff(16.04)

Estimated power for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
N = 100 ma2 = 106.7100

delta = -0.2675
d0 = 0.0000
da = -4.2900

sd_d = 16.0400

Estimated power:

power = 0.7545

Compared with example 1, the power decreases to 75.45%.
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Example 7: Known standard deviation

In the case of a known standard deviation σd, you can specify the knownsd option to request
a paired z test. Using the same study parameters as in example 6, we can compute the power as
follows:

. power pairedmeans 111 106.71, n(100) sddiff(16.04) knownsd

Estimated power for a two-sample paired-means test
Paired z test
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
N = 100 ma2 = 106.7100

delta = -0.2675
d0 = 0.0000
da = -4.2900

sd_d = 16.0400

Estimated power:

power = 0.7626

The power of 76.26% of a paired z test is close to the power of 75.45% of a paired t test obtained
in example 6.

Example 8: Multiple values of study parameters

Continuing with example 3, we will suppose that we would like to assess the effect of varying
correlation on the power of our study. The standard deviation of the MDI scores for infants aged 6
months is 13.85 and that for infants aged 24 months is 12.95, which are obtained from Howell (2002,
193). We believe the data on pairs to be positively correlated because we expect a 6-month-old infant
with a high score to have a high score at 24 months of age as well. We specify a range of correlations
between 0.1 and 0.9 with the step size of 0.1 in the corr() option:

. power pairedmeans 111 106.71, n(100) sd1(13.85) sd2(12.95) corr(0.1(0.1)0.9)
> table(alpha N power corr sd_d delta)

Estimated power for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0

alpha N power corr sd_d delta

.05 100 .656 .1 17.99 -.2385

.05 100 .7069 .2 16.96 -.2529

.05 100 .7632 .3 15.87 -.2703

.05 100 .8239 .4 14.7 -.2919

.05 100 .8859 .5 13.42 -.3196

.05 100 .9425 .6 12.01 -.3571

.05 100 .983 .7 10.41 -.412

.05 100 .9988 .8 8.518 -.5037

.05 100 1 .9 6.057 -.7083

As the correlation increases, the power also increases. This is because the standard deviation of the
differences is negatively related to correlation when the correlation is positive. As the correlation
increases, the standard deviation of the differences decreases, thus resulting in higher power. Likewise,
the opposite is true when the correlation is negative.
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For multiple values of parameters, the results are automatically displayed in a table. In the above,
we use the table() option to build a custom table. For more examples of tables, see [PSS] power,
table. If you wish to produce a power plot, see [PSS] power, graph.

Computing effect size and target mean difference

Effect size δ for a two-sample paired-means test is defined as a standardized difference between
the alternative mean difference da and the null mean difference d0, δ = (da − d0)/σd.

Sometimes, we may be interested in determining the smallest effect and the corresponding mean
difference that yield a statistically significant result for prespecified sample size and power. In this
case, power, sample size, and the alternative pretreatment mean must be specified. By default, the null
mean difference is set to 0. In addition, you must also decide on the direction of the effect: upper,
meaning da > d0, or lower, meaning da < d0. The direction may be specified in the direction()
option; direction(upper) is the default.

Example 9: Minimum detectable value of the effect size

Continuing with example 6, we may be interested to find the minimum effect size with a power
of 80% given a sample of 100 subjects. To compute the smallest effect size and the corresponding
target mean difference, we specify the sample size n(100), power power(0.8), and the standard
deviation of the differences sddiff(16.04):

. power pairedmeans 111, n(100) power(0.8) sddiff(16.04)

Performing iteration ...

Estimated target parameters for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0; da > d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
power = 0.8000

N = 100
d0 = 0.0000

sd_d = 16.0400

Estimated effect size and target parameters:

delta = 0.2829
da = 4.5379

ma2 = 115.5379

The smallest detectable value of the effect size is 0.28, which corresponds to the alternative mean
difference of 4.54. Compared with example 1, for the same power of 80%, the target mean difference
increased to 4.54 when the sample size was reduced to 100 subjects.

Testing a hypothesis about two correlated means

In this section, we demonstrate the use of the ttest command for testing hypotheses about paired
means. Suppose we wish to test the hypothesis that the means of the paired samples are the same.
We can use the ttest command to do this. We demonstrate the use of this command using the
fictional bpwide dataset; see [R] ttest for details.
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Example 10: Testing means from paired data

Suppose that we have a sample of 120 patients. We are interested in investigating whether a certain
drug induces a change in the systolic blood pressure. We record blood pressures for each patient
before and after the drug is administered. In this case, each patient serves as his or her own control.
We wish to test whether the mean difference between the posttreatment and pretreatment systolic
blood pressures are significantly different from zero.

. use http://www.stata-press.com/data/r13/bpwide
(fictional blood-pressure data)

. ttest bp_before == bp_after

Paired t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

bp_bef~e 120 156.45 1.039746 11.38985 154.3912 158.5088
bp_after 120 151.3583 1.294234 14.17762 148.7956 153.921

diff 120 5.091667 1.525736 16.7136 2.070557 8.112776

mean(diff) = mean(bp_before - bp_after) t = 3.3372
Ho: mean(diff) = 0 degrees of freedom = 119

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.9994 Pr(|T| > |t|) = 0.0011 Pr(T > t) = 0.0006

We find statistical evidence to reject the null hypothesis of H0: d = 0 versus the two-sided alternative
Ha: d 6= 0 at the 5% significance level; the p-value = 0.0011.

We use the estimates of this study to perform a sample-size analysis we would have conducted
before the study.

. power pairedmeans, altdiff(5.09) sddiff(16.71)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.3046

d0 = 0.0000
da = 5.0900

sd_d = 16.7100

Estimated sample size:

N = 87

We find that the sample size required to detect a mean difference of 5.09 for given standard deviation
of the differences of 16.71 with 80% power using a 5%-level two-sided test is 87.
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Stored results
power pairedmeans stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(d0) difference between the posttreatment and pretreatment means under the null hypothesis
r(da) difference between the posttreatment and pretreatment means under the alternative hypothesis
r(ma1) pretreatment mean under the alternative hypothesis
r(ma2) posttreatment mean under the alternative hypothesis
r(sd d) standard deviation of the differences
r(corr) correlation between paired observations
r(sd1) standard deviation of the pretreatment group
r(sd2) standard deviation of the posttreatment group
r(sd) common standard deviation
r(knownsd) 1 if option knownsd is specified; 0 otherwise
r(fpc) finite population correction
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for the sample size or target mean difference
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) pairedmeans
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results

Methods and formulas
Consider a sequence of n paired observations denoted by Xij for i = 1, . . . , n and groups j = 1, 2.

Individual observation corresponds to the pair (Xi1, Xi2), and inference is made on the differences
within the pairs. Let d = µ2 − µ1 denote the mean difference, where µj is the population mean of
group j, and Di = Xi2 − Xi1 denote the difference between individual observations. Let d0 and
da denote the null and alternative values of the mean difference d. Let d =

∑n
i=1Di/n denote the

sample mean difference.

Unlike a two-sample means test where we consider two independent samples, a paired-means
test allows the two groups to be dependent. As a result, the standard deviation of the differences is
given by σd =

√
σ2

1 + σ2
2 − 2ρσ1σ2, where σ1 and σ2 are the pretreatment and posttreatment group

standard deviations, respectively, and ρ is the correlation between the paired measurements.
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Power, sample-size, and effect-size determination for a paired-means test is analogous to a one-
sample mean test where the sample of differences Di’s is treated as a single sample. See Methods
and formulas in [PSS] power onemean.

Also see Armitage, Berry, and Matthews (2002); Dixon and Massey (1983); and Chow, Shao, and
Wang (2008) for more details.
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Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power repeated — Power analysis for repeated-measures analysis of variance

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[R] ttest — t tests (mean-comparison tests)
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power oneproportion — Power analysis for a one-sample proportion test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power oneproportion p0 pa
[
, power(numlist) options

]

Compute power

power oneproportion p0 pa , n(numlist)
[

options
]

Compute effect size and target proportion

power oneproportion p0 , n(numlist) power(numlist)
[

options
]

where p0 is the null (hypothesized) proportion or the value of the proportion under the null hypothesis,
and pa is the alternative (target) proportion or the value of the proportion under the alternative
hypothesis. p0 and pa may each be specified either as one number or as a list of values in
parentheses (see [U] 11.1.8 numlist).

124
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options Description

test(test) specify the type of test; default is test(score)

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗diff(numlist) difference between the alternative proportion and the null

proportion, pa − p0; specify instead of the
alternative proportion pa

critvalues show critical values for the binomial test
continuity apply continuity correction to the normal approximation

of the discrete distribution
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for the sample size or proportion
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.
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test Description

score score test; the default
wald Wald test
binomial binomial test

test() does not appear in the dialog box. The dialog box selected is determined by the test() specification.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
alpha a actual (observed) significance level αa
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
p0 null proportion p0

pa alternative proportion pa
diff difference between the alternative and null pa − p0

proportions
C l lower critical value Cl
C u upper critical value Cu
target target parameter; synonym for pa
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column diff is shown in the default table if specified.
Columns alpha a, C l, and C u are available when the test(binomial) option is specified.
Columns C l and C u are shown in the default table, if the critvalues option is specified.

Menu
Statistics > Power and sample size

Description
power oneproportion computes sample size, power, or target proportion for a one-sample

proportion test. By default, it computes sample size for given power and the values of the proportion
parameters under the null and alternative hypotheses. Alternatively, it can compute power for given
sample size and values of the null and alternative proportions or the target proportion for given sample
size, power, and the null proportion. Also see [PSS] power for a general introduction to the power
command using hypothesis tests.
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Options
test(test) specifies the type of the test for power and sample-size computations. test is one of

score, wald, or binomial.

score requests computations for the score test. This is the default test.

wald requests computations for the Wald test. This corresponds to computations using the value
of the alternative proportion instead of the default null proportion in the formula for the standard
error of the estimator of the proportion.

binomial requests computations for the binomial test. The computation using the binomial
distribution is not available for sample-size and effect-size determinations; see example 7 for
details. Iteration options are not allowed with this test.

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power. The nfractional option is
allowed only for sample-size determination.

diff(numlist) specifies the difference between the alternative proportion and the null proportion,
pa−p0. You can specify either the alternative proportion pa as a command argument or the difference
between the two proportions in diff(). If you specify diff(#), the alternative proportion is
computed as pa = p0 + #. This option is not allowed with the effect-size determination.

critvalues requests that the critical values be reported when the computation is based on the
binomial distribution.

continuity requests that continuity correction be applied to the normal approximation of the discrete
distribution. continuity cannot be specified with test(binomial).

direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the proportion for the effect-size determination.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power oneproportion but is not shown in the dialog box:

notitle; see [PSS] power.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power oneproportion
Computing sample size
Computing power
Computing effect size and target proportion
Performing hypothesis tests on proportion

This entry describes the power oneproportion command and the methodology for power and
sample-size analysis for a one-sample proportion test. See [PSS] intro for a general introduction to
power and sample-size analysis and [PSS] power for a general introduction to the power command
using hypothesis tests.

Introduction

There are many examples of studies where a researcher would like to compare an observed
proportion with a hypothesized proportion. A political campaign might like to know if the proportion
of a country’s population that supports a new legislative initiative is greater than 50%. A veterinary
drug manufacturer might test a new topical treatment to kill fleas on dogs. It would like to know the
sample size necessary to demonstrate that the treatment is effective in ridding at least 80% of the test
dogs of fleas. The Nevada Gaming Control Board might test a Las Vegas casino’s slot machines to
verify that it meets the statutory minimum payout percentage of 75%. The board would like to know
the number of “pulls” necessary to reject the one-sided null hypothesis that the payout percentage is
less than 75%.

The analysis of proportions is carried out in experiments or observational studies where the response
variable is binary. Each observation is an outcome from a Bernoulli trial with a fixed probability p
of observing an event of interest in a population. Hypothesis testing of binomial outcomes relies on
a set of assumptions: 1) Bernoulli outcome is observed a fixed number of times; 2) the probability p
is fixed across all trials; and 3) individual trials are independent.

This entry describes power and sample-size analysis for the inference about the population proportion
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: p = p0 versus
the two-sided alternative hypothesis Ha: p 6= p0, the upper one-sided alternative Ha: p > p0, or the
lower one-sided alternative Ha: p < p0.

Two common hypothesis tests for a one-sample proportion are the small-sample binomial test and
the asymptotic (large-sample) normal test. The binomial test is based on the binomial distribution,
the exact sampling distribution, of the test statistic and is commonly known as an exact binomial
test. The asymptotic normal test is based on the large-sample normal approximation of the sampling
distribution of the test statistic and is often referred to as a z test.

power oneproportion provides power and sample-size analysis for both the binomial and a
large-sample z test of a one-sample proportion.

Using power oneproportion

power oneproportion computes sample size, power, or target proportion for a one-sample
proportion test. All computations are performed for a two-sided hypothesis test where, by default, the
significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test.
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power oneproportion performs power analysis for three different tests, which can be specified
within the test() option. The default is a large-sample score test (test(score)), which approximates
the sampling distribution of the test statistic by the standard normal distribution. You may instead
request computations based on a large-sample Wald test by specifying the test(wald) option.
For power determination, you can also request the small-sample binomial test by specifying the
test(binomial) option. The binomial test is not available for the sample-size and effect-size
determinations; see example 7 for details.

To compute sample size, you must specify the proportions under the null and alternative hypotheses,
p0 and pa, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the proportions under
the null and alternative hypotheses, p0 and pa, respectively.

Instead of the alternative proportion pa, you may specify the difference pa − p0 between the
alternative proportion and the null proportion in the diff() option when computing sample size or
power.

To compute effect size, the difference between the alternative and null proportions, and target
proportion, you must specify the sample size in the n() option, the power in the power() option,
the null proportion p0, and, optionally, the direction of the effect. The direction is upper by default,
direction(upper), which means that the target proportion is assumed to be larger than the specified
null value. You can change the direction to lower, which means that the target proportion is assumed
to be smaller than the specified null value, by specifying the direction(lower) option.

By default, the computed sample size is rounded up. You can specify the nfractional option to
see the corresponding fractional sample size; see Fractional sample sizes in [PSS] unbalanced designs
for an example. The nfractional option is allowed only for sample-size determination.

Some of power oneproportion’s computations require iteration. For example, for a large-sample
z test, sample size for a two-sided test is obtained by iteratively solving a nonlinear power equation.
The default initial value for the sample size for the iteration procedure is obtained using a closed-form
one-sided formula. If desired, it may be changed by specifying the init() option. See [PSS] power
for the descriptions of other options that control the iteration procedure.

In the following sections, we describe the use of power oneproportion accompanied with
examples for computing sample size, power, and target proportion.

Computing sample size

To compute sample size, you must specify the proportions under the null and alternative hypotheses,
p0 and pa, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-sample proportion test

Consider a study of osteoporosis in postmenopausal women from Chow, Shao, and Wang (2008, 55).
The term “osteoporosis” refers to the decrease in bone mass that is most prevalent in postmenopausal
women. Females diagnosed with osteoporosis have vertebral bone density more than 10% below the
average bone density of women with similar demographic characteristics such as age, height, weight,
and race.

The World Health Organization (WHO) defines osteoporosis as having the bone density value that
is smaller than 2.5 standard deviations below the peak bone mass levels in young women. Suppose
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investigators wish to assess the effect of a new treatment on increasing the bone density for women
diagnosed with osteoporosis. The treatment is deemed successful if a subject’s bone density improves
by more than one standard deviation of her measured bone density.

Suppose that previous studies have reported a response rate of 30% for women with increased
bone density after treatment. Investigators expect the new treatment to generate a higher response
rate of roughly 50%. The goal is to obtain the minimum required sample size to detect an alternative
proportion of 0.5 using the test of H0 : p = 0.3 versus Ha : p 6= 0.3 with 80% power and 5%
significance level. To compute sample size, we specify the null and alternative proportions after the
command name:

. power oneproportion 0.3 0.5

Performing iteration ...

Estimated sample size for a one-sample proportion test
Score z test
Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

p0 = 0.3000
pa = 0.5000

Estimated sample size:

N = 44

We find that at least 44 subjects are needed to detect a change in proportion from 0.3 to 0.5 with
80% power using a 5%-level two-sided test.

Example 2: Specifying the difference between proportions

Instead of the alternative proportion, we can specify the difference of 0.05− 0.03 = 0.2 between
the alternative proportion and the null proportion in the diff() option and obtain the same results:

. power oneproportion 0.3, diff(0.2)

Performing iteration ...

Estimated sample size for a one-sample proportion test
Score z test
Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

p0 = 0.3000
pa = 0.5000

diff = 0.2000

Estimated sample size:

N = 44

The difference between proportions is now also displayed in the output.
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Example 3: Wald test

The default computation is based on a score test and thus uses the null proportion as the estimate
of the true proportion in the formula for the standard error. We can request the computation based
on a Wald test by specifying the test(wald) option. In this case, the alternative proportion will be
used as an estimate of the true proportion in the formula for the standard error.

. power oneproportion 0.3 0.5, test(wald)

Performing iteration ...

Estimated sample size for a one-sample proportion test
Wald z test
Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

p0 = 0.3000
pa = 0.5000

Estimated sample size:

N = 50

We find that the required sample size increases to 50 subjects.

Computing power

To compute power, you must specify the sample size in the n() option and the proportions under
the null and alternative hypotheses, p0 and pa, respectively.

Example 4: Power of a one-sample proportion test

Continuing with example 1, we will suppose that we are designing a new study and anticipate to
obtain a sample of 30 subjects. To compute the power corresponding to this sample size given the
study parameters from example 1, we specify the sample size of 30 in the n() option:

. power oneproportion 0.3 0.5, n(30)

Estimated power for a one-sample proportion test
Score z test
Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
N = 30

delta = 0.2000
p0 = 0.3000
pa = 0.5000

Estimated power:

power = 0.6534

As expected, with a smaller sample size, we achieve a lower power (only 65.34%).
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Example 5: Multiple values of study parameters

To see the effect of sample size on power, we can specify a range of sample sizes in the n()
option.

. power oneproportion 0.3 0.5, n(40(1)50)

Estimated power for a one-sample proportion test
Score z test
Ho: p = p0 versus Ha: p != p0

alpha power N delta p0 pa

.05 .7684 40 .2 .3 .5

.05 .7778 41 .2 .3 .5

.05 .787 42 .2 .3 .5

.05 .7958 43 .2 .3 .5

.05 .8043 44 .2 .3 .5

.05 .8124 45 .2 .3 .5

.05 .8203 46 .2 .3 .5

.05 .8279 47 .2 .3 .5

.05 .8352 48 .2 .3 .5

.05 .8422 49 .2 .3 .5

.05 .849 50 .2 .3 .5

As expected, power is an increasing function of the sample size.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Example 6: Sign test

We can use power oneproportion to perform power and sample-size analysis for a nonparametric
sign test comparing the median of a sample with a reference value. The sign test for comparing a
median is simply a test of a binomial proportion with the reference (null) value of 0.5, H0: p = 0.5.

For example, consider a study similar to the one described in example 1. Suppose we want to test
whether the median bone density exceeds a threshold value in a population of females who received
a certain treatment. This is equivalent to testing whether the proportion p of bone-density values
exceeding the threshold is greater than 0.5, that is, H0: p = 0.5 versus Ha: p > 0.5. Suppose that
from previous studies such proportion was estimated to be 0.7. We anticipate to enroll 30 subjects
and would like to compute the corresponding power of an upper one-sided small-sample binomial
test to detect the change in proportion from 0.5 to 0.7.
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. power oneproportion 0.5 0.7, n(30) test(binomial) onesided

Estimated power for a one-sample proportion test
Binomial test
Ho: p = p0 versus Ha: p > p0

Study parameters:

alpha = 0.0500
N = 30

delta = 0.2000
p0 = 0.5000
pa = 0.7000

Estimated power and alpha:

power = 0.7304
actual alpha = 0.0494

For a sample size of 30 subjects, we obtain a power of 73% to detect the difference of 0.2 between
the alternative and null values. In addition to power, power oneproportion also displays the actual
(observed) significance level, which is 0.0494 in our example and is very close to the specified
significance level of 0.05.

When the sampling distribution of the test statistic is discrete such as for the binomial test, the
specified nominal significance level may not be possible to precisely achieve, because the space
of the observed significance levels is discrete. As such, power oneproportion also displays the
observed significance level given the specified sample size, power, and other study parameters. Also
see example 7.

Example 7: Saw-toothed power function

In example 6, we briefly described one issue arising with power and sample-size analysis for the
binomial test. The observed significance levels are discrete because the binomial sampling distribution
of the test statistic is discrete. Another related issue arising because of the discrete nature of the
sampling distribution is the nonmonotonic relationship between power and sample size—as the sample
size increases, the corresponding power may not necessarily increase. The power function may have
a so-called saw-toothed shape (Chernick and Liu 2002), where it increases initially, then drops, then
increases again, and so on. See figure 1 below for an example.

To demonstrate the issue, we return to example 5 and plot powers for a range of sample size
values between 45 and 60. We specify the graph() option to produce a graph and the table()
option to produce a table; see [PSS] power, graph and [PSS] power, table for more details about the
graphical and tabular outputs from power. Within graph(), we request that the reference line be
plotted on the y axis at a power of 0.8 and that the data points bee labeled with the corresponding
sample sizes. Within table(), we specify the formats() suboption to display only three digits after
the decimal point for the power and alpha a columns. We also specify the critvalues option to
display columns containing critical values in the table.
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. power oneprop 0.3 0.5, n(45(1)60) test(binomial) critvalues
> table(, formats(alpha_a "%7.3f" power "%7.3f"))
> graph(yline(0.8) plotopts(mlabel(N)))

Estimated power for a one-sample proportion test
Binomial test
Ho: p = p0 versus Ha: p != p0

alpha alpha_a power N delta p0 pa C_l C_u

.05 0.034 0.724 45 .2 .3 .5 7 21

.05 0.035 0.769 46 .2 .3 .5 7 21

.05 0.037 0.809 47 .2 .3 .5 7 21

.05 0.026 0.765 48 .2 .3 .5 7 22

.05 0.042 0.804 49 .2 .3 .5 8 22

.05 0.031 0.760 50 .2 .3 .5 8 23

.05 0.031 0.799 51 .2 .3 .5 8 23

.05 0.033 0.834 52 .2 .3 .5 8 23

.05 0.037 0.795 53 .2 .3 .5 9 24

.05 0.037 0.830 54 .2 .3 .5 9 24

.05 0.038 0.860 55 .2 .3 .5 9 24

.05 0.028 0.825 56 .2 .3 .5 9 25

.05 0.043 0.855 57 .2 .3 .5 10 25

.05 0.044 0.881 58 .2 .3 .5 10 25

.05 0.032 0.851 59 .2 .3 .5 10 26

.05 0.033 0.877 60 .2 .3 .5 10 26

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

.7

.75

.8

.85

.9

P
ow

er
 (

1−
β)

45 50 55 60
Sample size (N)

Parameters: α = .05, δ = .2, p0 = .3, pa = .5

Binomial test
H0: p = p0  versus  Ha: p ≠ p0

Estimated power for a one−sample proportion test

Figure 1. Saw-toothed power function

The power is not a monotonic function of the sample size. Also from the table, we can see that all
the observed significance levels are smaller than the specified level of 0.05.

To better understand what is going on, we will walk through the steps of power determination.
First, the critical values are determined as the minimum value Cl and the maximum value Cu between
0 and n that satisfy the following inequalities,

Pr(X ≤ Cl|p = p0) ≤ α/2 and Pr(X ≥ Cu|p = p0) ≤ α/2
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where the number of successes X has a binomial distribution with the total number of trials n and a
probability of a success in a single trial p, X ∼ Bin(n, p). The power is then computed as the sum
of the above two probabilities with p = pa.

For example, let’s compute the power for the first row of the table. The sample size is 45, the lower
critical value is 7, and the upper critical value is 21. We use the probability functions binomial()
and binomialtail() to compute the respective lower- and upper-tailed probabilities of the binomial
distribution.

. di "Lower tail: " binomial(45,7,0.3)
Lower tail: .0208653

. di "Upper tail: " binomialtail(45,21,0.3)
Upper tail: .01352273

. di "Obs. level: " binomial(45,7,0.3) + binomialtail(45,21,0.3)
Obs. level: .03438804

. di "Power: " binomial(45,7,0.5) + binomialtail(45,21,0.5)
Power: .7242594

Each of the tails is less than 0.025 (α/2 = 0.05/2 = 0.025). The observed significance level and
power match the results from the first row of the table.

Now let’s increase the lower critical value by one, Cl = 8, and decrease the upper critical value
by one, Cu = 20:

. di "Lower tail: " binomial(45,8,0.3)
Lower tail: .04711667

. di "Upper tail: " binomialtail(45,20,0.3)
Upper tail: .02834511

Each of the tail probabilities now exceeds 0.025. If we could use values between 7 and 8 and between
20 and 21, we could match the tails exactly to 0.025, and then the monotonicity of the power function
would be preserved. This is impossible for the binomial distribution (or any discrete distribution)
because the number of successes must be integers.

Because of the saw-toothed nature of the power curve, obtaining an optimal sample size becomes
tricky. If we wish to have power of 80%, then from the above table and graph, we see that potential
sample sizes are 47, 49, 52, 54, and so on. One may be tempted to choose the smallest sample
size for which the power is at least 80%. This, however, would not guarantee that the power is at
least 80% for any larger sample size. Instead, Chernick and Liu (2002) suggest selecting the smallest
sample size after which the troughs of the power curve do not go below the desired power. Following
this recommendation in our example, we would pick a sample size of 54, which corresponds to the
observed significance level of 0.037 and power of 0.83.

In the above, we showed the power curve for the sample sizes between 45 and 60. It may be a
good idea to also look at the power plot for larger sample sizes to verify that the power continues to
increase and does not drop below the desired power level.

Computing effect size and target proportion

In an analysis of a one-sample proportion, the effect size δ is often defined as the difference
between the alternative proportion and the null proportion, δ = pa − p0.

Sometimes, we may be interested in determining the smallest effect and the corresponding alternative
or target proportion that yield a statistically significant result for prespecified sample size and power.
In this case, power, sample size, and null proportion must be specified. In addition, you must also
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decide on the direction of the effect: upper, meaning pa > p0, or lower, meaning pa < p0. The
direction may be specified in the direction() option; direction(upper) is the default.

Example 8: Minimum detectable value of the proportion

Continuing with example 4, we may also be interested to find the minimum value of the proportion
that can be detected with a power of 80% given a sample of 30 subjects. To compute this, after the
command name, we specify the null proportion of 0.3, sample size n(30), and power power(0.8):

. power oneproportion 0.3, n(30) power(0.8)

Performing iteration ...

Estimated target proportion for a one-sample proportion test
Score z test
Ho: p = p0 versus Ha: p != p0; pa > p0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 30
p0 = 0.3000

Estimated effect size and target proportion:

delta = 0.2406
pa = 0.5406

The smallest detectable value of the proportion is 0.54.

In the above, we assumed the effect to be in the upper direction, pa > p0. We can obtain the
results in the lower direction by specifying the direction(lower) option.

Performing hypothesis tests on proportion

In this section, we briefly demonstrate how you can test hypotheses about proportions; see [R] prtest
and [R] bitest for details. Suppose we wish to test the hypothesis that the proportion is different from
a reference value on the collected data. We can use the prtest command or the bitest command
to do this.

Example 9: Testing for proportion

We use lbw.dta, which contains data on birthweights of infants from a sample of 189 females.
One of the variables in the dataset is variable ui, which records the presence or absence of uterine
irritability. Although the real objective of this study is different, suppose we wish to test the null
hypothesis that the proportion of women in a sample who experience uterine irritability is equal to
0.20. We can use the prtest command to perform a large-sample test of a single proportion.
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. use http://www.stata-press.com/data/r13/lbw
(Hosmer & Lemeshow data)

. prtest ui==0.2

One-sample test of proportion ui: Number of obs = 189

Variable Mean Std. Err. [95% Conf. Interval]

ui .1481481 .0258404 .0975019 .1987944

p = proportion(ui) z = -1.7821
Ho: p = 0.2

Ha: p < 0.2 Ha: p != 0.2 Ha: p > 0.2
Pr(Z < z) = 0.0374 Pr(|Z| > |z|) = 0.0747 Pr(Z > z) = 0.9626

We do not have statistical evidence to reject the null hypothesis of H0: p = 0.2 versus a two-sided
alternative Ha: p 6= 0.2 at least at the 5% significance level; the p-value = 0.0747 > 0.05.

If our true objective were to study uterine irritability in the population of females, we would have
performed the corresponding power and sample-size analysis before collecting the data. For example,
using the estimates of lbw.dta, we can use power oneproportion to compute the required sample
size for a 0.05-level two-sided large-sample z test to detect the change in proportion from the reference
value of 0.2 to approximately 0.148 with a power of, say, 80%:

. power oneproportion 0.2 0.148

Performing iteration ...

Estimated sample size for a one-sample proportion test
Score z test
Ho: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0520

p0 = 0.2000
pa = 0.1480

Estimated sample size:

N = 434

We find that we need 434 subjects, many more than the current sample of 189, to detect the specified
change in proportions.
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Stored results
power oneproportion stores the following in r():
Scalars

r(alpha) significance level
r(alpha a) actual significance level of the binomial method
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(p0) proportion under the null hypothesis
r(pa) proportion under the alternative hypothesis
r(diff) difference between the alternative and null proportions
r(C l) lower critical value of the binomial distribution
r(C u) upper critical value of the binomial distribution
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for the sample size or proportion
r(continuity) 1 if continuity correction is used; 0 otherwise
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) oneproportion
r(test) score, wald, or binomial
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results

Methods and formulas
Let x1, . . . , xn be a sequence of n independent and identically distributed Bernoulli random

variates. Let xi = 1 denote a success and xi = 0 denote a failure. Let P (xi = 1) = p denote the
probability of a success in the population. Each individual observation is a Bernoulli trial with a
success probability p, which implies that the sum X =

∑n
i=1 xi has a binomial distribution with

mean np and standard deviation
√
np(1− p). Let

p̂ =
1

n

n∑
i=1

xi and se(p̂) =

√
p̂(1− p̂)

n

denote the sample proportion and its standard error, respectively. Let p0 and pa denote the null and
alternative values of the proportion parameter, respectively.

A one-sample proportion test involves testing the null hypothesis H0: p = p0 versus the two-sided
alternative hypothesis Ha: p 6= p0, the upper one-sided alternative Ha: p > p0, or the lower one-sided
alternative Ha: p < p0.
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If the nfractional option is not specified, the computed sample size is rounded up.

The following formulas are based on Chow, Shao, and Wang (2008).

Large-sample normal approximation

For a large sample, the distribution of the sample proportion p̂ may be approximated by the normal
distribution with mean p and variance p(1− p)/n. Two test statistics are considered: the score test
statistic z = (p̂− p0)/

√
p0(1− p0)/n and the Wald test statistic z = (p̂− p0)/

√
p̂(1− p̂)/n. The

score test statistic uses the null value of the proportion to construct the standard error, which leads
to its sampling distribution being closer to the standard normal distribution than if the Wald statistic
were used (Agresti [2013, 13]).

Letα be the significance level, β be the probability of a type II error, and z1−α and zβ be the (1−α)th
and the βth quantiles of the standard normal distribution. Also let η =

√
{p0(1− p0)}/{pa(1− pa)}.

The power π = 1− β of the score z test is computed using

π =



Φ

(√
n(pa−p0)−c√
pa(1−pa)

− z1−αη

)
upper one sided

Φ

(
−
√
n(pa−p0)−c√
pa(1−pa)

− z1−αη

)
lower one sided

Φ

(√
n(pa−p0)−c√
pa(1−pa)

− z1−α/2η

)
+ Φ

(
−
√
n(pa−p0)−c√
pa(1−pa)

− z1−α/2η

)
two sided

(1)

where Φ(·) is the cdf of the standard normal distribution, and c is the normal-approximation continuity
correction: c = 1/(2

√
n) if the continuity option is specified, and c = 0 otherwise.

The power of the Wald z test can be obtained from (1) by replacing the term p0(1 − p0) in η
with pa(1− pa) so that η = 1.

The sample size n for a one-sided test is computed using

n =

{
z1−α

√
p0(1− p0) + z1−β

√
pa(1− pa)

δ

}2

If the continuity option is specified, the sample size nc for a one-sided test is computed as

nc =
n

4

(
1 +

√
1 +

2

n|pa − p0|

)2

where n is the sample size computed without the correction (Fleiss, Levin, and Paik 2003; Levin and
Chen 1999).

The sample size for a two-sided test and minimum detectable value of the proportion are computed
iteratively using the corresponding power equation from (1).
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Binomial test
Power of the binomial test is computed using the binomial (exact) sampling distribution of the

test statistic. Consider a one-sided test given by

H0: p = p0 versus Ha: p > p0

Let X denote the number of successes in the sample. The null hypothesis is rejected if X is
greater than a critical value k such that the resulting p-value is less than or equal to the significance
level α.

The p-value for testing the above one-sided hypothesis can be obtained from the following equation:

P (X ≥ k;n, p0) =

n∑
i=k

(
n

i

)
pi0(1− p0)n−i

The p-value for testing the two-sided hypothesis Ha: p 6= p0 is given by

2×min {P (X ≥ k;n, p0), P (X ≤ k;n, p0)}

For a one-sided test, the power of the test is computed from the following nonlinear equation:

π = 1− β =

n∑
k=0

(
n

k

)
pka(1− pa)n−kI {P (X ≥ k;n, p0) ≤ α}

Power for a two-sided test can be obtained by replacing the indicator function above with
I [2×min {P (X ≥ k;n, p0), P (X ≤ k;n, p0)} ≤ α].

The computational details may be found in Krishnamoorthy and Peng (2007).
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power twoproportions — Power analysis for a two-sample proportions test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power twoproportions p1 p2

[
, power(numlist) options

]

Compute power

power twoproportions p1 p2 , n(numlist)
[

options
]

Compute effect size and experimental-group proportion

power twoproportions p1 , n(numlist) power(numlist)
[

options
]

where p1 is the proportion in the control (reference) group, and p2 is the proportion in the experimental
(comparison) group. p1 and p2 may each be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).

141



142 power twoproportions — Power analysis for a two-sample proportions test

options Description

test(test) specify the type of test; default is test(chi2)

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(n1 | n2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗diff(numlist) difference between the experimental-group and

control-group proportions, p2 − p1; specify instead of the
experimental-group proportion p2

∗ratio(numlist) ratio of the experimental-group proportion to the
control-group proportion, p2/p1; specify instead of the
experimental-group proportion p2

∗rdiff(numlist) risk difference, p2 − p1; synonym for diff()
∗rrisk(numlist) relative risk, p2/p1; synonym for ratio()
∗oratio(numlist) odds ratio, {p2(1− p1)}/{p1(1− p2)}
effect(effect) specify the type of effect to display; default is

effect(diff)

continuity apply continuity correction to the normal approximation
of the discrete distribution

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph
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Iteration

init(#) initial value for sample sizes or experimental-group proportion
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.

test Description

chi2 Pearson’s chi-squared test; the default
lrchi2 likelihood-ratio test
fisher Fisher–Irwin’s exact conditional test

test() does not appear in the dialog box. The dialog box selected is determined by the test() specification.

effect Description

diff difference between proportions, p2 − p1; the default
ratio ratio of proportions, p2/p1

rdiff risk difference, p2 − p1

rrisk relative risk, p2/p1

oratio odds ratio, {p2(1− p1)}/{p1(1− p2)}

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
alpha a observed significance level αa
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
p1 control-group proportion p1

p2 experimental-group proportion p2

diff difference between the experimental-group proportion p2 − p1

and the control-group proportion
ratio ratio of the experimental-group proportion to p2/p1

the control-group proportion
rdiff risk difference p2 − p1

rrisk relative risk p2/p1

oratio odds ratio θ
target target parameter; synonym for p2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column alpha a is available when the test(fisher) option is specified.
Columns nratio, diff, ratio, rdiff, rrisk, and oratio are shown in the default table if specified.

Menu
Statistics > Power and sample size

Description

power twoproportions computes sample size, power, or the experimental-group proportion
for a two-sample proportions test. By default, it computes sample size for given power and the
values of the control-group and experimental-group proportions. Alternatively, it can compute power
for given sample size and values of the control-group and experimental-group proportions or the
experimental-group proportion for given sample size, power, and the control-group proportion. Also
see [PSS] power for a general introduction to the power command using hypothesis tests.

Options
test(test) specifies the type of the test for power and sample-size computations. test is one of chi2,

lrchi2, or fisher.

chi2 requests computations for the Pearson’s χ2 test. This is the default test.

lrchi2 requests computations for the likelihood-ratio test.

fisher requests computations for Fisher–Irwin’s exact conditional test. Iteration options are not
allowed with this test.
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� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see
[PSS] power.

diff(numlist) specifies the difference between the experimental-group proportion and the control-
group proportion, p2 − p1. You can specify either the experimental-group proportion p2 as a
command argument or the difference between the two proportions in diff(). If you specify
diff(#), the experimental-group proportion is computed as p2 = p1 + #. This option is not
allowed with the effect-size determination and may not be combined with ratio(), rdiff(),
rrisk(), or oratio().

ratio(numlist) specifies the ratio of the experimental-group proportion to the control-group proportion,
p2/p1. You can specify either the experimental-group proportion p2 as a command argument or
the ratio of the two proportions in ratio(). If you specify ratio(#), the experimental-group
proportion is computed as p2 = p1×#. This option is not allowed with the effect-size determination
and may not be combined with diff(), rdiff(), rrisk(), or oratio().

rdiff(numlist) specifies the risk difference p2 − p1. This is a synonym for the diff() option,
except the results are labeled as risk differences. This option is not allowed with the effect-size
determination and may not be combined with diff(), ratio(), rrisk(), or oratio().

rrisk(numlist) specifies the relative risk or risk ratio p2 − p1. This is a synonym for the ratio()
option, except the results are labeled as relative risks. This option is not allowed with the effect-size
determination and may not be combined with diff(), ratio(), rdiff(), or oratio().

oratio(numlist) specifies the odds ratio {p2(1 − p1)}/{p1(1 − p2)}. You can specify ei-
ther the experimental-group proportion p2 as a command argument or the odds ratio in
oratio(). If you specify oratio(#), the experimental-group proportion is computed as
p2 = 1/{1 + (1− p1)/(p1 × #)}. This option is not allowed with the effect-size determination
and may not be combined with diff(), ratio(), rdiff(), or rrisk().

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is
one of diff, ratio, rdiff, rrisk, or oratio. By default, the effect size delta is the difference
between proportions. If diff(), ratio(), rdiff(), rrisk(), or oratio() is specified, the
effect size delta will contain the effect corresponding to the specified option. For example, if
oratio() is specified, delta will contain the odds ratio.

continuity requests that continuity correction be applied to the normal approximation of the discrete
distribution. continuity cannot be specified with test(fisher) or test(lrchi2).

direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. For sample-size determination, the
estimated parameter is either the control-group size N1 or, if compute(n2) is specified, the
experimental-group size N2. For the effect-size determination, the estimated parameter is the
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experimental-group proportion p2. The default initial values for sample sizes for a two-sided test
are based on the corresponding one-sided large-sample z test with the significance level α/2. The
default initial value for the experimental-group proportion is computed using the bisection method.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power twoproportions but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twoproportions
Computing sample size
Computing power
Computing effect size and experimental-group proportion
Testing a hypothesis about two independent proportions

This entry describes the power twoproportions command and the methodology for power and
sample-size analysis for a two-sample proportions test. See [PSS] intro for a general introduction to
power and sample-size analysis and [PSS] power for a general introduction to the power command
using hypothesis tests.

Introduction
The comparison of two independent proportions arises in studies involving two independent

binomial populations. There are many examples of studies where a researcher would like to compare
two independent proportions. A pediatrician might be interested in the relationship between low
birthweight and the mothers’ use of a particular drug during pregnancy. He or she would like to
test the null hypothesis that there is no difference in the proportion of low-birthweight babies for
mothers who took the drug and mothers who did not. A drug manufacturer may want to test the
developed new topical treatment for a foot fungus by testing the null hypothesis that the proportion
of successfully treated patients is the same in the treatment and placebo groups.

Hypothesis testing of binomial outcomes relies on a set of assumptions: 1) a Bernoulli outcome
is observed a fixed number of times; 2) the probability p of observing an event of interest in one
trial is fixed across all trials; and 3) individual trials are independent. Each of the two populations
must conform to the assumptions of a binomial distribution.

This entry describes power and sample-size analysis for the inference about two population
proportions performed using hypothesis testing. Specifically, we consider the null hypothesis H0 :
p2 = p1 versus the two-sided alternative hypothesis Ha: p2 6= p1, the upper one-sided alternative
Ha: p2 > p1, or the lower one-sided alternative Ha: p2 < p1.

The large-sample Pearson’s χ2 and likelihood-ratio tests are commonly used to test hypotheses
about two independent proportions. The test of Fisher (1935) and Irwin (1935) is commonly used to
compare the two proportions in small samples.

The power twoproportions command provides power and sample-size analysis for these three
tests. For Fisher’s exact test, the direct computation is available only for the power of the test.
Estimates of the sample size and effect size for Fisher’s exact test are difficult to compute directly
because of the discrete nature of the sampling distribution of the test statistic. They can, however, be
obtained indirectly on the basis of the power computation; see example 8 for details.
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Using power twoproportions

power twoproportions computes sample size, power, or experimental-group proportion for a
two-sample proportions test. All computations are performed for a two-sided hypothesis test where,
by default, the significance level is set to 0.05. You may change the significance level by specifying
the alpha() option. You can specify the onesided option to request a one-sided test. By default,
all computations assume a balanced or equal-allocation design; see [PSS] unbalanced designs for a
description of how to specify an unbalanced design.

power twoproportions performs power analysis for three different tests, which can be specified
within the test() option. The default is Pearson’s χ2 test (test(chi2)), which approximates
the sampling distribution of the test statistic by the standard normal distribution. You may instead
request computations based on the likelihood-ratio test by specifying the test(lrchi2) option.
To request Fisher’s exact conditional test based on the hypergeometric distribution, you can specify
test(fisher). The fisher method is not available for computing sample size or effect size; see
example 8 for details.

To compute the total sample size, you must specify the control-group proportion p1, the experimental-
group proportion p2, and, optionally, the power of the test in the power() option. The default power
is set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(n1) option and the sample
size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(n2) option and the sample size of the control group in
the n1() option.

To compute power, you must specify the total sample size in the n() option, the control-group
proportion p1, and the experimental-group proportion p2.

Instead of the experimental-group proportion p2, you can specify other alternative measures of
effect when computing sample size or power; see Alternative ways of specifying effect below.

To compute effect size and the experimental-group proportion, you must specify the total sample
size in the n() option, the power in the power() option, the control-group proportion p1, and
optionally, the direction of the effect. The direction is upper by default, direction(upper), which
means that the experimental-group proportion is assumed to be larger than the specified control-group
value. You can change the direction to be lower, which means that the experimental-group proportion
is assumed to be smaller than the specified control-group value, by specifying the direction(lower)
option.

There are multiple definitions of the effect size for a two-sample proportions test. The effect()
option specifies what definition power twoproportions should use when reporting the effect size,
which is labeled as delta in the output of the power command. The available definitions are the
difference between the experimental-group proportion and the control-group proportion (diff), the ratio
of the experimental-group proportion to the control-group proportion (ratio), the risk difference p2−p1

(rdiff), the relative risk p2/p1 (rrisk), and the odds ratio {p2(1− p1)}/{p1(1− p2)} (oratio).
When effect() is specified, the effect size delta contains the estimate of the corresponding effect
and is labeled accordingly. By default, delta corresponds to the difference between proportions. If
any of the options diff(), ratio(), rdiff(), rrisk(), or oratio() are specified and effect()
is not specified, delta will contain the effect size corresponding to the specified option.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS] unbalanced designs for more details.
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Alternative ways of specifying effect

As we mentioned above, power twoproportions provides a number of ways to specify the
disparity between the control-group and experimental-group proportions for sample-size and power
determinations.

You can specify the control-group proportion p1 and the experimental-group proportion p2 directly,
after the command name:

power twoproportions p1 p2 , . . .

For this specification, the default effect size delta displayed by the power command is the
difference p2 − p1 between the proportions. You can use the effect() option to request another
type of effect. For example, if you specify effect(oratio),

power twoproportions p1 p2 , effect(oratio) . . .

the effect size delta will correspond to the odds ratio.

Alternatively, you can specify the control-group proportion p1 and one of the options diff(),
ratio(), rdiff(), rrisk(), or oratio(). For these specifications, the effect size delta will
contain the effect corresponding to the option. If desired, you can change this by specifying the
effect() option.

Specify difference p2 − p1 between the two proportions:

power twoproportions p1 , diff(numlist) . . .

Specify risk difference p2 − p1:

power twoproportions p1 , rdiff(numlist) . . .

Specify ratio p2/p1 of the two proportions:

power twoproportions p1 , ratio(numlist) . . .

Specify relative risk or risk ratio p2/p1:

power twoproportions p1 , rrisk(numlist) . . .

Specify odds ratio {p2(1− p1)}/{p1(1− p2)}:

power twoproportions p1 , oratio(numlist) . . .

In the following sections, we describe the use of power twoproportions accompanied by
examples for computing sample size, power, and experimental-group proportions.

Computing sample size

To compute sample size, you must specify the control-group proportion p1, the experimental-group
proportion p2, and, optionally, the power of the test in the power() option. A default power of 0.8
is assumed if power() is not specified.

Example 1: Sample size for a two-sample proportions test

Consider a study investigating the effectiveness of aspirin in reducing the mortality rate due to
myocardial infarction (heart attacks). Let pA denote the proportion of deaths for aspirin users in the
population and pN denote the corresponding proportion for nonusers. We are interested in testing the
null hypothesis H0: pA − pN = 0 against the two-sided alternative hypothesis Ha: pA − pN 6= 0.
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Previous studies indicate that the proportion of deaths due to heart attacks is 0.015 for nonusers
and 0.001 for users. Investigators wish to determine the minimum sample size required to detect an
absolute difference of |0.001− 0.015| = 0.014 with 80% power using a two-sided 5%-level test.

To compute the required sample size, we specify the values 0.015 and 0.001 as the control-
and experimental-group proportions after the command name. We omit options alpha(0.05) and
power(0.8) because the specified values are their respective defaults.

. power twoproportions 0.015 0.001

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010

Estimated sample sizes:

N = 1270
N per group = 635

A total sample of 1,270 individuals, 635 individuals per group, must be obtained to detect an absolute
difference of 0.014 between proportions of aspirin users and nonusers with 80% power using a
two-sided 5%-level Pearson’s χ2 test.

Example 2: Alternative ways of specifying effect

The displayed effect size delta in example 1 is the difference between the experimental-group
proportion and the control-group proportion. We can redefine the effect size to be, for example, the
odds ratio by specifying the effect() option.

. power twoproportions 0.015 0.001, effect(oratio)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0657 (odds ratio)

p1 = 0.0150
p2 = 0.0010

Estimated sample sizes:

N = 1270
N per group = 635

The effect size delta now contains the estimated odds ratio and is labeled correspondingly.

Instead of the estimate of the proportion in the experimental group, we may have an estimate
of the odds ratio {p2(1 − p1)}/{p1(1 − p2)}. For example, the estimate of the odds ratio in this
example is 0.0657. We can specify the value of the odds ratio in the oratio() option instead of
specifying the experimental-group proportion 0.001:
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. power twoproportions 0.015, oratio(0.0657)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0657 (odds ratio)

p1 = 0.0150
p2 = 0.0010

odds ratio = 0.0657

Estimated sample sizes:

N = 1270
N per group = 635

The results are identical to the prior results. The estimate of the odds ratio is now displayed in the
output, and the effect size delta now corresponds to the odds ratio.

We can also specify the following measures as input parameters: difference between proportions
in the diff() option, risk difference in the rdiff() option, ratio of the proportions in the ratio()
option, or relative risk in the rrisk() option.

Example 3: Likelihood-ratio test

Instead of the Pearson’s χ2 test as in example 1, we can compute sample size for the likelihood-ratio
test by specifying the test(lrchi2) option.

. power twoproportions 0.015 0.001, test(lrchi2)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Likelihood-ratio test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010

Estimated sample sizes:

N = 1062
N per group = 531

The required total sample size of 1,062 is smaller than that for the Pearson’s χ2 test.

Example 4: Computing one of the group sizes

Suppose we anticipate a sample of 600 aspirin users and wish to compute the required number
of nonusers given the study parameters from example 1. We specify the number of aspirin users in
n2(), and we also include compute(n1):
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. power twoproportions 0.015 0.001, n2(600) compute(n1)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010
N2 = 600

Estimated sample sizes:

N = 1317
N1 = 717

We require a sample of 717 nonusers given 600 aspirin users for a total of 1,317 subjects. The total
number of subjects is larger for this unbalanced design compared with the corresponding balanced
design in example 1.

Example 5: Unbalanced design

By default, power twoproportions computes sample size for a balanced or equal-allocation
design. If we know the allocation ratio of subjects between the groups, we can compute the required
sample size for an unbalanced design by specifying the nratio() option.

Continuing with example 1, we will suppose that we anticipate to recruit twice as many aspirin
users as nonusers; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required
sample size for the specified unbalanced design.

. power twoproportions 0.015 0.001, nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010

N2/N1 = 2.0000

Estimated sample sizes:

N = 1236
N1 = 412
N2 = 824

We need a total sample size of 1,236 subjects.

Also see Two samples in [PSS] unbalanced designs for more examples of unbalanced designs for
two-sample tests.
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Computing power

To compute power, you must specify the total sample size in the n() option, the control-group
proportion p1, and the experimental-group proportion p2.

Example 6: Power of a two-sample proportions test

Continuing with example 1, we will suppose that we anticipate a sample of only 1,100 subjects.
To compute the power corresponding to this sample size given the study parameters from example
1, we specify the sample size in n():

. power twoproportions 0.015 0.001, n(1100)

Estimated power for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
N = 1100

N per group = 550
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010

Estimated power:

power = 0.7416

With a smaller sample of 1,100 subjects, we obtain a lower power of 74% compared with example 1.

Example 7: Multiple values of study parameters

In this example, we would like to assess the effect of varying the proportion of aspirin users on the
power of our study. Suppose that the total sample size is 1,100 with equal allocation between groups,
and the value of the proportion in the nonusing group is 0.015. We specify a range of proportions
for aspirin users from 0.001 to 0.009 with a step size of 0.001 as a numlist in parentheses as the
second argument of the command:

. power twoproportions 0.015 (0.001(0.001)0.009), n(1100)

Estimated power for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

alpha power N N1 N2 delta p1 p2

.05 .7416 1100 550 550 -.014 .015 .001

.05 .6515 1100 550 550 -.013 .015 .002

.05 .5586 1100 550 550 -.012 .015 .003

.05 .4683 1100 550 550 -.011 .015 .004

.05 .3846 1100 550 550 -.01 .015 .005

.05 .3102 1100 550 550 -.009 .015 .006

.05 .2462 1100 550 550 -.008 .015 .007

.05 .1928 1100 550 550 -.007 .015 .008

.05 .1497 1100 550 550 -.006 .015 .009
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From the table, the power decreases from 74% to 15% as the proportion of deaths for aspirin users
increases from 0.001 to 0.009 or the absolute value of the effect size (measured as the difference
between the proportion of deaths for aspirin users and that for nonusers) decreases from 0.014 to
0.006.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Example 8: Saw-toothed power function

We can also compute power for the small-sample Fisher’s exact conditional test. The sampling
distribution of the test statistic for this test is discrete. As such, Fisher’s exact test shares the same
issues arising with power and sample-size analysis as described in detail for the binomial one-sample
proportion test in example 7 of [PSS] power oneproportion. In particular, the power function of
Fisher’s exact test has a saw-toothed shape as a function of the sample size. Here, we demonstrate the
saw-toothed shape of the power function and refer you to example 7 of [PSS] power oneproportion
for details.

Let’s plot powers of the Fisher’s exact test for a range of experimental-group sizes between 50
and 65 given the control-group proportion of 0.6, the experimental-group proportion of 0.25, and
the control-group size of 25. We specify the graph() option to produce a graph and the table()
option to produce a table; see [PSS] power, graph and [PSS] power, table for more details about the
graphical and tabular outputs from power. Within graph(), we specify options to request that the
reference line be plotted on the y axis at a power of 0.8 and that the data points be labeled with
the corresponding sample sizes. Within table(), we specify the formats() option to display only
three digits after the decimal point for the power and alpha a columns.

. power twoproportions 0.6 0.25, test(fisher) n1(25) n2(50(1)65)
> graph(yline(0.8) plotopts(mlabel(N)))
> table(, formats(alpha_a "%7.3f" power "%7.3f"))

Estimated power for a two-sample proportions test
Fisher’s exact test
Ho: p2 = p1 versus Ha: p2 != p1

alpha alpha_a power N N1 N2 delta p1 p2

.05 0.026 0.771 75 25 50 -.35 .6 .25

.05 0.025 0.793 76 25 51 -.35 .6 .25

.05 0.026 0.786 77 25 52 -.35 .6 .25

.05 0.026 0.782 78 25 53 -.35 .6 .25

.05 0.025 0.804 79 25 54 -.35 .6 .25

.05 0.026 0.793 80 25 55 -.35 .6 .25

.05 0.028 0.786 81 25 56 -.35 .6 .25

.05 0.025 0.814 82 25 57 -.35 .6 .25

.05 0.025 0.802 83 25 58 -.35 .6 .25

.05 0.025 0.797 84 25 59 -.35 .6 .25

.05 0.028 0.823 85 25 60 -.35 .6 .25

.05 0.026 0.813 86 25 61 -.35 .6 .25

.05 0.026 0.807 87 25 62 -.35 .6 .25

.05 0.025 0.819 88 25 63 -.35 .6 .25

.05 0.028 0.821 89 25 64 -.35 .6 .25

.05 0.027 0.816 90 25 65 -.35 .6 .25
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Parameters: α = .05, N1 = 25, δ = −.35, p1 = .6, p2 = .25

Fisher’s exact test
H0: p2 = p1  versus  Ha: p2 ≠ p1

Estimated power for a two−sample proportions test

Figure 1. Saw-toothed power function

The power is not a monotonic function of the sample size. Also from the table, we see that all the
observed significance levels are smaller than the specified level of 0.05.

Because of the saw-toothed nature of the power curve, obtaining an optimal sample size becomes
tricky. For example, if we wish to have power of 80%, then from the above table and graph, we see
that potential experimental-group sample sizes are 54, 57, 58, 60, and so on. One may be tempted
to choose the smallest sample size for which the power is at least 80%. This, however, would not
guarantee that the power is at least 80% for any larger sample size. Instead, Chernick and Liu (2002)
suggest selecting the smallest sample size after which the troughs of the power curve do not go below
the desired power. Following this recommendation in our example, we would pick a sample size of
60, which corresponds to the observed significance level of 0.028 and power of 0.823.

Computing effect size and experimental-group proportion

There are multiple definitions of the effect size for a two-sample proportions test. By default, effect
size δ is defined as the difference between the experimental-group proportion and the control-group
proportion, δ = p2 − p1, also known as a risk difference. Other available measures of the effect size
are the ratio of the experimental-group proportion to the control-group proportion δ = p2/p1, also
known as a relative risk or risk ratio, and the odds ratio δ = {p2(1− p1)}/{p1(1− p2)}.

Sometimes, we may be interested in determining the smallest effect and the corresponding
experimental-group proportion that yield a statistically significant result for prespecified sample size
and power. In this case, power, sample size, and control-group proportion must be specified. In
addition, you must also decide on the direction of the effect: upper, meaning p2 > p1, or lower,
meaning p2 < p1. The direction may be specified in the direction() option; direction(upper)
is the default.

The underlying computations solve the corresponding power equation for the value of the
experimental-group proportion given power, sample size, and other study parameters. The effect
size is then computed from the specified control-group proportion and the computed experimental-
group proportion using the corresponding functional relationship. The difference between proportions
is reported by default, but you can request other measures by specifying the effect() option.
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Example 9: Minimum detectable change in the experimental-group proportion

Continuing with example 6, we will compute the smallest change in the proportion of deaths for
aspirin users less than that for nonusers that can be detected given a total sample of 1,100 individuals
and 80% power. To solve for the proportion of aspirin users in the experimental group, after the
command name, we specify the control group (nonaspirin users), proportion of 0.015, total sample
size n(1100), and power power(0.8):

. power twoproportions 0.015, n(1100) power(0.8) direction(lower)

Performing iteration ...

Estimated experimental-group proportion for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1; p2 < p1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 1100
N per group = 550

p1 = 0.0150

Estimated effect size and experimental-group proportion:

delta = -0.0147 (difference)
p2 = 0.0003

We find that given the proportion of nonusers of 0.015, the smallest (in absolute value) difference
between proportions that can be detected in this study is −0.0147, which corresponds to the proportion
of aspirin users of 0.0003.

Although the difference between proportions is reported by default, we can request that another
risk measure be reported by specifying the effect() option. For example, we can request that the
odds ratio be reported instead:

. power twoproportions 0.015, n(1100) power(0.8) direction(lower) effect(oratio)

Performing iteration ...

Estimated experimental-group proportion for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1; p2 < p1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 1100
N per group = 550

p1 = 0.0150

Estimated effect size and experimental-group proportion:

delta = 0.0195 (odds ratio)
p2 = 0.0003

The corresponding value of the odds ratio in this example is 0.0195.

In these examples, we computed the experimental-group proportion assuming a lower direction,
p2 < p1, which required you to specify the direction(lower) option. By default, experimental-
group proportion is computed for an upper direction, meaning that the proportion is greater than the
specified value of the control-group proportion.



156 power twoproportions — Power analysis for a two-sample proportions test

Testing a hypothesis about two independent proportions

After the initial planning, we collect data and wish to test the hypothesis that the proportions
from two independent populations are the same. We can use the prtest command to perform such
hypothesis tests; see [R] prtest for details.

Example 10: Two-sample proportions test

Consider a 2 × 3 contingency table provided in table 2.1 of Agresti (2013, 38). The table is
obtained from a report by the Physicians’ Health Study Research Group at Harvard Medical School
that investigated the relationship between aspirin use and heart attacks.

The report presents summary data on fatal and nonfatal heart attacks. In the current example, we
combine these two groups into a single group representing the total cases with heart attacks for aspirin
users and nonusers. The estimated proportion of heart attacks in the control group, nonaspirin users,
is 189/11034 = 0.0171 and in the experimental group, aspirin users, is 104/11037 = 0.0094.

. prtesti 11034 0.0171 11037 0.0094

Two-sample test of proportions x: Number of obs = 11034
y: Number of obs = 11037

Variable Mean Std. Err. z P>|z| [95% Conf. Interval]

x .0171 .0012342 .014681 .019519
y .0094 .0009185 .0075997 .0112003

diff .0077 .0015385 .0046846 .0107154
under Ho: .0015393 5.00 0.000

diff = prop(x) - prop(y) z = 5.0023
Ho: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 1.0000 Pr(|Z| < |z|) = 0.0000 Pr(Z > z) = 0.0000

Let pA and pN denote the proportions of heart attacks in the population for aspirin users and
nonusers, respectively. From the above results, we find a statistically significant evidence to reject the
null hypothesis H0: pA = pN versus a two-sided alternative Ha: pA 6= pN at the 5% significance
level; the p-value is very small.

We use the parameters of this study to perform a sample-size analysis we would have conducted
before the study.

. power twoproportions 0.0171 0.0094

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0077 (difference)

p1 = 0.0171
p2 = 0.0094

Estimated sample sizes:

N = 6922
N per group = 3461
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We find that for Pearson’s χ2 test, a total sample size of 6,922, assuming a balanced design, is required
to detect the difference between the control-group proportion of 0.0171 and the experimental-group
proportion of 0.0094 with 80% power using a 5%-level two-sided test.

Stored results
power twoproportions stores the following in r():

Scalars
r(alpha) significance level
r(alpha a) actual significance level of the Fisher’s exact test
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1

r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(p1) control-group proportion
r(p2) experimental-group proportion
r(diff) difference between the experimental- and control-group proportions
r(ratio) ratio of the experimental-group proportion to the control-group proportion
r(rdiff) risk difference
r(rrisk) relative risk
r(oratio) odds ratio
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for sample sizes or experimental-group proportion
r(continuity) 1 if continuity correction is used; 0 otherwise
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) twoproportions
r(test) chi2, lrchi2, or fisher
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results
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Methods and formulas
Consider two independent samples of sizes n1 and n2. Let x11, . . . , x1n1 be a random sample from

a binomial distribution with the success probability p1. We refer to this sample as a control group.
Let x21, . . . , x2n2

be a random sample from a binomial distribution with the success probability p2,
the experimental group. Let xij = 1 denote a success and xij = 0 denote a failure. The two samples
are assumed to be independent.

The sample proportions and their respective standard errors are

p̂1 =
1

n1

n1∑
i=1

x1i and se(p̂1) =
√
n1p̂1(1− p̂1)

p̂2 =
1

n2

n2∑
i=1

x2i and se(p̂2) =
√
n2p̂2(1− p̂2)

A two-sample proportions test involves testing the null hypothesis H0: p2 = p1 versus the two-
sided alternative hypothesis Ha: p2 6= p1, the upper one-sided alternative Ha: p2 > p1, or the lower
one-sided alternative Ha: p2 < p1.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and power can be viewed as
a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS] unbalanced designs for details.

The formulas below are based on Fleiss, Levin, and Paik (2003) and Agresti (2013).

Effect size
The measures of risk or effect size can be defined in a number of ways for the two-sample proportions

test. By default, the effect size is the difference between the experimental-group proportion and the
control-group proportion. Other available risk measures include risk difference, risk ratio or relative
risk, and odds ratio.

By default or when effect(diff) or effect(rdiff) is specified, the effect size is computed
as

δ = p2 − p1

When effect(ratio) or effect(rrisk) is specified, the effect size is computed as

δ = p2/p1

When effect(oratio) is specified, the effect size is computed as

δ = θ = {p2(1− p1)}/{p1(1− p2)}

If diff(), rdiff(), ratio(), rrisk(), or oratio() is specified, the value of the experimental-
group proportion p2 is computed using the corresponding formula from above.
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Pearson’s chi-squared test

For a large sample size, a binomial process can be approximated by a normal distribution. The
asymptotic sampling distribution of the test statistic

z =
(p̂2 − p̂1)− (p2 − p1)√
p̂(1− p̂)

(
1
n1

+ 1
n2

)
is standard normal, where p = (n1p1 + n2p2)/(n1 + n2) is the pooled proportion and p̂ is its
estimator. The square of this statistic, z2, has an approximate χ2 distribution with one degree of
freedom, and the corresponding test is known as Pearson’s χ2 test.

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution.

Let σD =
√
p1(1− p1)/n1 + p2(1− p2)/n2 be the standard deviation of the difference between

proportions and σp =
√
p(1− p) (1/n1 + 1/n2) be the pooled standard deviation.

The power π = 1− β is computed using

π =


Φ
{

(p2−p1)−c−z1−ασp
σD

}
for an upper one-sided test

Φ
{
−(p2−p1)−c−z1−ασp

σD

}
for a lower one-sided test

Φ
{

(p2−p1)−c−z1−α/2σp
σD

}
+ Φ

{
−(p2−p1)−c−z1−α/2σp

σD

}
for a two-sided test

(1)

where Φ(·) is the cdf of the standard normal distribution, and c is the normal-approximation continuity
correction. For equal sample sizes, n1 = n2 = n/2, the continuity correction is expressed as c = 2/n
(Levin and Chen 1999).

For a one-sided test, given the allocation ratio R = n2/n1, the total sample size n is computed
by inverting the corresponding power equation in (1),

n =

{
z1−α

√
p(1− p)− zβ

√
w2p1(1− p1) + w1p2(1− p2)

}2

w1w2 (p2 − p1)
2 (2)

where w1 = 1/(1 +R) and w2 = R/(1 +R). Then n1 and n2 are computed as n1 = n/(1 +R)
and n2 = R × n1, respectively. If the continuity option is specified, the sample size nc for a
one-sided test is computed as

nc =
n

4

(
1 +

√
1 +

2

nw1w2|p2 − p1|

)2

where n is the sample size computed without the correction. For unequal sample sizes, the continuity
correction generalizes to c = 1/(2nw1w2) (Fleiss, Levin, and Paik 2003).

For a two-sided test, the sample size is computed by iteratively solving the two-sided power
equation in (1). The initial values for the two-sided computations are obtained from (2) with the
significance level α/2.

If one of the group sizes is known, the other one is computed by iteratively solving the corresponding
power equation in (1). The initial values are obtained from (2) by assuming that R = 1.

The experimental-group proportion p2 is computed by iteratively solving the corresponding power
equations in (1). The default initial values are obtained by using a bisection method.
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Likelihood-ratio test
Let q1 = 1−p1, q2 = 1−p2, and q = 1−p = 1−(n1p1 +n2p2)/(n1 +n2). The likelihood-ratio

test statistic is given by

G =

√
2n

{
n1p1

n
ln
(
p1

p

)
+
n1q1

n
ln
(
q1

q

)
+
n2p2

n
ln
(
p2

p

)
+
n2q2

n
ln
(
q2

q

)}
The power π = 1− β is computed using

π =


Φ (G− z1−α) for an upper one-sided test
Φ (−G− z1−α) for a lower one-sided test
Φ
(
G− z1−α/2

)
+ Φ

(
−G− z1−α/2

)
for a two-sided test

(3)

For a one-sided test, given the allocation ratio R, the total sample size n is computed by inverting
the corresponding power equation in (3),

n =
(z1−α − zβ)

2

2
{
w1p1 ln

(
p1
p

)
+ w1q1 ln

(
q1
q

)
+ w2p2 ln

(
p2
p

)
+ w2q2 ln

(
q2
q

)} (4)

where w1 = 1/(1 +R) and w2 = R/(1 +R). Then n1 and n2 are computed as n1 = n/(1 +R)
and n2 = R× n1, respectively.

For a two-sided test, the sample size is computed by iteratively solving the two-sided power
equation in (3). The initial values for the two-sided computations are obtained from equation (4) with
the significance level α/2.

If one of the group sizes is known, the other one is computed by iteratively solving the corresponding
power equation in (3). The initial values are obtained from (4) by assuming that R = 1.

The experimental-group proportion p2 is computed by iteratively solving the corresponding power
equations in (3). The default initial values are obtained by using a bisection method.

Fisher’s exact conditional test
Power computation for Fisher’s exact test is based on Casagrande, Pike, and Smith (1978). We

present formulas from the original paper with a slight change in notation: we use p̃1 and p̃2 in place
of p1 and p2 and η in place of θ. The change in notation is to avoid confusion between our use of
group proportions p1 and p2 and their use in the paper—compared with our definitions, the roles of
p1 and p2 in the paper are reversed in the definitions of the hypotheses and other measures such as
the odds ratio. In our definitions, p̃1 = p2 is the proportion in the experimental group, p̃2 = p1 is
the proportion in the control group, and η = 1/θ. Also we denote ñ1 = n2 to be the sample size of
the experimental group and ñ2 = n1 to be the sample size of the control group.

Let k be the number of successes in the experimental group, and let m be the total number of
successes in both groups. The conditional distribution of k is given by

p(k|m, η) =

(
ñ1

k

)(
ñ2

m−k
)
ηk∑

i

(
ñ1

i

)(
ñ2

m−i
)
ηi

where η = {p̃1(1 − p̃2)}/{p̃2(1 − p̃1)}, and the range of i is given by L = max(0,m − ñ2) to
U = min(ñ1,m).
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Assume an upper one-sided test given by

H0: p̃1 = p̃2 versus Ha: p̃1 > p̃2 (5)

The hypothesis (5) in terms of η can be expressed as follows:

H0: η = 1 versus Ha: η > 1

Let ku be the critical value of k such that the following inequalities are satisfied:

U∑
i=ku

p(i|m, η = 1) ≤ α and
U∑

i=ku−1

p(i|m, η = 1) > α (6)

The conditional power is

β(η|m) =

U∑
i=ku

p(i|m, η)

For a lower one-sided hypothesis Ha : p̃1 < p̃2, the corresponding hypothesis in terms of η is
given by

H0: η = 1 versus Ha: η < 1

The conditional power in this case is

β(η|m) =

kl∑
i=L

p(i|m, η)

where kl is the critical value of k such that the following inequalities are satisfied:

kl∑
i=L

p(i|m, η = 1) ≤ α and
kl+1∑
i=L

p(i|m, η = 1) > α (7)

.

For a two-sided test, the critical values kl and ku are calculated using the inequalities (6) and (7)
with α/2, respectively.

Finally, the unconditional power is calculated as

β(η) =
∑
j

β(η|j)P (j)

where j takes the value from 0 to n, and

P (j) =

U∑
i=L

(
ñ1

i

)
p̃1
i(1− p̃1)ñ1−i

(
ñ2

j − i

)
p̃2
j−i(1− p̃2)ñ2−j+i

where L = max(0, j − ñ2) and U = min(ñ1, j).
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power pairedproportions — Power analysis for a two-sample paired-proportions test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

Specify discordant proportions

power pairedproportions p12 p21

[
, power(numlist) discordopts

]
Specify marginal proportions

power pairedproportions p1+ p+1 , corr(numlist)
[
power(numlist) margopts

]

Compute power

Specify discordant proportions

power pairedproportions p12 p21 , n(numlist)
[

discordopts
]

Specify marginal proportions

power pairedproportions p1+ p+1 , corr(numlist) n(numlist)
[

margopts
]

Compute effect size and target discordant proportions

power pairedproportions, n(numlist) power(numlist) prdiscordant(numlist)[
discordopts

]

where p12 is the probability of a success at occasion 1 and a failure at occasion 2, and p21 is the
probability of a failure at occasion 1 and a success at occasion 2. Each represents the probability
of a discordant pair. p1+ is the marginal probability of a success for occasion 1, and p+1 is the
marginal probability of a success for occasion 2. Each may be specified either as one number or
as a list of values in parentheses; see [U] 11.1.8 numlist.

163
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discordopts Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗prdiscordant(numlist) sum of the discordant proportions, p12 + p21
∗sum(numlist) synonym for prdiscordant()
∗diff(numlist) difference between the discordant proportions, p21 − p12
∗ratio(numlist) ratio of the discordant proportions, p21/p12

effect(effect) specify the type of effect to display; default is effect(diff)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for the sample size or the difference between
discordant proportions

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.
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margopts Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗corr(numlist) correlation between the paired observations
∗diff(numlist) difference between the marginal proportions, p+1 − p1+
∗ratio(numlist) ratio of the marginal proportions, p+1/p1+
∗rrisk(numlist) relative risk, p+1/p1+
∗oratio(numlist) odds ratio, {p+1(1− p1+)}/{p1+(1− p+1)}
effect(effect) specify the type of effect to display; default is effect(diff)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.

effect Description

diff difference between the discordant proportions, p21 − p12, or
marginal proportions, p+1 − p1+; the default

ratio ratio of the discordant proportions, p21/p12, or of the
marginal proportions, p+1/p1+

rrisk relative risk, p+1/p1+; may only be specified with marginal
proportions

oratio odds ratio, {p+1(1− p1+)}/{p1+(1− p+1)}; may only be
specified with marginal proportions
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
p12 success–failure proportion p12

p21 failure–success proportion p21

pmarg1 success proportion in occasion 1 p1+

pmarg2 success proportion in occasion 2 p+1

corr correlation between paired observations ρ
prdiscordant proportion of discordant pairs p12 + p21

sum sum of discordant proportions p12 + p21

diff difference between discordant proportions p21 − p12

difference between marginal proportions p+1 − p1+

ratio ratio of discordant proportions p21/p12

ratio of marginal proportions p+1/p1+

rrisk relative risk for marginal proportions p+1/p1+

oratio odds ratio for marginal proportions θ
target target parameter; synonym for p12
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns p12 and p21 are shown in the default table if discordant proportions are specified.
Columns pmarg1, pmarg2, and corr are shown in the default table if marginal proportions are specified.
Columns pmarg1, pmarg2, corr, rrisk, and oratio are available only if marginal proportions are specified.
Columns diff, ratio, prdiscordant, sum, rrisk, and oratio are shown in the default table if specified.

Menu
Statistics > Power and sample size

Description
power pairedproportions computes sample size, power, or target discordant proportions for a

two-sample paired-proportions test, also known as McNemar’s test. By default, it computes sample
size for given power and values of the discordant or marginal proportions. Alternatively, it can compute
power for given sample size and values of the discordant or marginal proportions, or it can compute
the target discordant proportions for given sample size and power. Also see [PSS] power for a general
introduction to the power command using hypothesis tests.
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Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power. The nfractional option is
allowed only for sample-size determination.

corr(numlist) specifies the correlation between paired observations. This option is required if marginal
proportions are specified.

diff(numlist) specifies the difference between the discordant proportions, p21−p12, or the marginal
proportions, p+1−p1+. See Alternative ways of specifying effect for details about the specification
of this option.

ratio(numlist) specifies the ratio of the discordant proportions, p21/p12, or the marginal proportions,
p+1/p1+. See Alternative ways of specifying effect for details about the specification of this option.

prdiscordant(numlist) specifies the proportion of discordant pairs or the sum of the discordant
proportions, p12 +p21. See Alternative ways of specifying effect for details about the specification
of this option.

sum(numlist) is a synonym for prdiscordant(). See Alternative ways of specifying effect for
details about the specification of this option.

rrisk(numlist) specifies the relative risk of the marginal proportions, p+1/p1+. See Alternative
ways of specifying effect for details about the specification of this option.

oratio(numlist) specifies the odds ratio of the marginal proportions, {p+1(1−p1+)}/{p1+(1−p+1)}.
See Alternative ways of specifying effect for details about the specification of this option.

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is
one of diff or ratio for discordant proportions and one of diff, ratio, rrisk, or oratio
for marginal proportions. By default, the effect size delta is the difference between proportions.
If diff(), ratio(), rrisk(), or oratio() is specified, the effect size delta will contain the
effect corresponding to the specified option. For example, if ratio() is specified, delta will
contain the ratio of the proportions. See Alternative ways of specifying effect for details about the
specification of this option.

direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. The estimated parameter is sample
size for sample-size determination or the difference between the discordant proportions for the
effect-size determination.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.
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The following option is available with power pairedproportions but is not shown in the dialog
box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power pairedproportions

Alternative ways of specifying effect
Computing sample size
Computing power
Computing effect size and target discordant proportions
Testing a hypothesis about two correlated proportions

This entry describes the power pairedproportions command and the methodology for power
and sample-size analysis for a two-sample paired-proportions test. See [PSS] intro for a general
introduction to power and sample-size analysis and [PSS] power for a general introduction to the
power command using hypothesis tests.

Introduction
The analysis of paired proportions is used to compare two dependent binomial populations.

Dependent binomial data arise from matched case–control studies, where the cases are matched to
the controls on the basis of similar demographic characteristics, or from longitudinal studies, where
the same cases serve as their own controls over time or for different treatments. In all cases, each
observation represents a pair of correlated binary outcomes.

There are many examples of studies where a researcher would like to compare two dependent
proportions. For example, a state highway department might be concerned that tollbooth workers may
experience hearing loss because of chronic exposure to traffic noise. It wants to test whether the
proportion of workers with moderate to severe hearing loss is the same between a sample of workers
exposed to traffic noise and a sample of workers sheltered by the quieter interior of the booth. Or a
pediatrician might conduct a study to compare the proportions of males and females with a particular
food allergy in a study of male/female fraternal twins.

This entry describes power and sample-size analysis for correlated binary outcomes in a two-way
contingency table. Consider a 2 × 2 table from a study where the outcome of interest is a pair of
results from “occasion 1” and “occasion 2”, each either a “success” or a “failure”.

Occasion 2
Occasion 1 Success Failure Total
Success n11 n12 n1+

Failure n21 n22 n2+

Total n+1 n+2 n

n is the total number of pairs; n11 is the number of pairs for which the response is a success for
both occasions; n12 is the number of success–failure pairs for which the response is a success on
occasion 1 and a failure on occasion 2; n21 is the number of failure–success pairs for which the
response is a failure on occasion 1 and a success on occasion 2; and n22 is the number of pairs for
which the response is a failure for both occasions. The success–failure and failure–success pairs form
discordant pairs, and the remaining pairs form concordant pairs.
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The above table can also be expressed in terms of the proportions.

Occasion 2
Occasion 1 Success Failure Total
Success p11 p12 p1+

Failure p21 p22 1− p1+

Total p+1 1− p+1 1

p1+ is the success probability for occasion 1, and p+1 is the success probability for occasion 2.
The marginal probabilities, p1+ and p+1, are used to compare the outcomes between occasion 1 and
occasion 2.

The null hypothesis for the test of equality of marginal proportions, also known as the test of
marginal homogeneity, is H0: p+1 = p1+. The null hypothesis can be formulated in terms of the
discordant probabilities, the failure–success probability, p21, and the success–failure probability, p12,
using the relationships p+1 = p11 + p21 and p1+ = p11 + p12. The considered null hypothesis is
then H0: p21 = p12 versus the two-sided alternative hypothesis Ha: p21 6= p12, the upper one-sided
alternative Ha: p21 > p12, or the lower one-sided alternative Ha: p21 < p12. For a 2× 2 table, the
test of marginal homogeneity is also called a test of symmetry.

A large-sample McNemar’s test is commonly used for testing the above hypotheses. Under the
null hypothesis, the test statistic is distributed as a χ2

1 distribution with 1 degree of freedom.

power pairedproportions provides power and sample-size analysis for McNemar’s test of two
correlated proportions.

Using power pairedproportions

power pairedproportions computes sample size, power, or target discordant proportions for a
two-sample paired-proportions test. All computations are performed for a two-sided hypothesis test
where, by default, the significance level is set to 0.05. You may change the significance level by
specifying the alpha() option. You can specify the onesided option to request a one-sided test.

For sample-size and power determinations, power pairedproportions provides a number of
ways of specifying the magnitude of an effect desired to be detected by the test. Below we describe
the use of the command, assuming that the desired effect is expressed by the values of the two
discordant proportions; see Alternative ways of specifying effect for other specifications.

To compute sample size, you must specify the discordant proportions, p12 and p21, and, optionally,
the power of the test in option power(). The default power is set to 0.8.

To compute power, you must specify the sample size in option n() and the discordant proportions,
p12 and p21.

The effect-size determination is available only for discordant proportions. To compute effect size
and target discordant proportions, you must specify the sample size in option n(), the power in option
power(), the sum of the discordant proportions in option prdiscordant(), and, optionally, the
direction of the effect. The direction is upper by default, direction(upper), which means that the
failure–success proportion, p21, is assumed to be larger than the specified success–failure proportion,
p12. You can change the direction to lower, which means that p21 is assumed to be smaller than p12,
by specifying the direction(lower) option.

There are multiple definitions of effect size for a two-sample paired-proportions test. The effect()
option specifies what definition power pairedproportions should use when reporting the effect
size, which is labeled as delta in the output of the power command.
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When you specify the discordant proportions, the available definitions are the difference p21− p12

between the discordant proportions, effect(diff), or the ratio p21/p12 of the discordant proportions,
effect(ratio).

When you specify the marginal proportions, the available definitions are the difference p+1− p1+

between the marginal proportions, effect(diff); the relative risk or ratio p+1/p1+ of the marginal
proportions, effect(rrisk) or effect(ratio); or the odds ratio {p+1(1−p1+)}/{p1+(1−p+1)}
of the marginal proportions, effect(oratio).

When effect() is specified, the effect size delta in the output of the power command contains
the estimate of the corresponding effect and is labeled accordingly. By default, delta corresponds
to the difference between proportions. If any one of the options diff(), ratio(), rrisk(), or
oratio() is specified and effect() is not specified, delta will contain the effect size corresponding
to the specified option.

Some of power pairedproportions’s computations require iteration. For example, a sample
size for a two-sided test is obtained by iteratively solving a nonlinear power equation. The default
initial value for the sample size for the iteration procedure is obtained using a closed-form one-sided
formula. If you desire, you may change it by specifying the init() option. See [PSS] power for the
descriptions of other options that control the iteration procedure.

Alternative ways of specifying effect

To compute power or sample size, you must also specify the magnitude of the effect that is desired
to be detected by the test. You can do this by specifying either the discordant proportions, p12 and
p21,

power pairedproportions p12 p21 , . . .

or the marginal proportions, p1+ and p+1:

power pairedproportions p1+ p+1 , corr(numlist) . . .

When you specify marginal proportions, you must also specify the correlation between paired
observations in option corr().

Below we describe other alternative specifications separately for discordant proportions and marginal
proportions.

Effect specifications for discordant proportions

Instead of specifying p21, you may specify the discordant proportion p12 as the argument to the
command and the sum of the discordant proportions, p12 +p21, in option prdiscordant() or option
sum(),

power pairedproportions p12 , prdiscordant(numlist) . . .

power pairedproportions p12 , sum(numlist) . . .

the difference between the discordant proportions, p21 − p12, in option diff(),

power pairedproportions p12 , diff(numlist) . . .

or the ratio of the discordant proportions, p21/p12, in option ratio():

power pairedproportions p12 , ratio(numlist) . . .

You may omit both command arguments p12 and p21 altogether and specify options prdiscor-
dant() or sum(), diff(), and ratio() in pairs.
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For example, you can specify the sum p12 + p21 and difference p21 − p12 of the discordant
proportions:

power pairedproportions , prdiscordant(numlist) diff(numlist) . . .

Or you can specify the sum p12 + p21 and ratio p21/p12 of the discordant proportions:

power pairedproportions , sum(numlist) ratio(numlist) . . .

Or you can specify the difference p21 − p12 and ratio p21/p12 of the discordant proportions:

power pairedproportions , diff(numlist) ratio(numlist) . . .

When discordant proportions are specified, the effect size may be expressed as the difference
between discordant proportions, p21 − p12, or the ratio of discordant proportions, p21/p12. You may
choose what effect to compute by specifying the effect() option.

By default, effect size is the difference between the discordant proportions. For example, for the
specification below, the effect size δ is the difference between the discordant proportions.

power pairedproportions p12 p21 , . . .

The above specification is equivalent to

power pairedproportions p12 p21 , effect(diff) . . .

Alternatively, you may request the effect size to be the ratio instead of the difference.

power pairedproportions p12 p21 , effect(ratio) . . .

Likewise, if you specify the ratio() option, the effect size is the ratio of the proportions.

Effect specifications for marginal proportions

Instead of specifying p+1, you may specify the marginal proportion, p1+, as the argument to the
command and the difference between the marginal proportions, p+1 − p1+, in option diff(),

power pairedproportions p1+ , corr(numlist) diff(numlist) . . .

the ratio of the marginal proportions or relative risk, p+1/p1+, in option ratio() or option rrisk(),

power pairedproportions p1+ , corr(numlist) ratio(numlist) . . .

power pairedproportions p1+ , corr(numlist) rrisk(numlist) . . .

or the odds ratio, {p+1(1− p1+)}/{p1+(1− p+1)}, in option oratio():

power pairedproportions p1+ , corr(numlist) oratio(numlist) . . .

Alternatively, you may omit both command arguments p1+ and p+1 and specify one of the
combinations of diff() and rrisk() or ratio(), or oratio() and rrisk() or ratio(). You
may not combine diff() and oratio(), because marginal proportions cannot be identified uniquely
from this combination.

For example, you can specify the difference p+1 − p1+ and ratio p+1/p1+ of the marginal
proportions,

power pairedproportions , corr(numlist) diff(numlist) ratio(numlist) . . .

or the odds ratio, {p+1(1− p1+)}/{p1+(1− p+1)}, and the relative risk, p+1/p1+:

power pairedproportions , corr(numlist) oratio(numlist) rrisk(numlist) . . .
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The effect size for marginal proportions may be defined as one of the difference between marginal
proportions, p+1 − p1+, the odds ratio, {p+1(1 − p1+)}/{p1+(1 − p+1)}, or the relative risk or,
equivalently, the ratio p+1/p1+. The effect() option for marginal proportions may contain one of
diff, oratio, rrisk, or ratio.

By default, effect size is defined as the difference between the marginal proportions. For example,
the following specification,

power pairedproportions p1+ p+1 , corr(numlist) . . .

is equivalent to

power pairedproportions p1+ p+1 , corr(numlist) effect(diff) . . .

You may request other measures of effect size for marginal proportions such as the risk ratio,

power pairedproportions p1+ p+1 , corr(numlist) effect(rrisk) . . .

or odds ratio:

power pairedproportions p1+ p+1 , corr(numlist) effect(oratio) . . .

In the following sections, we describe the use of power pairedproportions accompanied by
examples for computing sample size, power, and target discordant proportion.

Computing sample size

To compute sample size, you must specify the discordant proportions, p12 and p21, and, optionally,
the power of the test in option power(). The default power is set to 0.8. Instead of the discordant
proportions, you can specify an effect of interest as shown in Alternative ways of specifying effect.

Example 1: Sample size for a two-sample paired-proportions test

Consider a study from Agresti (2013, 413) where the same group of subjects was asked who
they voted for in the 2004 and 2008 presidential elections. In 2008, we witnessed a shift from the
Republican President George W. Bush, who was finishing his second term, to Democratic President
Barack Obama, who was beginning his first term. Suppose that we would like to conduct another
survey for the 2012 and 2016 elections to see whether a similar shift—this time from a Democrat
to a Republican—would occur in 2016, when President Obama finishes his second term. We are
interested in testing the hypothesis whether the proportions of votes for a Democratic president in
2012 will be the same as in 2016.

Consider the following 2× 2 table:

2016 Election
2012 Election Democratic Republican Total

Democratic p11 p12 p1+

Republican p21 p22 1− p1+

Total p+1 1− p+1 1

The test of marginal homogeneity that the proportion of Democratic votes in 2012 will be the
same in 2016 is given by the null hypothesis H0: p1+ = p+1. This is equivalent to testing whether
the proportion p12 of voters who changed parties from Democratic to Republican is the same as
the proportion p21 of voters who changed parties from Republican to Democratic between 2012 and
2016. The corresponding null hypothesis that tests these discordant proportions is H0: p12 = p21.
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Suppose that the previous survey reported that the proportion of respondents who voted for
a Democratic president in 2012 is p1+ = 0.53. Using this empirical evidence, a political expert
believes that the odds of a candidate being elected as the president when his or her party has
already served two consecutive terms as the president are low. According to the expert’s opinion,
the odds of the population voting Democrat in 2016 to the odds of the population voting Democrat
in 2012 are 2:3; that is, the corresponding odds ratio is θ = 2/3 = 0.667. Using the relationship
between the odds ratio and marginal probabilities, we compute the marginal probability p+1 to be
= [0.667× {0.53/(1− 0.53)}]/(1 + [(0.667× {0.53/(1− 0.53)}]) = 0.4293.

It is generally believed that voting behavior is positively correlated, which means that a person
voting for one party in an election year is very likely to vote for the same party in the next election
year. Suppose the expert posits a correlation of 0.8.

We wish to compute the sample size required for our survey to detect the difference between
the considered marginal proportions. To compute the minimum sample size, we specify the marginal
proportions after the command name and the correlation in option corr():

. power pairedproportions 0.53 0.4293, corr(0.8)

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p+1 = p1+ versus Ha: p+1 != p1+

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1007 (difference)

p1+ = 0.5300
p+1 = 0.4293

corr = 0.8000

Estimated sample size:

N = 82

We find that 82 subjects are required in our survey for a 5%-level two-sided McNemar’s test to detect
a change in the proportion voting Democrat from 0.53 in 2012 to 0.4293 in 2016, which corresponds
to the difference of δ = 0.4293− 0.53 = −0.1007, with 80% power.

Example 2: Reporting odds ratio

By default, as in example 1, the effect size δ is the difference between the marginal proportions.
Alternatively, we can request that the effect size be reported as the odds ratio by specifying option
effect(oratio).



174 power pairedproportions — Power analysis for a two-sample paired-proportions test

. power pairedproportions 0.53 0.4293, corr(0.8) effect(oratio)

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p+1 = p1+ versus Ha: p+1 != p1+

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6671 (odds ratio)

p1+ = 0.5300
p+1 = 0.4293

corr = 0.8000

Estimated sample size:

N = 82

The effect size delta now contains the odds ratio estimated from the specified marginal proportions.
Also see Alternative ways of specifying effect for other available measures of effect.

Example 3: Specifying odds ratio

In example 1, we computed the second marginal proportion, p+1, using the postulated values of the
first marginal proportion, p1+, and the odds ratio, θ, and we specified the two marginal proportions
with power pairedproportions. We can instead specify the first marginal proportion and the odds
ratio directly:

. power pairedproportions 0.53, corr(0.8) oratio(0.667)

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p+1 = p1+ versus Ha: p+1 != p1+

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6670 (odds ratio)

p1+ = 0.5300
p+1 = 0.4293

corr = 0.8000
odds ratio = 0.6670

Estimated sample size:

N = 82

When the oratio() option is specified, the reported effect size delta corresponds to the odds ratio,
and the value of the odds ratio specified in oratio() is also reported in the output.

Also see Alternative ways of specifying effect for other ways of specifying an effect.
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Example 4: Specifying discordant proportions

Instead of marginal proportions, as in example 1, we can specify discordant proportions. We
compute discordant proportions using (1) and the estimates of marginal proportions and correlation
in this study: p12 = 0.53(1 − 0.4293) − 0.8

√
0.53× (1− 0.53)× 0.4293× (1− 0.4293) = 0.105

and p21 = 0.105 + 0.4293− 0.53 = 0.004.
. power pairedproportions 0.105 0.004

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p21 = p12 versus Ha: p21 != p12

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1010 (difference)

p12 = 0.1050
p21 = 0.0040

Estimated sample size:

N = 82

We obtain the same sample size of 82 as in example 1. The reported effect size delta corresponds
to the difference of −0.1010 between the discordant proportions.

Also see Alternative ways of specifying effect for other ways of specifying the effect desired to
be detected by the test.

Computing power

To compute power, you must specify the sample size in option n() and the discordant proportions,
p12 and p21. Instead of the discordant proportions, you can specify an effect of interest as shown in
Alternative ways of specifying effect.

Example 5: Power of a two-sample paired-proportions test

Continuing with example 4, we will suppose that we anticipate to obtain a sample of 100 subjects
and want to compute the power corresponding to this sample size.

In addition to the discordant proportions, we specify the sample size of 100 in option n():
. power pairedproportions 0.105 0.004, n(100)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p21 = p12 versus Ha: p21 != p12

Study parameters:

alpha = 0.0500
N = 100

delta = -0.1010 (difference)
p12 = 0.1050
p21 = 0.0040

Estimated power:

power = 0.8759

As expected, with a larger sample size, this example achieves a larger power, about 88%, compared
with example 4.
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Example 6: Alternative specification of an effect for power determination

Continuing with example 5, we can specify the first discordant proportion, p12, and one of the
options prdiscordant(), diff(), or ratio() instead of specifying both discordant proportions.

For example, let’s specify the sum of the discordant proportions instead of the discordant proportion
p21:

. power pairedproportions 0.105, n(100) prdiscordant(0.109)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p21 = p12 versus Ha: p21 != p12

Study parameters:

alpha = 0.0500
N = 100

delta = -0.1010 (difference)
p12 = 0.1050
p21 = 0.0040

p12 + p21 = 0.1090

Estimated power:

power = 0.8759

We obtain results identical to those in example 5.

Example 7: Power determination with marginal proportions

We can compute the power corresponding to the sample of 100 subjects for the specification using
marginal proportions from example 1 by additionally specifying option n(100):

. power pairedproportions 0.53 0.4293, corr(0.8) n(100)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p+1 = p1+ versus Ha: p+1 != p1+

Study parameters:

alpha = 0.0500
N = 100

delta = -0.1007 (difference)
p1+ = 0.5300
p+1 = 0.4293

corr = 0.8000

Estimated power:

power = 0.8739

As expected, the estimated power of 0.8739 is very close to the estimated power of 0.8759 in
example 5. If we had used input values for discordant proportions with more precision in example 5,
we would have obtained nearly identical results.

Example 8: Multiple values of study parameters

Continuing with example 7, we would like to assess the effect of varying correlation on the power
of our study.
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We specify a range of correlations between 0.2 and 0.8 with a step size of 0.1 in option corr():

. power pairedproportions 0.53 0.4293, corr(0.2(0.1)0.8) n(100)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p+1 = p1+ versus Ha: p+1 != p1+

alpha power N delta pmarg1 pmarg2 corr

.05 .3509 100 -.1007 .53 .4293 .2

.05 .3913 100 -.1007 .53 .4293 .3

.05 .4429 100 -.1007 .53 .4293 .4

.05 .5105 100 -.1007 .53 .4293 .5

.05 .6008 100 -.1007 .53 .4293 .6

.05 .7223 100 -.1007 .53 .4293 .7

.05 .8739 100 -.1007 .53 .4293 .8

For a given sample size, the power increases as the correlation increases, which means that for a
given power, the required sample size decreases as the correlation increases. This demonstrates that
a paired design can improve the precision of the statistical inference compared with an independent
design, which corresponds to a correlation of zero.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Computing effect size and target discordant proportions

The effect-size determination is available only for discordant proportions. As we describe in detail
in Alternative ways of specifying effect, there are multiple definitions of the effect size for a paired-
proportions test. The default is the difference between the failure–success proportion, p21, and the
success–failure proportion, p12.

Sometimes, we may be interested in determining the smallest effect and the corresponding discordant
proportions that yield a statistically significant result for prespecified sample size and power. In this
case, power, sample size, and the sum of the discordant proportions must be specified. In addition,
you must also decide on the direction of the effect: upper, meaning p21 > p12, or lower, meaning
p21 < p12. The direction may be specified in the direction() option; direction(upper) is the
default.

Example 9: Compute effect size and target proportions

Suppose that we want to compute the corresponding discordant proportions for given sample size
and power. To compute the discordant proportions, we must specify the proportion of discordant pairs
(the sum of the discordant proportions) in addition to sample size and power.

Continuing with example 4, we will compute the corresponding effect size and target proportions
for the sample size of 82 and the power of 0.8 using 0.109 for the proportion of discordant pairs.
We also specify the direction(lower) option because p21 < p12 in our example.
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. power pairedproportions, prdiscordant(.109) n(82) power(0.8) direction(lower)

Performing iteration ...

Estimated discordant proportions for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p21 = p12 versus Ha: p21 != p12; p21 < p12

Study parameters:

alpha = 0.0500
power = 0.8000

N = 82
p12 + p21 = 0.1090

Estimated effect size and discordant proportions:

delta = -0.1007 (difference)
p12 = 0.1048
p21 = 0.0042

The estimated discordant proportions of 0.1048 and 0.0042 are very close to the respective original
estimates of the discordant proportions of 0.105 and 0.004 from example 4.

Testing a hypothesis about two correlated proportions

Suppose we collected data from two paired binomial samples and wish to test whether the two
proportions of an outcome of interest are the same. We wish to use McNemar’s test to test this
hypothesis. We can use the mcc command to perform McNemar’s test; see [ST] epitab for details.

Example 10: Testing for paired proportions

We use data provided in table 11.1 of Agresti (2013, 414) that present the results of a General
Social Survey, which asked males who they voted for in the 2004 and 2008 presidential elections.

2008 Election
2004 Election Democrat Republican Total

Democrat 175 16 191
Republican 54 188 42

Total 229 204 433

We wish to test whether there was a change in the voting behavior of males in 2008 compared
with 2004 using McNemar’s test. We use mcci, the immediate form of mcc, to perform this test.
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. mcci 175 16 54 188

Controls
Cases Exposed Unexposed Total

Exposed 175 16 191
Unexposed 54 188 242

Total 229 204 433

McNemar’s chi2(1) = 20.63 Prob > chi2 = 0.0000
Exact McNemar significance probability = 0.0000

Proportion with factor
Cases .4411085
Controls .5288684 [95% Conf. Interval]

difference -.0877598 -.1270274 -.0484923
ratio .8340611 .7711619 .9020907
rel. diff. -.1862745 -.2738252 -.0987238

odds ratio .2962963 .1582882 .5254949 (exact)

McNemar’s test statistic is 20.63 with the corresponding two-sided p-value less than 10−4, which
provides strong evidence of a shift in the Democratic direction among male voters in 2008.

We use the estimates of this study to perform a sample-size analysis we would have conducted before
a new study. The discordant proportions are p12 = 16/433 = 0.037 and p21 = 54/433 = 0.125.

. power pairedproportions 0.037 0.125

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p21 = p12 versus Ha: p21 != p12

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0880 (difference)

p12 = 0.0370
p21 = 0.1250

Estimated sample size:

N = 162

We find that we need a sample of 162 respondents to detect a difference of 0.0880 between discordant
proportions of 0.037 and 0.125 with 80% power using a 5%-level two-sided test.
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Stored results
power pairedproportions stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(p12) success–failure proportion (first discordant proportion)
r(p21) failure–success proportion (second discordant proportion)
r(pmarg1) success proportion for occasion 1 (first marginal proportion)
r(pmarg2) success proportion for occasion 2 (second marginal proportion)
r(corr) correlation between paired observations
r(diff) difference between proportions
r(ratio) ratio of proportions
r(prdiscordant) proportion of discordant pairs
r(sum) sum of discordant proportions
r(rrisk) relative risk
r(oratio) odds ratio
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for the sample size or the difference between discordant proportions
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(effect) diff, ratio, oratio, or rrisk
r(type) test
r(method) pairedproportions
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results

Methods and formulas
Consider a 2×2 contingency table formed with n pairs of observations. The first subscript i = 1, 2

denotes the success of failure in occasion 1, and the second subscript j = 1, 2 denotes the success
of failure in occasion 2.

Occasion 2
Occasion 1 Success Failure Total
Success p11 p12 p1+

Failure p21 p22 1− p1+

Total p+1 1− p+1 1
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Each element in the above table denotes the probability of observing a specific pair. For example,
p11 is the probability of jointly observing a success on occasion 1 and occasion 2, and p12 is the
probability of observing a success on occasion 1 and a failure on occasion 2. p1+ is the marginal
probability of a success on occasion 1, and p+1 is the marginal probability of a success on occasion 2.
The off-diagonal proportions p12 and p21 are referred to as discordant proportions. The relationship
between the discordant proportions and the marginal proportions is given by

p12 = p1+(1− p+1)− ρ
√
p1+(1− p1+) p+1(1− p+1)

p21 = p12 + p+1 − p1+ (1)

where ρ is the correlation between the paired observations.

A two-sample paired proportions test involves testing the null hypothesis H0: p+1 = p1+ versus
the two-sided alternative hypothesis Ha: p+1 6= p1+, the upper one-sided alternative Ha: p+1 > p1+,
or the lower one-sided alternative Ha : p+1 < p1+. Using the relationship p1+ = p11 + p12 and
p+1 = p11 + p21, test hypotheses may be stated in terms of the discordant proportions, for example,
H0: p21 = p12 versus Ha: p21 6= p12.

McNemar’s test statistic is:

χ2 = (n12 − n21)2/(n12 + n21)

where nij is the number of successes (i = 1) or failures (i = 2) on occasion 1 and the number of
successes (j = 1) or failures (j = 2) on occasion 2; see Lachin (2011, chap. 5) for details. This test
statistic has an approximately χ2 distribution with 1 degree of freedom under the null hypothesis.
The square root of the χ2 test statistic is approximately normal with zero mean and variance of one.

Let α be the significance level, β be the probability of a type II error, and z1−α/k and zβ be the
(1− α/k)th and the βth quantiles of the standard normal distribution.

The power π = 1− β is computed using

π =



Φ

{
pdiff
√
n−z1−α

√
pdisc√

pdisc−p2diff

}
for an upper one-sided test

Φ

{
−pdiff

√
n−z1−α

√
pdisc√

pdisc−p2diff

}
for a lower one-sided test

Φ

{
pdiff
√
n−z1−α/2

√
pdisc√

pdisc−p2diff

}
+ Φ

{
−pdiff

√
n−z1−α/2

√
pdisc√

pdisc−p2diff

}
for a two-sided test

(2)
where Φ(·) is the cdf of a standard normal distribution, pdiff = p21 − p12, and pdisc = p12 + p21.

The sample size n for a one-sided test is computed using

n =

(
zα
√
pdisc + z1−β

√
pdisc − p2

diff

pdiff

)2

(3)

See Connor (1987) for details.

For a two-sided test, sample size is computed iteratively from the two-sided power equation in (2).
The default initial value is obtained from the corresponding one-sided formula (3) with the significance
level α/2.
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The effect size δ = p21 − p12 is computed iteratively from the corresponding power equation in
(2). The default initial value is pdisc/2.
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power onevariance — Power analysis for a one-sample variance test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas Reference
Also see

Syntax

Compute sample size

Variance scale

power onevariance v0 va
[
, power(numlist) options

]
Standard deviation scale

power onevariance s0 sa , sd
[
power(numlist) options

]

Compute power

Variance scale

power onevariance v0 va , n(numlist)
[

options
]

Standard deviation scale

power onevariance s0 sa , sd n(numlist)
[

options
]

Compute effect size and target parameter

Target variance

power onevariance v0 , n(numlist) power(numlist)
[

options
]

Target standard deviation

power onevariance s0 , sd n(numlist) power(numlist)
[

options
]

where v0 and s0 are the null (hypothesized) variance and standard deviation or the value of the
variance and standard deviation under the null hypothesis, and va and sa are the alternative (target)
variance and standard deviation or the value of the variance and standard deviation under the
alternative hypothesis. Each argument may be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).

183
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options Description

sd request computation using the standard deviation scale;
default is the variance scale

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗ratio(numlist) ratio of variances, va/v0 (or ratio of standard deviations,

sa/s0, if option sd is specified); specify instead of the
alternative variance va (or standard deviation sa)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for sample size or variance
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
sd does not appear in the dialog box; specification of sd is done automatically by the dialog box selected.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).



power onevariance — Power analysis for a one-sample variance test 185

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
v0 null variance σ2

0

va alternative variance σ2
a

s0 null standard deviation σ0

sa alternative standard deviation σa

ratio ratio of the alternative variance to the null variance σ2
a/σ

2
0

or ratio of the alternative standard deviation to the σa/σ0

null standard deviation (if sd is specified)
target target parameter; synonym for va
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns s0 and sa are displayed in the default table in place of the v0 and va columns when the sd option is

specified.
Column ratio is shown in the default table if specified. If the sd option is specified, this column contains the ratio

of standard deviations. Otherwise, this column contains the ratio of variances.

Menu
Statistics > Power and sample size

Description

power onevariance computes sample size, power, or target variance for a one-sample variance
test. By default, it computes sample size for given power and the values of the variance parameters
under the null and alternative hypotheses. Alternatively, it can compute power for given sample size
and values of the null and alternative variances or the target variance for given sample size, power,
and the null variance. The results can also be obtained for an equivalent standard deviation test, in
which case standard deviations are used instead of variances. Also see [PSS] power for a general
introduction to the power command using hypothesis tests.

Options

sd specifies that the computation be performed using the standard deviation scale. The default is to
use the variance scale.

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power. The nfractional option is
allowed only for sample-size determination.



186 power onevariance — Power analysis for a one-sample variance test

ratio(numlist) specifies the ratio of the alternative variance to the null variance, va/v0, or the ratio
of standard deviations, sa/s0, if the sd option is specified. You can specify either the alternative
variance va as a command argument or the ratio of the variances in ratio(). If you specify
ratio(#), the alternative variance is computed as va = v0 × #. This option is not allowed with
the effect-size determination.

direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies an initial value for the iteration procedure. Iteration is used to compute variance
for a two-sided test and to compute sample size. The default initial value for the sample size is
obtained from a closed-form normal approximation. The default initial value for the variance is
obtained from a closed-form solution for a one-sided test with the significance level of α/2.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power onevariance but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power onevariance
Computing sample size
Computing power
Computing effect size and target variance
Performing a hypothesis test on variance

This entry describes the power onevariance command and the methodology for power and
sample-size analysis for a one-sample variance test. See [PSS] intro for a general introduction to
power and sample-size analysis and [PSS] power for a general introduction to the power command
using hypothesis tests.

Introduction
The study of variance arises in cases where investigators are interested in making an inference

on the variability of a process. For example, the precision of a thermometer in taking accurate
measurements, the variation in the weights of potato chips from one bag to another, the variation in
mileage across automobiles of the same model. Before undertaking the actual study, we may want
to find the optimal sample size to detect variations that exceed the tolerable limits or industry-wide
standards.
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This entry describes power and sample-size analysis for the inference about the population variance
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: σ

2 = σ2
0 versus

the two-sided alternative hypothesis Ha: σ
2 6= σ2

0 , the upper one-sided alternative Ha: σ
2 > σ2

0 , or
the lower one-sided alternative Ha: σ

2 < σ2
0 .

Hypothesis testing of variances relies on the assumption of normality of the data. For a random
sample of size n from a normal distribution, the distribution of the sample variance s2 is scaled
chi-squared. The χ2 test statistic (n−1)s2/σ2

0 , which has a chi-squared distribution χ2
n−1 with n−1

degrees of freedom, is used to test hypotheses on variance, and the corresponding test is known as a
χ2 test.

The test of a variance is equivalent to the test of a standard deviation with the null hypothesis
H0: σ = σ0. The standard deviation test uses the same χ2 test statistic. The only difference between
the two tests is the scale or metric of the variability parameter: variance for the variance test and
standard deviation for the standard deviation test. In some cases, standard deviations may provide a
more meaningful interpretation than variances. For example, standard deviations of test scores or IQ
have the same scale as the mean and provide information about the spread of the observations around
the mean.

The power onevariance command provides power and sample-size analysis for the χ2 test of
a one-sample variance or a one-sample standard deviation.

Using power onevariance

power onevariance computes sample size, power, or target variance for a one-sample variance
test. If the sd option is specified, power onevariance computes sample size, power, or target standard
deviation for an equivalent one-sample standard-deviation test. All computations are performed for
a two-sided hypothesis test where, by default, the significance level is set to 0.05. You may change
the significance level by specifying the alpha() option. You can specify the onesided option to
request a one-sided test.

In what follows, we describe the use of power onevariance in a variance metric. The corresponding
use in a standard deviation metric, when the sd option is specified, is the same except variances v0

and va should be replaced with the respective standard deviations s0 and sa. Note that computations
using the variance and standard deviation scales yield the same results; the difference is only in the
specification of the parameters.

To compute sample size, you must specify the variances under the null and alternative hypotheses,
v0 and va, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

To compute power, you must specify the sample size in the n() option and the variances under
the null and alternative hypotheses as arguments v0 and va, respectively.

Instead of the null and alternative variances v0 and va, you can specify the null variance v0 and
the ratio of the alternative variance to the null variance in the ratio() option.

To compute effect size, the ratio of the alternative to the null variances, and target variance, you
must specify the sample size in the n() option, the power in the power() option, the null variance
v0, and, optionally, the direction of the effect. The direction is upper by default, direction(upper),
which means that the target variance is assumed to be larger than the specified null value. You can
change the direction to lower, which means that the target variance is assumed to be smaller than the
specified null value, by specifying the direction(lower) option.
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By default, the computed sample size is rounded up. You can specify the nfractional option to
see the corresponding fractional sample size; see Fractional sample sizes in [PSS] unbalanced designs
for an example. The nfractional option is allowed only for sample-size determination.

The test statistic for a one-sample variance test follows a χ2 distribution. Its degrees of freedom
depends on the sample size; therefore, sample-size computations require iteration. The effect-size
determination for a two-sided test also requires iteration. The default initial value of the sample size
is obtained using a closed-form normal approximation. The default initial value of the variance for
the effect-size determination is obtained by using the corresponding computation for a one-sided test
with the significance level α/2. The default initial values may be changed by specifying the init()
option. See [PSS] power for the descriptions of other options that control the iteration procedure.

In the following sections, we describe the use of power onevariance accompanied by examples
for computing sample size, power, and target variance.

Computing sample size

To compute sample size, you must specify the variances under the null and alternative hypotheses,
v0 and va, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-sample variance test

Consider a study where interest lies in testing whether the variability in mileage (measured in
miles per gallon) of automobiles of a certain car manufacturer equals a specified value. Industry-wide
standards maintain that a variation of at most two miles per gallon (mpg) from an average value is
acceptable for commercial production.

The process engineer suspects that a faulty assembly line has been producing the variation higher
than the acceptable standard. He or she wishes to test the null hypothesis of H0: σ = 2 versus a
two-sided alternative Ha : σ 6= 2 or, equivalently, H0 : σ2 = 4 versus H0 : σ2 6= 4. The engineer
wants to find the minimum number of cars so that the 5%-level two-sided test achieves the power of
80% to detect the alternative variance of 9 (or standard deviation of 3 mpg) given the null variance
of 4 (or standard deviation of 2 mpg). To obtain the sample size, we specify the null and alternative
values of the variance in v0 and va after the command name:

. power onevariance 4 9

Performing iteration ...

Estimated sample size for a one-sample variance test
Chi-squared test
Ho: v = v0 versus Ha: v != v0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.2500

v0 = 4.0000
va = 9.0000

Estimated sample size:

N = 24

We find that a sample of 24 subjects is required for this study.
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As we mentioned in the previous section, sample-size computation requires iteration. By default,
power onevariance suppresses the iteration log, which may be displayed by specifying the log
option.

Example 2: Specifying ratio of variances

Instead of the alternative variance as in example 1, we can specify the ratio of the alternative and
null variances of 9/4 = 2.25 in the ratio() option:

. power onevariance 4, ratio(2.25)

Performing iteration ...

Estimated sample size for a one-sample variance test
Chi-squared test
Ho: v = v0 versus Ha: v != v0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.2500

v0 = 4.0000
va = 9.0000

ratio = 2.2500

Estimated sample size:

N = 24

We obtain the same results as in example 1. The ratio of the variances is now also displayed in the
output.

Example 3: Standard deviation test

We can use the sd option to perform calculations in the standard deviation metric. We reproduce
results from example 1 using the corresponding null and standard deviations of 2 and 3.

. power onevariance 2 3, sd

Performing iteration ...

Estimated sample size for a one-sample standard-deviation test
Chi-squared test
Ho: s = s0 versus Ha: s != s0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.5000

s0 = 2.0000
sa = 3.0000

Estimated sample size:

N = 24

The results are the same, except the output reports standard deviations instead of variances.
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Computing power

To compute power, you must specify the sample size in the n() option and the variances under
the null and alternative hypotheses, v0 and va, respectively.

Example 4: Power of a one-sample variance test

Continuing with example 1, we will suppose that we are designing a new study and anticipate
obtaining a sample of 30 cars. To compute the power corresponding to this sample size given the
study parameters from example 1, we specify the sample size of 30 in the n() option:

. power onevariance 4 9, n(30)

Estimated power for a one-sample variance test
Chi-squared test
Ho: v = v0 versus Ha: v != v0

Study parameters:

alpha = 0.0500
N = 30

delta = 2.2500
v0 = 4.0000
va = 9.0000

Estimated power:

power = 0.8827

With a larger sample size, the power of the test increases to about 88%.

Example 5: Multiple values of study parameters

Suppose we would like to assess the effect of increasing the alternative variance on the power of
the test. We do this by specifying a range of values in parentheses in the argument for the alternative
variance:

. power onevariance 4 (4.5(0.5)10), n(30)

Estimated power for a one-sample variance test
Chi-squared test
Ho: v = v0 versus Ha: v != v0

alpha power N delta v0 va

.05 .08402 30 1.125 4 4.5

.05 .1615 30 1.25 4 5

.05 .2694 30 1.375 4 5.5

.05 .391 30 1.5 4 6

.05 .511 30 1.625 4 6.5

.05 .6189 30 1.75 4 7

.05 .7098 30 1.875 4 7.5

.05 .7829 30 2 4 8

.05 .8397 30 2.125 4 8.5

.05 .8827 30 2.25 4 9

.05 .9147 30 2.375 4 9.5

.05 .9382 30 2.5 4 10

The power is an increasing function of the effect size, which is measured by the ratio of the alternative
variance to the null variance.
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For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Computing effect size and target variance

Effect size δ for a one-sample variance test is defined as the ratio of the alternative variance to
the null variance δ = va/v0 or the ratio of the alternative standard deviation to the null standard
deviation δ = sa/s0 when the sd option is specified.

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, power, sample size, and the
null variance or the null standard deviation must be specified. In addition, you must also decide on
the direction of the effect: upper, meaning va > v0 (sa > s0), or lower, meaning va < v0 (sa < s0).
The direction may be specified in the direction() option; direction(upper) is the default.

Example 6: Minimum detectable value of the variance

Continuing with example 4, we may also be interested to find the minimum effect size that can
be detected with a power of 80% given a sample of 30 subjects. To compute the smallest effect size
and the corresponding target variance, after the command name, we specify the null variance of 4,
sample size n(30), and power power(0.8):

. power onevariance 4, n(30) power(0.8)

Performing iteration ...

Estimated target variance for a one-sample variance test
Chi-squared test
Ho: v = v0 versus Ha: v != v0; va > v0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 30
v0 = 4.0000

Estimated effect size and target variance:

delta = 2.0343
va = 8.1371

The smallest detectable value of the effect size, the ratio of the variances, is 2.03, which corresponds
to the alternative variance of 8.14. Compared with example 1, for the same power of 80%, this
example shows a smaller variance with a larger sample of 30 subjects.

Above we assumed the effect to be in the upper direction. The effect size and target variance in
the lower direction can be obtained by specifying direction(lower).
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. power onevariance 4, n(30) power(0.8) direction(lower)

Performing iteration ...

Estimated target variance for a one-sample variance test
Chi-squared test
Ho: v = v0 versus Ha: v != v0; va < v0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 30
v0 = 4.0000

Estimated effect size and target variance:

delta = 0.4567
va = 1.8267

The smallest detectable value of the effect size is 0.46, which corresponds to the alternative variance
of 1.83.

Performing a hypothesis test on variance

In this section, we demonstrate the use of the sdtest command for testing hypotheses about
variances; see [R] sdtest for details. Suppose we wish to test the hypothesis that the variance or
standard deviation is different from a specific null value on the collected data. We can use the sdtest
command to do this.

Example 7: Testing for variance

We use auto.dta to demonstrate the use of sdtest. We have data on mileage ratings of 74
automobiles and wish to test whether the overall standard deviation is different from 3 miles per
gallon (mpg).

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. sdtest mpg == 3

One-sample test of variance

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

mpg 74 21.2973 .6725511 5.785503 19.9569 22.63769

sd = sd(mpg) c = chi2 = 271.4955
Ho: sd = 3 degrees of freedom = 73

Ha: sd < 3 Ha: sd != 3 Ha: sd > 3
Pr(C < c) = 1.0000 2*Pr(C > c) = 0.0000 Pr(C > c) = 0.0000

We find statistical evidence to reject the null hypothesis of H0 : σmpg = 3 versus a two-sided
alternative Ha: σmpg 6= 3 at the 5% significance level; the p-value < 0.0000.

We use the estimates of this study to perform a sample-size analysis we would have conducted
before the study.
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. power onevar 3 5.78, sd

Performing iteration ...

Estimated sample size for a one-sample standard-deviation test
Chi-squared test
Ho: s = s0 versus Ha: s != s0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.9267

s0 = 3.0000
sa = 5.7800

Estimated sample size:

N = 10

We find that the sample size required to detect a standard deviation of 5.78 mpg given the null value
of 3 mpg with 80% power using a 5%-level two-sided test is only 10.

Stored results
power onevariance stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(v0) variance under the null hypothesis (for variance scale, default)
r(va) variance under the alternative hypothesis (for variance scale, default)
r(s0) standard deviation under the null hypothesis (if option sd is specified)
r(sa) standard deviation under the alternative hypothesis (if option sd is specified)
r(ratio) ratio of the alternative variance to the null variance (or the ratio of standard deviations if

option sd is specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for the sample size or the variance
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) onevariance
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats
r(scale) variance or standard deviation

Matrix
r(pss table) table of results
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Methods and formulas
Consider a random sample of size n from a normal population with mean µ and variance σ2. Let

σ2
0 and σ2

a denote the null and alternative values of the variance parameter, respectively.

A one-sample variance test involves testing the null hypothesis H0: σ
2 = σ2

0 versus the two-sided
alternative hypothesis Ha : σ2 6= σ2

0 , the upper one-sided alternative Ha : σ2 > σ2
0 , or the lower

one-sided alternative Ha: σ
2 < σ2

0 .

The sampling distribution of the test statistic χ2 = (n−1)s2/σ2 under the null hypothesis follows
a χ2 distribution with n− 1 degrees of freedom, where s2 is the sample variance. The corresponding
test is known as a χ2 test.

The following formulas are based on Dixon and Massey (1983, 110–112).

Let α be the significance level, β be the probability of a type II error, and χ2
n−1,1−α and χ2

n−1,β

be the (1− α)th and the βth quantiles of the χ2 distribution with n− 1 degrees of freedom.

The following equality holds at the critical value of the accept/reject boundary for H0:

χ2
n−1,1−α

n− 1
σ2

0 =
χ2
n−1,β

n− 1
σ2
a

The power π = 1− β is computed using

π =


1− χ2

n−1

(
σ2
0

σ2
a
χ2
n−1,1−α

)
for an upper one-sided test

χ2
n−1

(
σ2
0

σ2
a
χ2
n−1,α

)
for a lower one-sided test

1− χ2
n−1

(
σ2
0

σ2
a
χ2
n−1,1−α/2

)
+ χ2

n−1

(
σ2
0

σ2
a
χ2
n−1,α/2

)
for a two-sided test

(1)

where χ2
n−1 (·) is the cdf of a χ2 distribution with n− 1 degrees of freedom.

Sample size n is obtained by iteratively solving the corresponding power equation from (1) for n.
The default initial value for the sample size is obtained by using a large-sample normal approximation.

For a large n, the log-transformed sample variance is approximately normal with mean 2 ln(σ)

and standard deviation
√

2/n. The approximate sample size is then given by

n =
1

2

z1−α/k − zβ
ln
(
σa
σ0

)


2

where k = 1 for a one-sided test and k = 2 for a two-sided test.

For a one-sided test, the minimum detectable value of the variance is computed as follows:

σ2
a =


σ2

0
χ2
n−1,1−α
χ2
n−1,β

for an upper one-sided test

σ2
0
χ2
n−1,α

χ2
n−1,1−β

for a lower one-sided test
(2)

For a two-sided test, the minimum detectable value of the variance is computed by iteratively
solving the two-sided power equation from (1) for σ2

a. The default initial value is obtained from (2)
with α replaced by α/2.

If the nfractional option is not specified, the computed sample size is rounded up.



power onevariance — Power analysis for a one-sample variance test 195

Reference
Dixon, W. J., and F. J. Massey, Jr. 1983. Introduction to Statistical Analysis. 4th ed. New York: McGraw–Hill.

Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[R] sdtest — Variance-comparison tests



Title

power twovariances — Power analysis for a two-sample variances test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

Variance scale

power twovariances v1 v2

[
, power(numlist) options

]
Standard deviation scale

power twovariances s1 s2 , sd
[
power(numlist) options

]

Compute power

Variance scale

power twovariances v1 v2 , n(numlist)
[

options
]

Standard deviation scale

power twovariances s1 s2 , sd n(numlist)
[

options
]

Compute effect size and target parameter

Experimental-group variance

power twovariances v1 , n(numlist) power(numlist)
[

options
]

Experimental-group standard deviation

power twovariances s1 , sd n(numlist) power(numlist)
[

options
]

where v1 and s1 are the variance and standard deviation, respectively, of the control (reference) group,
and v2 and s2 are the variance and standard deviation of the experimental (comparison) group.
Each argument may be specified either as one number or as a list of values in parentheses (see
[U] 11.1.8 numlist).

196
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options Description

sd request computation using the standard deviation scale;
default is the variance scale

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(n1 | n2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗ratio(numlist) ratio of variances, v2/v1 (or ratio of standard deviations,

s2/s1, if option sd is specified); specify instead of the
experimental-group variance v2 (or standard deviation s2)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for the sample sizes or experimental-group
variance

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
sd does not appear in the dialog box; specification of sd is done automatically by the dialog box selected.
notitle does not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ

v1 control-group variance σ2
1

v2 experimental-group variance σ2
2

s1 control-group standard deviation σ1

s2 experimental-group standard deviation σ2

ratio ratio of the experimental-group variance to the σ2
2/σ

2
1

control-group variance or ratio of the
experimental-group standard deviation to σ2/σ1

the control-group standard deviation
(if sd is specified)

target target parameter; synonym for v2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns s1 and s2 are displayed in the default table in place of the v1 and v2 columns when the sd option is

specified.
Column ratio is shown in the default table if specified. If the sd option is specified, this column contains the ratio

of standard deviations. Otherwise, this column contains the ratio of variances.

Menu
Statistics > Power and sample size

Description
power twovariances computes sample size, power, or the experimental-group variance (or

standard deviation) for a two-sample variances test. By default, it computes sample size for given
power and the values of the control-group and experimental-group variances. Alternatively, it can
compute power for given sample size and values of the control-group and experimental-group variances
or the experimental-group variance for given sample size, power, and the control-group variance. Also
see [PSS] power for a general introduction to the power command using hypothesis tests.
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Options

sd specifies that the computation be performed using the standard deviation scale. The default is to
use the variance scale.

� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see
[PSS] power.

ratio(numlist) specifies the ratio of the experimental-group variance to the control-group variance,
v2/v1, or the ratio of the standard deviations, s2/s1, if the sd option is specified. You can specify
either the experimental-group variance v2 as a command argument or the ratio of the variances in
ratio(). If you specify ratio(#), the experimental-group variance is computed as v2 = v1 ×
#. This option is not allowed with the effect-size determination.

direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. For sample-size determination, the
estimated parameter is either the control-group size N1 or, if compute(n2) is specified, the
experimental-group size N2. For the effect-size determination, the estimated parameter is the
experimental-group variance v2 or, if the sd option is specified, the experimental-group standard
deviation s2. The default initial values for the variance and standard deviation for a two-sided test
are obtained as a closed-form solution for the corresponding one-sided test with the significance level
α/2. The default initial values for sample sizes for a χ2 test are obtained from the corresponding
closed-form normal approximation.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power twovariances but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Using power twovariances
Computing sample size
Computing power
Computing effect size and experimental-group variance
Testing a hypothesis about two independent variances
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This entry describes the power twovariances command and the methodology for power and
sample-size analysis for a two-sample variances test. See [PSS] intro for a general introduction to
power and sample-size analysis and [PSS] power for a general introduction to the power command
using hypothesis tests.

Introduction

Investigators are often interested in comparing the variances of two populations, such as comparing
variances in yields of corn from two plots, comparing variances of stock returns from two companies,
comparing variances of the alcohol concentrations from two different yeast strains, and so on. Before
conducting the actual study, the investigators need to find the optimal sample size to detect variations
that are beyond tolerable limits or industry-wide standards.

This entry describes power and sample-size analysis for the inference about two population variances
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: σ

2
2 = σ2

1 versus
the two-sided alternative hypothesis Ha: σ

2
2 6= σ2

1 , the upper one-sided alternative Ha: σ
2
2 > σ2

1 , or
the lower one-sided alternative Ha: σ

2
2 < σ2

1 .

Hypothesis testing of variances relies on the assumption of normality. If two independent processes
are assumed to follow a normal distribution, then the ratio of their sample variances follows an F
distribution, and the corresponding test is known as an F test.

The test of variances is equivalent to the test of standard deviations with the null hypothesis
H0: σ1 = σ2. The standard deviation test uses the same F test statistic. The only difference between
the two tests is the scale or metric of the variability parameters: variances for the variance test and
standard deviations for the standard deviation test. In some cases, standard deviations may provide
a more meaningful interpretation than variances. For example, standard deviations of test scores or
IQ have the same scale as the mean and provide information about the spread of the observations
around the mean.

The power twovariances command provides power and sample-size analysis for the F test of
two-sample variances or standard deviations.

Using power twovariances

power twovariances computes sample size, power, or experimental-group variance for a two-
sample variances test. All computations are performed for a two-sided hypothesis test where, by
default, the significance level is set to 0.05. You may change the significance level by specifying
the alpha() option. You can specify the onesided option to request a one-sided test. By default,
all computations assume a balanced or equal-allocation design; see [PSS] unbalanced designs for a
description of how to specify an unbalanced design.

In what follows, we describe the use of power twovariances in a variance metric. The corre-
sponding use in a standard deviation metric, when the sd option is specified, is the same except
variances v1 and v2 should be replaced with the respective standard deviations s1 and s2. Note that
computations using the variance and standard deviation scales yield the same results; the difference
is only in the specification of the parameters.

To compute the total sample size, you must specify the control- and experimental-group variances,
v1 and v2, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(n1) option and the sample
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size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(n2) option and the sample size of the control group in
the n1() option.

To compute power, you must specify the total sample size in the n() option and the control and
the experimental-group variances, v1 and v2, respectively.

Instead of the experimental-group variance v2, you may specify the ratio v2/v1 of the experimental-
group variance to the control-group variance in the ratio() option when computing sample size or
power.

To compute effect size, the ratio of the experimental-group variance to the control-group variance,
and the experimental-group variance, you must specify the total sample size in the n() option, the
power in the power() option, the control-group variance v1, and, optionally, the direction of the effect.
The direction is upper by default, direction(upper), which means that the experimental-group
variance is assumed to be larger than the specified control-group value. You can change the direction
to be lower, which means that the experimental-group variance is assumed to be smaller than the
specified control-group value, by specifying the direction(lower) option.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS] unbalanced designs for more details.

In the following sections, we describe the use of power twovariances accompanied by examples
for computing sample size, power, and experimental-group variance.

Computing sample size

To compute sample size, you must specify the control- and the experimental-group variances, v1

and v2, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a two-sample variances test

Consider a study whose goal is to investigate whether the variability in weights (measured in
ounces) of bags of potato chips produced by a machine at a plant A, the control group, differs from
that produced by a similar machine at a new plant B, the experimental group. The considered null
hypothesis is H0: σA = σB versus a two-sided alternative hypothesis Ha: σA 6= σB or, equivalently,
H0: σ2

A = σ2
B versus Ha: σ

2
A 6= σ2

B . The standard deviation of weights from plant A is 2 ounces.
The standard deviation of weights from the new plant B is expected to be lower, 1.5 ounces. The
respective variances of weights from plants A and B are 4 and 2.25. Investigators wish to obtain the
minimum sample size required to detect the specified change in variability with 80% power using a
5%-level two-sided test assuming equal-group allocation. To compute sample size for this study, we
specify the control- and experimental-group variances after the command name:
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. power twovariances 4 2.25

Performing iteration ...

Estimated sample sizes for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5625

v1 = 4.0000
v2 = 2.2500

Estimated sample sizes:

N = 194
N per group = 97

A total sample of 194 bags, 97 in each plant, must be obtained to detect the specified ratio of variances
in the two plants with 80% power using a two-sided 5%-level test.

Example 2: Standard deviation scale

We can also specify standard deviations instead of variances, in which case we must also specify
the sd option:

. power twovariances 2 1.5, sd

Performing iteration ...

Estimated sample sizes for a two-sample standard-deviations test
F test
Ho: s2 = s1 versus Ha: s2 != s1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7500

s1 = 2.0000
s2 = 1.5000

Estimated sample sizes:

N = 194
N per group = 97

We obtain the same sample sizes as in example 1.
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Example 3: Specifying ratio of variances or standard deviations

Instead of the experimental-group variance of 2.25 as in example 1, we can specify the ratio of
variances 2.25/4 = 0.5625 in the ratio() option.

. power twovariances 4, ratio(0.5625)

Performing iteration ...

Estimated sample sizes for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5625

v1 = 4.0000
v2 = 2.2500

ratio = 0.5625

Estimated sample sizes:

N = 194
N per group = 97

The results are identical to those from example 1.

Similarly, instead of the experimental-group standard deviation of 1.5 as in example 2, we can
specify the ratio of standard deviations 1.5/2 = 0.75 in the ratio() option and obtain the same
results:

. power twovariances 2, sd ratio(0.75)

Performing iteration ...

Estimated sample sizes for a two-sample standard-deviations test
F test
Ho: s2 = s1 versus Ha: s2 != s1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7500

s1 = 2.0000
s2 = 1.5000

ratio = 0.7500

Estimated sample sizes:

N = 194
N per group = 97

Example 4: Computing one of the group sizes

Continuing with example 1, we will suppose that investigators anticipate a sample of 100 bags
from plant A and wish to compute the required number of bags from plant B. To compute sample
size for plant B using the study parameters of example 1, we use a combination of the n1() and
compute(n2) options.
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. power twovariances 4 2.25, n1(100) compute(n2)

Performing iteration ...

Estimated sample sizes for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5625

v1 = 4.0000
v2 = 2.2500
N1 = 100

Estimated sample sizes:

N = 194
N2 = 94

A slightly smaller sample of 94 bags is needed from plant B given a slightly larger sample of bags
from plant A to achieve the same 80% power as in example 1.

If the sample size for plant B is known a priori, you can compute the sample size for plant A by
specifying the n2() and compute(n1) options.

Example 5: Unbalanced design

By default, power twovariances computes sample size for a balanced or equal-allocation design.
If we know the allocation ratio of subjects between the groups, we can compute the required sample
size for an unbalanced design by specifying the nratio() option.

Continuing with example 1, we will suppose that the new plant B is more efficient and more
cost effective in producing bags of chips than plant A. Investigators anticipate twice as many bags
from plant B than from plant A; that is, n2/n1 = 2. We compute the required sample size for this
unbalanced design by specifying the nratio() option:

. power twovariances 4 2.25, nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5625

v1 = 4.0000
v2 = 2.2500

N2/N1 = 2.0000

Estimated sample sizes:

N = 225
N1 = 75
N2 = 150

The requirement on the total sample size increases for an unbalanced design compared with the
balanced design from example 1. Investigators must decide whether the decrease of 22 from 97 to
75 in the number of bags from plant A covers the cost of the additional 53 (150 − 97 = 53) bags
from plant B.
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Also see Two samples in [PSS] unbalanced designs for more examples of unbalanced designs for
two-sample tests.

Computing power

To compute power, you must specify the total sample size in the n() option and the control- and
experimental-group variances, v1 and v2, respectively.

Example 6: Power of a two-sample variances test

Continuing with example 1, we will suppose that the investigators can afford a total sample of
250 bags, 125 from each plant, and want to find the power corresponding to this larger sample size.

To compute the power corresponding to this sample size, we specify the total sample size in the
n() option:

. power twovariances 4 2.25, n(250)

Estimated power for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
N = 250

N per group = 125
delta = 0.5625

v1 = 4.0000
v2 = 2.2500

Estimated power:

power = 0.8908

With a total sample of 250 bags, 125 per plant, we obtain a power of roughly 89%.

Example 7: Multiple values of study parameters

In this example, we assess the effect of varying the variances of weights obtained from plant B on
the power of our study. Continuing with example 6, we vary the experimental-group variance from
1.5 to 3 in 0.25 increments. We specify the corresponding numlist in parentheses:

. power twovariances 4 (1.5(0.25)3), n(250)

Estimated power for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1

alpha power N N1 N2 delta v1 v2

.05 .9997 250 125 125 .375 4 1.5

.05 .9956 250 125 125 .4375 4 1.75

.05 .9701 250 125 125 .5 4 2

.05 .8908 250 125 125 .5625 4 2.25

.05 .741 250 125 125 .625 4 2.5

.05 .5466 250 125 125 .6875 4 2.75

.05 .3572 250 125 125 .75 4 3
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The power decreases from 99.97% to 35.72% as the experimental-group variance gets closer to the
control-group variance of 4.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Computing effect size and experimental-group variance

Effect size δ for a two-sample variances test is defined as the ratio of the experimental-group
variance to the control-group variance, δ = v2/v1. If the sd option is specified, effect size δ is the
ratio of the experimental-group standard deviation to the control-group standard deviation, δ = s2/s1.

Sometimes, we may be interested in determining the smallest effect and the corresponding
experimental-group variance that yield a statistically significant result for prespecified sample size and
power. In this case, power, sample size, and control-group variance must be specified. In addition,
you must also decide on the direction of the effect: upper, meaning v2 > v1, or lower, meaning
v2 < v1. The direction may be specified in the direction() option; direction(upper) is the
default. If the sd option is specified, the estimated parameter is the experimental-group standard
deviation instead of the variance.

Example 8: Minimum detectable value of the experimental-group variance

Continuing with example 6, we will compute the minimum plant B variance that can be detected
given a total sample of 250 bags and 80% power. To find the variance, after the command name, we
specify the plant A variance of 4, total sample size n(250), and power power(0.8):

. power twovariances 4, n(250) power(0.8)

Performing iteration ...

Estimated experimental-group variance for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1; v2 > v1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 250
N per group = 125

v1 = 4.0000

Estimated effect size and experimental-group variance:

delta = 1.6573
v2 = 6.6291

We find that the minimum value of the experimental-group variance that would yield a statistically
significant result in this study is 6.63, and the corresponding effect size is 1.66.

In this example, we computed the variance assuming an upper direction, or a ratio greater than 1,
δ > 1. To request a lower direction, or a ratio less than 1, we can specify the direction(lower)
option.
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Testing a hypothesis about two independent variances

In this section, we demonstrate the use of the sdtest command for testing a hypothesis about
two independent variances; see [R] sdtest for details.

Example 9: Comparing two variances

Consider the fuel dataset analyzed in [R] sdtest. Suppose we want to investigate the effectiveness
of a new fuel additive on the mileage of cars. We have a sample of 12 cars, where each car was run
without the additive and later with the additive. The results of each run are stored in variables mpg1
and mpg2.

. use http://www.stata-press.com/data/r13/fuel

. sdtest mpg1==mpg2

Variance ratio test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

mpg1 12 21 .7881701 2.730301 19.26525 22.73475
mpg2 12 22.75 .9384465 3.250874 20.68449 24.81551

combined 24 21.875 .6264476 3.068954 20.57909 23.17091

ratio = sd(mpg1) / sd(mpg2) f = 0.7054
Ho: ratio = 1 degrees of freedom = 11, 11

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
Pr(F < f) = 0.2862 2*Pr(F < f) = 0.5725 Pr(F > f) = 0.7138

sdtest uses the ratio of the control-group standard deviation to the experimental-group standard
deviation as its test statistic. We do not have sufficient evidence to reject the null hypothesis of
H0: σ1 = σ2 versus the two-sided alternative Ha: σ1 6= σ2; the p-value > 0.5725.

We use the estimates of this study to perform a sample-size analysis we would have conducted
before the study. We assume an equal-group design and power of 80%.

. power twovariances 2.73 3.25, sd power(0.8)

Performing iteration ...

Estimated sample sizes for a two-sample standard-deviations test
F test
Ho: s2 = s1 versus Ha: s2 != s1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.1905

s1 = 2.7300
s2 = 3.2500

Estimated sample sizes:

N = 522
N per group = 261

The total sample size required by the test to detect the difference between the two standard deviations
of 2.73 in the control group and of 3.25 in the experimental group is 522, 261 for each group, which
is significantly larger than the sample of 12 cars in our fuel dataset.
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Stored results
power twovariances stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1

r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(v1) control-group variance
r(v2) experimental-group variance
r(ratio) ratio of the experimental- to the control-group variances (or standard deviations if sd is

specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for sample sizes, experimental-group variance, or standard deviation
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) twovariances
r(scale) variance or standard deviation
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results

Methods and formulas
Consider two independent samples from a normal population with means µ1 and µ2 and variances

σ2
1 and σ2

2 . The ratio (s1/σ1)2/(s2/σ2)2 has an F distribution with n1 − 1 numerator and n2 − 1
denominator degrees of freedom. s2

1 and s2
2 are the sample variances, and n1 and n2 are the sample

sizes.

Let σ2
1 and σ2

2 be the control-group and experimental-group variances, respectively.

A two-sample variances test involves testing the null hypothesis H0: σ
2
2 = σ2

1 versus the two-sided
alternative hypothesis Ha : σ2

2 6= σ2
1 , the upper one-sided alternative Ha : σ2

2 > σ2
1 , or the lower

one-sided alternative Ha: σ
2
2 < σ2

1 .

Equivalently, the hypotheses can be expressed in terms of the ratio of the two variances: H0 :
σ2

2/σ
2
1 = 1 versus the two-sided alternative Ha : σ2

2/σ
2
1 6= 1, the upper one-sided alternative

Ha: σ
2
2/σ

2
1 > 1, or the lower one-sided alternative Ha: σ

2
2/σ

2
1 < 1.
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The following formulas are based on Dixon and Massey (1983, 116–119).

Let α be the significance level, β be the probability of a type II error, and Fα = Fn1−1,n2−1,α

and Fn1−1,n2−1,β be the αth and the βth quantiles of an F distribution with n1 − 1 numerator and
n2 − 1 denominator degrees of freedom.

The power π = 1− β is computed using

π =


1− Fn1−1,n2−1

(
σ2
1

σ2
2
F1−α

)
for an upper one-sided test

Fn1−1,n2−1

(
σ2
1

σ2
2
Fα

)
for a lower one-sided test

1− Fn1−1,n2−1

(
σ2
1

σ2
2
F1−α/2

)
+ Fn1−1,n2−1

(
σ2
1

σ2
2
Fα/2

)
for a two-sided test

(1)

where Fn1−1,n2−1 (·) is the cdf of an F distribution with n1− 1 numerator and n2− 1 denominator
degrees of freedom.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and power can be viewed as
a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS] unbalanced designs for details.

If either n1 or n2 is known, the other sample size is computed iteratively from the corresponding
power equation in (1).

The initial values for the sample sizes are obtained from closed-form large-sample normal approx-
imations; see, for example, Mathews (2010, 68).

For a one-sided test, the minimum detectable value of the experimental-group variance is computed
as follows:

σ2
2 =

σ2
1
Fn1−1,n2−1,1−α
Fn1−1,n2−1,β

for an upper one-sided test

σ2
1
Fn1−1,n2−1,α

Fn1−1,n2−1,1−β
for a lower one-sided test

(2)

For a two-sided test, the minimum detectable value of the experimental-group variance is computed
iteratively using the two-sided power equation from (1). The default initial value is obtained from (2)
with α replaced by α/2.

References
Dixon, W. J., and F. J. Massey, Jr. 1983. Introduction to Statistical Analysis. 4th ed. New York: McGraw–Hill.

Mathews, P. 2010. Sample Size Calculations: Practical Methods for Engineers and Scientists. Fairport Harbor, OH:
Mathews Malnar and Bailey.

Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[R] sdtest — Variance-comparison tests
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power onecorrelation — Power analysis for a one-sample correlation test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power onecorrelation r0 ra
[
, power(numlist) options

]

Compute power

power onecorrelation r0 ra , n(numlist)
[

options
]

Compute effect size and target correlation

power onecorrelation r0 , n(numlist) power(numlist)
[

options
]

where r0 is the null (hypothesized) correlation or the value of the correlation under the null hypothesis,
and ra is the alternative (target) correlation or the value of the correlation under the alternative
hypothesis. r0 and ra may each be specified either as one number or as a list of values in
parentheses (see [U] 11.1.8 numlist).

210
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗diff(numlist) difference between the alternative correlation and the null

correlation, ra − r0; specify instead of the alternative
correlation ra

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for the sample size or correlation
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
r0 null correlation ρ0

ra alternative correlation ρa
diff difference between the alternative and null ρa − ρ0

correlations
target target parameter; synonym for ra
all display all supported columns

Column beta is shown in the default table in place of column power if specified.

Menu
Statistics > Power and sample size

Description
power onecorrelation computes sample size, power, or target correlation for a one-sample

correlation test. By default, it computes sample size for given power and the values of the correlation
parameters under the null and alternative hypotheses. Alternatively, it can compute power for given
sample size and values of the null and alternative correlations or the target correlation for given
sample size, power, and the null correlation. Also see [PSS] power for a general introduction to the
power command using hypothesis tests.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power. The nfractional option is
allowed only for sample-size determination.

diff(numlist) specifies the difference between the alternative correlation and the null correlation,
ra − r0. You can specify either the alternative correlation ra as a command argument or the
difference between the two correlations in the diff() option. If you specify diff(#), the
alternative correlation is computed as ra = r0 + #. This option is not allowed with the effect-size
determination.

direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.
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� � �
Iteration �

init(#) specifies the initial value for the iteration procedure. Iteration is used to compute sample
size or target correlation for a two-sided test. The default initial value for the estimated parameter
is obtained from the corresponding closed-form one-sided computation using the significance level
α/2.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power onecorrelation but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power onecorrelation
Computing sample size
Computing power
Computing effect size and target correlation
Performing hypothesis tests on correlation

This entry describes the power onecorrelation command and the methodology for power and
sample-size analysis for a one-sample correlation test. See [PSS] intro for a general introduction to
power and sample-size analysis and [PSS] power for a general introduction to the power command
using hypothesis tests.

Introduction
Correlation analysis emanates from studies quantifying dependence between random variables,

such as dependence between height and weight of individuals, between blood pressure and cholesterol
levels, between the SAT scores of students and their first-year grade point average, between the number
of minutes per week customers spend using a new fitness program and the number of pounds lost,
and many more.

The correlation coefficient ρ is commonly used to measure the strength of such dependence. We
consider Pearson’s correlation obtained by standardizing the covariance between two random variables.
As a result, the correlation coefficient has no units and ranges between −1 and 1.

This entry describes power and sample-size analysis for the inference about the population correlation
coefficient performed using hypothesis testing. Specifically, we consider the null hypothesisH0: ρ = ρ0

versus the two-sided alternative hypothesis Ha: ρ 6= ρ0, the upper one-sided alternative Ha: ρ > ρ0,
or the lower one-sided alternative Ha: ρ < ρ0. In most applications, the null value of the correlation,
ρ0, is set to zero.

Statistical inference on the correlation coefficient requires a distributional assumption between two
random variables—bivariate normality with correlation ρ. The distribution of the sample correlation
coefficient is rather complicated except under the null hypothesis of the true correlation being zero,
H0: ρ = 0, under which it is a Student’s t distribution (for example, see Graybill [1961, 209]). The
general inference of H0: ρ = ρ0 is based on the asymptotic approximation.

One common approach in testing hypotheses concerning the correlation parameter is to use an
inverse hyperbolic tangent transformation, tanh−1(x) = 0.5 ln(1 + x)/ ln(1 − x), also known as
Fisher’s z transformation when applied to the correlation coefficient (Fisher 1915). Specifically, if ρ̂
is the sample correlation coefficient and n is the sample size, Fisher (1915) showed that
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√
n− 3

{
tanh−1(ρ̂)− tanh−1(ρ)

}
∼ N(0, 1)

for n as small as 10, although the approximation tends to perform better for n > 25. The null
hypothesis H0: ρ = ρ0 is equivalent to H0: tanh−1(ρ) = tanh−1(ρ0). The latter test is referred to
as Fisher’s z test.

power onecorrelation performs computations based on the asymptotic Fisher’s z test.

Using power onecorrelation

power onecorrelation computes sample size, power, or target correlation for a one-sample
correlation test. All computations are performed for a two-sided hypothesis test where, by default, the
significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test.

To compute sample size, you must specify the correlations under the null and alternative hypotheses,
r0 and ra, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the correlations under
the null and alternative hypotheses, r0 and ra, respectively.

Instead of the alternative correlation, ra, you may specify the difference ra − r0 between the
alternative correlation and the null correlation in the diff() option when computing sample size or
power.

To compute effect size, the difference between the alternative and null correlations, and target
correlation, you must specify the sample size in the n() option, the power in the power() option,
the null correlation r0, and, optionally, the direction of the effect. The direction is upper by default,
direction(upper), which means that the target correlation is assumed to be larger than the specified
null value. This is also equivalent to the assumption of a positive effect size. You can change the
direction to lower, which means that the target correlation is assumed to be smaller than the specified
null value, by specifying the direction(lower) option. This is equivalent to assuming a negative
effect size.

By default, the computed sample size is rounded up. You can specify the nfractional option to
see the corresponding fractional sample size; see Fractional sample sizes in [PSS] unbalanced designs
for an example. The nfractional option is allowed only for sample-size determination.

The sample-size and effect-size determinations for a two-sided test require iteration. The default
initial value for the estimated parameter is obtained from the corresponding closed-form one-sided
computation using the significance level α/2. The default initial value may be changed by specifying
the init() option. See [PSS] power for the descriptions of other options that control the iteration
procedure.

In the following sections, we describe the use of power onecorrelation accompanied by
examples for computing sample size, power, and target correlation.

Computing sample size

To compute sample size, you must specify the correlations under the null and alternative hypotheses,
r0 and ra, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.
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Example 1: Sample size for a one-sample correlation test

Consider a study where the goal is to test the existence of a positive correlation between height and
weight of individuals, that is, H0: ρ = 0 versus Ha: ρ > 0. Before conducting the study, we wish
to determine the sample size required to detect a correlation of at least 0.5 with 80% power using a
one-sided 5%-level test. We specify the values 0 and 0.5 of the null and alternative correlations after
the command name. The only option we need to specify is onesided, which requests a one-sided
test. We omit options alpha(0.05) and power(0.8) because the specified values are their respective
defaults.

. power onecorrelation 0 0.5, onesided

Estimated sample size for a one-sample correlation test
Fisher’s z test
Ho: r = r0 versus Ha: r > r0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5000

r0 = 0.0000
ra = 0.5000

Estimated sample size:

N = 24

A sample of 24 individuals must be obtained to detect a correlation of at least 0.5 between height
and weight with 80% power using an upper one-sided 5%-level test.

If we anticipate a stronger correlation of, say, 0.7, we will need a sample of only 12 subjects:

. power onecorrelation 0 0.7, onesided

Estimated sample size for a one-sample correlation test
Fisher’s z test
Ho: r = r0 versus Ha: r > r0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7000

r0 = 0.0000
ra = 0.7000

Estimated sample size:

N = 12

This is consistent with our expectation that in this example, as the alternative correlation increases,
the required sample size decreases.

Computing power

To compute power, you must specify the sample size in the n() option and the correlations under
the null and alternative hypotheses, r0 and ra, respectively.
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Example 2: Power of a one-sample correlation test

Continuing with example 1, we will suppose that we are designing a pilot study and would like to
keep our initial sample small. We want to find out how much the power of the test would decrease
if we sample only 15 individuals. To compute power, we specify the sample size in n():

. power onecorrelation 0 0.5, n(15) onesided

Estimated power for a one-sample correlation test
Fisher’s z test
Ho: r = r0 versus Ha: r > r0

Study parameters:

alpha = 0.0500
N = 15

delta = 0.5000
r0 = 0.0000
ra = 0.5000

Estimated power:

power = 0.6018

The power decreases to roughly 60%. The power to detect a correlation of 0.5 is low for a sample
of 15 individuals. We should consider either a larger target correlation or a larger sample.

Example 3: Nonzero null hypothesis

To demonstrate power computation for a nonzero null hypothesis, we consider an example from
Graybill (1961, 211) of a hypothetical study where the primary interest lies in the correlation between
protein and fat for a particular breed of dairy cow. The sample contains 24 cows. Suppose we want
to compute the power of a two-sided test with the null hypothesis H0: ρ = 0.5 versus the alternative
hypothesis Ha: ρ 6= 0.5. Suppose that the correlation between protein and fat was estimated to be
0.3 in an earlier pilot study. We can compute power by typing

. power onecorrelation 0.5 0.3, n(24)

Estimated power for a one-sample correlation test
Fisher’s z test
Ho: r = r0 versus Ha: r != r0

Study parameters:

alpha = 0.0500
N = 24

delta = -0.2000
r0 = 0.5000
ra = 0.3000

Estimated power:

power = 0.1957

The power of the test is estimated to be 0.1957 for the above study, which is unacceptably low for
practical purposes. We should consider either increasing the sample size or choosing a different target
correlation.

In fact, the author considers two values of the alternative correlation, 0.3 and 0.2. We can compute
the corresponding powers for the multiple values of the alternative correlation by enclosing them in
parentheses, as we demonstrate below.
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. power onecorrelation 0.5 (0.3 0.2), n(24)

Estimated power for a one-sample correlation test
Fisher’s z test
Ho: r = r0 versus Ha: r != r0

alpha power N delta r0 ra

.05 .1957 24 -.2 .5 .3

.05 .3552 24 -.3 .5 .2

The power increases from 20% to 36% as the alternative correlation decreases from 0.3 to 0.2. It may
seem counterintuitive that the power increased as the value of the alternative correlation decreased.
It is important to remember that the power of the correlation test is an increasing function of the
magnitude of the effect size, δ = ρa − ρ0, the difference between the alternative and null values of
the correlation. So the power of 20% corresponds to |δ| = |0.3− 0.5| = 0.2, and the power of 36%
corresponds to |δ| = 0.3.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Computing effect size and target correlation

In a one-sample correlation analysis, the effect size is commonly defined as the difference between
the alternative correlation and the null correlation, δ = ρa−ρ0. For a zero-null hypothesis, the effect
size is the alternative correlation.

The distribution of the sample correlation coefficient is symmetric when the population correlation
ρ is zero and becomes negatively skewed as ρ approaches 1 and positively skewed as ρ approaches −1.
Also the sampling variance approaches zero as |ρ| approaches 1. Clearly, the power of a correlation
test depends on the magnitude of the true correlation; therefore, δ alone is insufficient for determining
the power. In other words, for the same difference δ = 0.1, the power to detect the difference between
ρa = 0.2 and ρ0 = 0.1 is not the same as that between ρa = 0.3 and ρ0 = 0.2; the former difference
is associated with the larger sampling variability and thus has lower power to be detected.

Sometimes, we may be interested in determining the smallest effect (for a given null correlation)
and the corresponding target correlation that yield a statistically significant result for prespecified
sample size and power. In this case, power, sample size, and null correlation must be specified. In
addition, you must also decide on the direction of the effect: upper, meaning ρa > ρ0, or lower,
meaning ρa < ρ0. The direction may be specified in the direction() option; direction(upper)
is the default.

Example 4: Minimum detectable value of the correlation

Continuing example 2, we will compute the minimum positive correlation that can be detected
given a sample of 15 individuals and 80% power. To solve for target correlation, we specify the null
correlation of 0 after the command, sample size n(15), and power power(0.8):
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. power onecorrelation 0, n(15) power(0.8) onesided

Estimated target correlation for a one-sample correlation test
Fisher’s z test
Ho: r = r0 versus Ha: r > r0; ra > r0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 15
r0 = 0.0000

Estimated effect size and target correlation:

delta = 0.6155
ra = 0.6155

We find that the minimum value of the correlation as well as of the effect size that would yield a
statistically significant result in this study is 0.6155.

In this example, we computed the correlation assuming an upper direction, ρa > ρ0, or a positive
effect, δ > 0. To request a lower direction, or a negative effect, we can specify the direction(lower)
option.

Performing hypothesis tests on correlation

After the data are collected, you can use the pwcorr command to test for correlation; see
[R] correlate.

Example 5: Testing for correlation

For example, consider auto.dta, which contains various characteristics of 74 cars. Suppose that
our study goal is to investigate the existence of a correlation between miles per gallon and weights
of cars. The corresponding variables in the dataset are mpg and weight. We use pwcorr to perform
the test.

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. pwcorr mpg weight, sig

mpg weight

mpg 1.0000

weight -0.8072 1.0000
0.0000

The test finds a statistically significant negative correlation of −0.8 between mpg and weight; the
p-value is less than 0.0001.

We use the parameters of this study to perform a sample-size analysis we would have conducted
before the study.
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. power onecorrelation 0 -0.8, power(0.9) alpha(0.01)

Performing iteration ...

Estimated sample size for a one-sample correlation test
Fisher’s z test
Ho: r = r0 versus Ha: r != r0

Study parameters:

alpha = 0.0100
power = 0.9000
delta = -0.8000

r0 = 0.0000
ra = -0.8000

Estimated sample size:

N = 16

We find that the sample size required to detect a correlation of −0.8 with 90% power using a 1%-level
two-sided test is 16. The current sample contains many more cars (74), which would allow us to
detect a potentially smaller (in absolute value) correlation.

We should point out that pwcorr performs an exact one-sample correlation test of H0: ρ = 0, which
uses a Student’s t distribution. power onecorrelation performs computation for an approximate
Fisher’s z test, which uses the normal distribution.

Stored results
power onecorrelation stores the following in r():
Scalars

r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(r0) correlation under the null hypothesis
r(ra) correlation under the alternative hypothesis
r(diff) difference between the alternative and null correlations
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for the sample size or the correlation
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) onecorrelation
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results
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Methods and formulas
Let ρ denote Pearson’s correlation and ρ̂ its estimator, the sample correlation coefficient.

A one-sample correlation test involves testing the null hypothesis H0: ρ = ρ0 versus the two-sided
alternative hypothesis Ha: ρ 6= ρ0, the upper one-sided alternative Ha: ρ > ρ0, or the lower one-sided
alternative Ha: ρ < ρ0.

The exact distribution of the sample correlation coefficient ρ̂ is complicated for testing a general
hypothesis H0 : ρ = ρ0 6= 0. An alternative is to apply an inverse hyperbolic tangent, tanh−1(·),
or Fisher’s z transformation to ρ̂ to approximate its sampling distribution by a normal distribution
(Fisher 1915). The hypothesis H0: ρ = ρ0 is then equivalent to H0: tanh−1(ρ) = tanh−1(ρ0).

Let Z = tanh−1(ρ̂) = 0.5 ln{(1 + ρ̂)/(1 − ρ̂)} denote Fisher’s z transformation of ρ̂. Then Z
follows a normal distribution with mean µz = tanh−1(ρ) and standard deviation σz = 1/

√
n− 3,

where n is the sample size (for example, see Graybill [1961, 211]; Anderson [2003, 134]).

Let α be the significance level, β be the probability of a type II error, and z1−α/k and zβ be
the (1− α/k)th and the βth quantiles of the standard normal distribution. Denote δz = µa − µ0 =
tanh−1(ρa)− tanh−1(ρ0).

The power π = 1− β is computed using

π =


Φ
(
δz
σz
− z1−α

)
for an upper one-sided test

Φ
(
− δz
σz
− z1−α

)
for a lower one-sided test

Φ
(
δz
σz
− z1−α/2

)
+ Φ

(
− δz
σz
− z1−α/2

)
for a two-sided test

(1)

where Φ(·) is the cdf of a standard normal distribution.

The sample size n for a one-sided test is computed using

n = 3 +

(
z1−α − zβ

δz

)2

See, for example, Lachin (1981) for the case of ρ0 = 0.

The minimum detectable value of the correlation is obtained by first finding the corresponding
minimum value of µa and then applying the inverse Fisher’s z transformation to the µa:

ρa =
e2µa − 1

e2µa + 1

For a one-sided test, µa = µ0 + σz(z1−α − zβ) when µa > µ0, and µa = µ0 − σz(z1−α − zβ)
when µa < µ0.

For a two-sided test, the sample size n and µa are obtained by iteratively solving the two-sided
power equation in (1) for n and µa, respectively. The initial values are obtained from the respective
formulas for the one-sided computation with the significance level α/2.

If the nfractional option is not specified, the computed sample size is rounded up.
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Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[R] correlate — Correlations (covariances) of variables or coefficients
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power twocorrelations — Power analysis for a two-sample correlations test

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power twocorrelations r1 r2

[
, power(numlist) options

]

Compute power

power twocorrelations r1 r2 , n(numlist)
[

options
]

Compute effect size and experimental-group correlation

power twocorrelations r1 , n(numlist) power(numlist)
[

options
]

where r1 is the correlation in the control (reference) group, and r2 is the correlation in the experimental
(comparison) group. r1 and r2 may each be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).

222
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(n1 | n2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗diff(numlist) difference between the experimental-group and

control-group correlations, r2 − r1; specify instead of the
experimental-group correlation r2

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for sample sizes or experimental-group correlation
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
r1 control-group correlation ρ1

r2 experimental-group correlation ρ2

diff difference between the experimental-group correlation ρ2 − ρ1

and the control-group correlation
target target parameter; synonym for r2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns diff and nratio are shown in the default table if specified.

Menu
Statistics > Power and sample size

Description
power twocorrelations computes sample size, power, or the experimental-group correlation

for a two-sample correlations test. By default, it computes sample size for given power and the
values of the control-group and experimental-group correlations. Alternatively, it can compute power
for given sample size and values of the control-group and experimental-group correlations or the
experimental-group correlation for given sample size, power, and the control-group correlation. Also
see [PSS] power for a general introduction to the power command using hypothesis tests.

Options� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see
[PSS] power.

diff(numlist) specifies the difference between the experimental-group correlation and the control-
group correlation, r2 − r1. You can specify either the experimental-group correlation r2 as a
command argument or the difference between the two correlations in diff(). If you specify
diff(#), the experimental-group correlation is computed as r2 = r1 + #. This option is not
allowed with the effect-size determination.
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direction(), onesided, parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. For sample-size determination,
the estimated parameter is either the control-group size N1 or, if compute(n2) is specified,
the experimental-group size N2. For the effect-size determination, the estimated parameter is the
experimental-group correlation r2. The default initial values for a two-sided test are obtained as
a closed-form solution for the corresponding one-sided test with the significance level α/2.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power twocorrelations but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twocorrelations
Computing sample size
Computing power
Computing effect size and experimental-group correlation
Testing a hypothesis about two independent correlations

This entry describes the power twocorrelations command and the methodology for power and
sample-size analysis for a two-sample correlations test. See [PSS] intro for a general introduction to
power and sample-size analysis and [PSS] power for a general introduction to the power command
using hypothesis tests.

Introduction
There are many examples of studies where a researcher may want to compare two correlations. A

winemaker may want to test the null hypothesis that the correlation between fermentation time and
alcohol level is the same for pinot noir grapes and merlot grapes. An education researcher may want
to test the null hypothesis that the correlation of verbal and math SAT scores is the same for males
and females. Or a genetics researcher may want to test the null hypothesis that the correlation of the
cholesterol levels in identical twins raised together is equal to the correlation of the cholesterol levels
in identical twins raised apart.

Correlation analysis emanates from studies quantifying dependence between random variables. The
correlation coefficient ρ is commonly used to measure the strength of such dependence. We consider
Pearson’s correlation obtained by standardizing the covariance between two random variables. As a
result, the correlation coefficient has no units and ranges between −1 and 1.
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This entry describes power and sample-size analysis for the inference about two population
correlation coefficients performed using hypothesis testing. Specifically, we consider the null hypothesis
H0: ρ2 = ρ1 versus the two-sided alternative hypothesis Ha: ρ2 6= ρ1, the upper one-sided alternative
Ha: ρ2 > ρ1, or the lower one-sided alternative Ha: ρ2 < ρ1.

One common approach in testing hypotheses concerning the correlation parameter is to use an
inverse hyperbolic tangent transformation, tanh−1(x) = 0.5 ln(1 + x)/ ln(1 − x), also known as
Fisher’s z transformation when applied to the correlation coefficient (Fisher 1915). Specifically, if ρ̂
is the sample correlation coefficient and n is the sample size, Fisher (1915) showed that

√
n− 3

{
tanh−1(ρ̂)− tanh−1(ρ)

}
∼ N(0, 1)

for n as small as 10, although the approximation tends to perform better for n > 25. For a two-sample
correlations test, the null hypothesis H0: ρ1 = ρ2 is equivalent to H0: tanh−1(ρ1) = tanh−1(ρ2).
The latter test is referred to as the two-sample Fisher’s z test.

power twocorrelations performs computations based on the asymptotic two-sample Fisher’s
z test.

Using power twocorrelations

power twocorrelations computes sample size, power, or experimental-group correlation for a
two-sample correlations test. All computations are performed for a two-sided hypothesis test where,
by default, the significance level is set to 0.05. You may change the significance level by specifying
the alpha() option. You can specify the onesided option to request a one-sided test. By default,
all computations assume a balanced or equal-allocation design; see [PSS] unbalanced designs for a
description of how to specify an unbalanced design.

To compute the total sample size, you must specify the control- and experimental-group correlations,
r1 and r2, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(n1) option and the sample
size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(n2) option and the sample size of the control group in
the n1() option.

To compute power, you must specify the total sample size in the n() option and the control- and
experimental-group correlations, r1 and r2, respectively.

Instead of the experimental-group correlation r2, you may specify the difference r2 − r1 between
the experimental-group correlation and the control-group correlation in the diff() option when
computing sample size or power.

To compute effect size, the difference between the experimental-group and the control-group
correlation, and the experimental-group correlation, you must specify the total sample size in the
n() option, the power in the power() option, the control-group correlation r1, and optionally, the
direction of the effect. The direction is upper by default, direction(upper), which means that the
experimental-group correlation is assumed to be larger than the specified control-group value. You
can change the direction to be lower, which means that the experimental-group correlation is assumed
to be smaller than the specified control-group value, by specifying the direction(lower) option.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS] unbalanced designs for more details.
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In the following sections, we describe the use of power twocorrelations accompanied with
examples for computing sample size, power, and experimental-group correlation.

Computing sample size

To compute sample size, you must specify the control- and experimental-group correlations, r1

and r2, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a two-sample correlations test

Consider a study in which investigators are interested in testing whether the correlation between
height and weight differs for males and females. The null hypothesis H0: ρF = ρM is tested against
the alternative hypothesis Ha: ρF 6= ρM , where ρF is the correlation between height and weight for
females, and ρM is the correlation between height and weight for males.

Before conducting the study, investigators wish to determine the minimum sample size required
to detect a difference between the correlation of 0.3 for females and a correlation of 0.5 for males
with 80% power using a two-sided 5%-level test. We specify the values 0.3 and 0.5 as the control-
and experimental-group correlations after the command name. We omit options alpha(0.05) and
power(0.8) because the specified values are their respective defaults. To compute the total sample
size assuming equal-group allocation, we type

. power twocorrelations 0.3 0.5

Performing iteration ...

Estimated sample sizes for a two-sample correlations test
Fisher’s z test
Ho: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

r1 = 0.3000
r2 = 0.5000

Estimated sample sizes:

N = 554
N per group = 277

A total sample of 554 individuals, 277 in each group, must be obtained to detect the difference
between correlations of females and males when the correlations are 0.3 and 0.5, respectively, with
80% power using a two-sided 5%-level test.

Example 2: Computing one of the group sizes

Continuing with example 1, we will suppose that for some reason, we can enroll only 250 male
subjects in our study. We want to know how many female subjects we need to recruit to maintain the
80% power for detecting the difference as described in example 1. To do so, we use the combination
of compute(n1) and n2():



228 power twocorrelations — Power analysis for a two-sample correlations test

. power twocorrelations 0.3 0.5, n2(250) compute(n1)

Performing iteration ...

Estimated sample sizes for a two-sample correlations test
Fisher’s z test
Ho: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

r1 = 0.3000
r2 = 0.5000
N2 = 250

Estimated sample sizes:

N = 559
N1 = 309

We need 309 females for a total sample size of 559 subjects, which is larger than the required total
sample size for the corresponding balanced design from example 1.

Example 3: Unbalanced design

By default, power twocorrelations computes sample size for a balanced or equal-allocation
design. If we know the allocation ratio of subjects between the groups, we can compute the required
sample size for an unbalanced design by specifying the nratio() option.

Continuing with example 1, we will suppose that we anticipate to recruit twice as many males as
females; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required sample size
for the specified unbalanced design.

. power twocorrelations 0.3 0.5, nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample correlations test
Fisher’s z test
Ho: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

r1 = 0.3000
r2 = 0.5000

N2/N1 = 2.0000

Estimated sample sizes:

N = 624
N1 = 208
N2 = 416

Also see Two samples in [PSS] unbalanced designs for more examples of unbalanced designs for
two-sample tests.
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Computing power

To compute power, you must specify the sample size in the n() option and the control- and the
experimental-group correlations, r1 and r2, respectively.

Example 4: Power of a two-sample correlations test

Continuing with example 1, we will suppose that we are designing a study and anticipate a total
sample of 500 subjects. To compute the power corresponding to this sample size given the study
parameters from example 1, we specify the sample size in n():

. power twocorrelations 0.3 0.5, n(500)

Estimated power for a two-sample correlations test
Fisher’s z test
Ho: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
N = 500

N per group = 250
delta = 0.2000

r1 = 0.3000
r2 = 0.5000

Estimated power:

power = 0.7595

With a smaller sample of 500 subjects compared with example 1, we obtain a power of roughly 76%.

Example 5: Multiple values of study parameters

In this example, we assess the effect of varying the value of the correlation of the male group
on the power of our study. We supply a list of correlations in parentheses for the second command
argument:

. power twocorrelations 0.3 (0.4(0.1)0.9), n(500)

Estimated power for a two-sample correlations test
Fisher’s z test
Ho: r2 = r1 versus Ha: r2 != r1

alpha power N N1 N2 delta r1 r2

.05 .2452 500 250 250 .1 .3 .4

.05 .7595 500 250 250 .2 .3 .5

.05 .9894 500 250 250 .3 .3 .6

.05 1 500 250 250 .4 .3 .7

.05 1 500 250 250 .5 .3 .8

.05 1 500 250 250 .6 .3 .9

From the table, we see that the power increases from 25% to 100% as the correlation increases from
0.4 to 0.9.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.
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Computing effect size and experimental-group correlation

Effect size δ for a two-sample correlations test is defined as the difference between the experimental-
group and control-group correlations, δ = ρ2 − ρ1.

Sometimes, we may be interested in determining the smallest effect (for a given control-group
correlation) that yields a statistically significant result for prespecified sample size and power. In this
case, power, sample size, and control-group correlation must be specified. In addition, you must also
decide on the direction of the effect: upper, meaning ρ2 > ρ1, or lower, meaning ρ2 < ρ1. The
direction may be specified in the direction() option; direction(upper) is the default.

Example 6: Minimum detectable value of the experimental-group correlation

Continuing with example 4, we will compute the smallest positive correlation of the male group
that can be detected given a total sample of 500 individuals and a power of 80%. To solve for the
experimental-group correlation, after the command, we specify the control-group correlation of 0.3,
total sample size n(500), and power power(0.8):

. power twocorrelations 0.3, n(500) power(0.8)

Performing iteration ...

Estimated experimental-group correlation for a two-sample correlations test
Fisher’s z test
Ho: r2 = r1 versus Ha: r2 != r1; r2 > r1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 500
N per group = 250

r1 = 0.3000

Estimated effect size and experimental-group correlation:

delta = 0.2092
r2 = 0.5092

We find that the minimum value of the experimental-group correlation that would yield a statistically
significant result in this study is 0.5092, and the corresponding effect size is 0.2092.

In this example, we computed the correlation assuming an upper direction, ρ2 > ρ1, or a positive
effect, δ > 0. To request a lower direction, or a negative effect, we can specify the direction(lower)
option.

Testing a hypothesis about two independent correlations

After data are collected, we can use the mvtest command to test the equality of two independent
correlations using an asymptotic likelihood-ratio test; see [MV] mvtest for details. We can also manually
perform a two-sample Fisher’s z test on which power twocorrelations bases its computations.
We demonstrate our examples using the genderpsych dataset from the [MV] mvtest correlations
entry.

Example 7: Comparing two correlations using mvtest

Consider a sample of 64 individuals with equal numbers of males and females. We would like
to know whether the correlation between the pictorial inconsistencies (variable y1) and vocabulary
(variable y4) is the same between males and females.
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. use http://www.stata-press.com/data/r13/genderpsych
(Four Psychological Test Scores, Rencher and Christensen (2012))

. mvtest correlations y1 y4, by(gender)

Test of equality of correlation matrices across samples

Jennrich chi2(1) = 2.16
Prob > chi2 = 0.1415

The reported p-value is 0.1415, so we do not have sufficient evidence to reject the null hypothesis
about the equality of the two correlations.

Example 8: Two-sample Fisher’s z test

To compute a two-sample Fisher’s z test manually, we perform the following steps. We first
compute the estimates of correlation coefficients for each group by using the correlate command;
see [R] correlate. We then compute Fisher’s z test statistic and its corresponding p-value.

We compute and store correlation estimates for males in the r1 scalar and the corresponding
sample size in the N1 scalar.

. /* compute and store correlation and sample size for males */

. correlate y1 y4 if gender==1
(obs=32)

y1 y4

y1 1.0000
y4 0.5647 1.0000

. scalar r1 = r(rho)

. scalar N1 = r(N)

We store the corresponding results for females in r2 and N2.

. /* compute and store correlation and sample size for females */

. correlate y1 y4 if gender==2
(obs=32)

y1 y4

y1 1.0000
y4 0.2596 1.0000

. scalar r2 = r(rho)

. scalar N2 = r(N)

We now compute the z test statistic, stored in the Z scalar, by applying Fisher’s z transformation
to the obtained correlation estimates r1 and r2 and using the cumulative function of the standard
normal distribution normal() to compute the p-value.

. /* compute Fisher’s z statistic and p-value and display results */

. scalar mu_Z = atanh(r2) - atanh(r1)

. scalar sigma_Z = sqrt(1/(N1-3)+1/(N2-3))

. scalar Z = mu_Z/sigma_Z

. scalar pvalue = 2*normal(-abs(Z))

. display "Z statistic = " %8.4g Z _n "P-value = " %8.4g pvalue
Z statistic = -1.424
P-value = .1543

The p-value is 0.1543 and is close to the p-value reported by mvtest in example 7.
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The estimates of the correlations obtained from correlate are 0.5647 for males and 0.2596
for females. We may check how many subjects we need to detect the difference between these two
correlation values.

. power twocorrelations 0.5647 0.2596

Performing iteration ...

Estimated sample sizes for a two-sample correlations test
Fisher’s z test
Ho: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3051

r1 = 0.5647
r2 = 0.2596

Estimated sample sizes:

N = 232
N per group = 116

We need a total of 232 subjects, 116 per group in a balanced design, to have a power of 80% to
detect the difference between the given values of correlations for males and females.

Stored results
power twocorrelations stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1

r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(onesided) 1 for a one-sided test; 0 otherwise
r(r1) control-group correlation
r(r2) experimental-group correlation
r(diff) difference between the experimental- and control-group correlations
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for sample sizes or experimental-group correlation
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise
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Macros
r(type) test
r(method) twocorrelations
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrix
r(pss table) table of results

Methods and formulas
Let ρ1 and ρ2 denote Pearson’s correlation for the control and the experimental groups, respectively.

Let ρ̂1 and ρ̂2 denote the corresponding estimators, the sample correlation coefficients.

A two-sample correlations test involves testing the null hypothesis H0 : ρ2 = ρ1 versus the
two-sided alternative hypothesis Ha: ρ2 6= ρ1, the upper one-sided alternative Ha: ρ2 > ρ1, or the
lower one-sided alternative Ha: ρ2 < ρ1.

The exact distribution of the difference between the sample correlation coefficients ρ̂1 and ρ̂2

is complicated for testing the hypothesis H0 : ρ1 − ρ2 6= 0. An alternative is to apply an inverse
hyperbolic tangent, tanh−1(·), or Fisher’s z transformation to the estimators to approximate their
sampling distribution by a normal distribution (Fisher 1915). The hypothesis H0: ρ1 = ρ2 is then
equivalent to H0: tanh−1(ρ1) = tanh−1(ρ2).

Let Z1 = tanh−1(ρ̂1) = 0.5 ln{(1 + ρ̂1)/(1− ρ̂1)} denote Fisher’s z transformation of ρ̂1, and
let Z2 denote the corresponding transformation of ρ̂2. Then the difference δz = Z2 − Z1 follows a
normal distribution with mean µz = µ2 − µ1 = tanh−1(ρ2)− tanh−1(ρ1) and standard deviation
σz =

√
1/(n1 − 3) + 1/(n2 − 3), where n1 and n2 are the sample sizes of the control and the

experimental groups, respectively (for example, see Graybill [1961, 211]; Anderson [2003, 134]).

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution.

The power π = 1− β is computed using

π =


Φ
(
δz
σz
− z1−α

)
for an upper one-sided test

Φ
(
− δz
σz
− z1−α

)
for a lower one-sided test

Φ
(
δz
σz
− z1−α/2

)
+ Φ

(
− δz
σz
− z1−α/2

)
for a two-sided test

(1)

where Φ(·) is the cdf of a standard normal distribution.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and power can be viewed as
a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS] unbalanced designs for details.

For a one-sided test, the control-group sample size n1 is computed as a positive root of the
following quadratic equation:

(R+ 1)n1 − 6

(n1 − 3)(Rn1 − 3)
=

(
δz

z1−α − zβ

)2
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For a one-sided test, if one of the group sizes is known, the other one is computed using the
following formula. For example, to compute n1 given n2 we use

n1 = 3 +
1(

δz
z1−α−zβ

)2

− 1
n2−3

The minimum detectable value of the experimental-group correlation is obtained by first finding
the corresponding minimum value of µ2 and then applying the inverse Fisher’s z transformation to
that µ2:

ρ2 =
e2µ2 − 1

e2µ2 + 1

For a one-sided test, µ2 = µ1 + σz(z1−α − zβ) when µ2 > µ1, and µ2 = µ1 − σz(z1−α − zβ)
when µ2 < µ1.

For a two-sided test, the sample sizes and µ2 are obtained by iteratively solving the two-sided
power equation in (1) for the respective parameters. The initial values are obtained from the respective
formulas for the one-sided computation with the significance level α/2.
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Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[MV] mvtest — Multivariate tests

[R] correlate — Correlations (covariances) of variables or coefficients
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power oneway — Power analysis for one-way analysis of variance

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power oneway meanspec
[
, power(numlist) options

]

Compute power

power oneway meanspec, n(numlist)
[

options
]

Compute effect size and target between-group variance

power oneway, n(numlist) power(numlist) ngroups(#)
[
varerror(numlist) options

]

where meanspec is either a matrix matname containing group means or individual group means
specified in a matrix form:

m1 m2 [m3 . . . mJ ]

mj , where j = 1, 2, . . . , J , is the alternative group mean or the group mean under the alternative
hypothesis for the jth group. Each mj may be specified either as one number or as a list of values
in parentheses; see [U] 11.1.8 numlist.

matname is the name of a Stata matrix with J columns containing values of alternative group
means. Multiple rows are allowed, in which case each row corresponds to a different set of J
group means or, equivalently, column j corresponds to a numlist for the jth group mean.

235
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
nfractional allow fractional sample sizes
∗∗npergroup(numlist) number of subjects per group; implies balanced design
∗n#(numlist) number of subjects in a group #
grweights(wgtspec) group weights; default is one for each group, meaning

equal-group sizes
ngroups(#) number of groups
∗varmeans(numlist) variance of the group means or between-group variance
∗varerror(numlist) error (within-group) variance; default is varerror(1)

contrast(contrastspec) contrast specification for group means
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for the sample size or the effect size;
default is to use a bisection algorithm to bound the solution

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.
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wgtspec Description

#1 #2 . . . #J J group weights. Weights must be positive and must be
integers unless option nfractional is specified. Multiple
values for each group weight #j can be specifed as a
numlist enclosed in parentheses.

matname matrix with J columns containing J group weights. Multiple
rows are allowed, in which case each row corresponds
to a different set of J weights or, equivalently, column j
corresponds to a numlist for the jth weight.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N per group number of subjects per group N/Ng
N avg average number of subjects per group Navg

N#1 #2 number of subjects in group (#1, #2) N#1,#2

delta effect size δ
N g number of groups Ng
m# group mean # µ#

Cm mean contrast C·µ
c0 null mean contrast c0
Var m group means (between-group) variance σ2

m

Var Cm contrast variance σ2
Cµ

Var e error (within-group) variance σ2
e

grwgt# group weight # w#

target target parameter; synonym for target effect variance
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column N per group is available and is shown in the default table only for balanced designs.
Columns N avg and N# are shown in the default table only for unbalanced designs.
Columns m# are shown in the default table only if group means are specified.
Column Var m is not shown in the default table if the contrast() option is specified.
Columns Cm, c0, and Var Cm are shown in the default table only if the contrast() option is specified.
Columns grwgt# are not shown in the default table.
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Menu
Statistics > Power and sample size

Description
power oneway computes sample size, power, or effect size for one-way analysis of variance

(ANOVA). By default, it computes sample size for given power and effect size. Alternatively, it can
compute power for given sample size and effect size or compute effect size for given sample size,
power, and number of groups. Also see [PSS] power for a general introduction to the power command
using hypothesis tests.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power.

npergroup(numlist) specifies the group size. Only positive integers are allowed. This option implies
a balanced design. npergroup() cannot be specified with n(), n#(), or grweights().

n#(numlist) specifies the size of the #th group. Only positive integers are allowed. All group sizes
must be specified. For example, all three options n1(), n2(), and n3() must be specified for a
design with three groups. n#() cannot be specified with n(), npergroup(), or grweights().

grweights(wgtspec) specifies J group weights for an unbalanced design. The weights may be
specified either as a list of values or as a matrix, and multiple sets of weights are allowed; see
wgtspec for details. The weights must be positive and must also be integers unless the nfractional
option is specified. grweights() cannot be specified with npergroup() or n#().

ngroups(#) specifies the number of groups. At least two groups must be specified. This option is
required if meanspec is not specified. This option is also required for effect-size determination
unless grweights() is specified.

varmeans(numlist) specifies the variance of the group means or the between-group variance.
varmeans() cannot be specified with meanspec or contrast(), nor is it allowed with effect-size
determination.

varerror(numlist) specifies the error (within-group) variance. The default is varerror(1). If
varerror() is not specified with effect-size determination, only effect size δ is reported; otherwise,
the estimated between-group variance is also reported.

contrast(contrastspec) specifies a contrast for group means containing J contrast coefficients that
must sum to zero. contrastspec is

#1 #2

[
#3 . . . #J

][
, null(numlist) onesided

]
null(numlist) specifies the null or hypothesized value of the mean contrast. The default is
null(0).

onesided requests a one-sided t test. The default is F test.

parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.
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� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the effect size δ for the effect-size determination. The default uses a bisection algorithm
to bracket the solution.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power oneway but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Using power oneway

Alternative ways of specifying effect
Computing sample size
Computing power
Computing effect size and between-group variance
Testing hypotheses about multiple group means

This entry describes the power oneway command and the methodology for power and sample-size
analysis for one-way ANOVA. See [PSS] intro for a general introduction to power and sample-size
analysis and [PSS] power for a general introduction to the power command using hypothesis tests.

Introduction

The comparison of multiple group means using one-way ANOVA models is a commonly used
approach in a wide variety of statistical studies. The term “one way” refers to a single factor
containing an arbitrary number of groups or levels. In what follows, we will assume that the factor
levels are fixed. For two groups, the ANOVA model is equivalent to an unpaired two-sample t test;
see [PSS] power twomeans for the respective power and sample-size analysis. One-way ANOVA uses
an F test based on the ratio of the between-group variance to the within-group variance to compare
means of multiple groups.

For example, consider a type of drug with three levels of dosage in treating a medical condition.
An investigator may wish to test whether the mean response of the drug is the same across all levels
of dosage. This is equivalent to testing the null hypothesis H0: µ1 = µ2 = µ3 versus the alternative
hypothesis Ha: µ1 6= µ2 or µ1 6= µ3 or µ2 6= µ3; that is, at least one of the three group means is
different from all the others. Rejection of the null hypothesis, however, does not provide any specific
information about the individual group means. Therefore, in some cases, investigators may want to
form a hypothesis for a mean contrast, c =

∑k
j=1 cjµj , a linear combination of group means where

weights cj sum to zero, and compare individual means by testing a hypothesis H0: c = c0 versus
Ha: c 6= c0.
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This entry describes power and sample-size analysis for the inference about multiple population
means using hypothesis testing based on one-way ANOVA. Specifically, we consider the null hypothesis
H0: µ1 = · · · = µJ , which tests the equality of J group means against the alternative hypothesis
Ha: µi 6= µjfor some i, j. The test statistic for this hypothesis is based on the ratio of the between-
group variance to the within-group variance and has an F distribution under the null hypothesis. The
corresponding test is known as an overall F test, which tests the equality of multiple group means.
This test is nondirectional.

For testing a single mean contrast, H0: c = c0 versus Ha: c 6= c0, a test statistic is a function of
the ratio of the contrast variance to the error (or within-group) variance, and either an F test or a
t test can be used for a two-sided alternative. For a one-sided alternative, Ha: c > c0 or Ha: c < c0,
only a t test can be used.

Power and sample-size computations use the distribution of the test statistic under the alternative
hypothesis, which is a noncentral F distribution for the considered tests. Power is a function of the
noncentrality parameter, and the noncentrality parameter is a function of the ratio of the standard
deviation of the tested effect to the standard deviation of the errors. As such, the effect size for
the overall F test is defined as the square root of the ratio of the between-group variance to the
within-group variance. For testing a mean contrast, the effect size is defined as the square root of the
contrast variance to the error or within-group variance.

Using power oneway

power oneway computes sample size, power, or effect size and target variance of the effect for a
one-way fixed-effects analysis of variance. All computations are performed assuming a significance
level of 0.05. You may change the significance level by specifying the alpha() option.

By default, the computations are performed for an overall F test testing the equality of all group
means. The within-group or error variance for this test is assumed to be 1 but may be changed by
specifying the varerror() option.

To compute the total sample size, you must specify the alternative meanspec and, optionally, the
power of the test in the power() option. The default power is set to 0.8.

To compute power, you must specify the total sample size in the n() option and the alternative
meanspec.

Instead of the alternative group means, you can specify the number of groups in the ngroups()
option and the variance of the group means (or the between-group variance) in the varmeans()
option when computing sample size or power.

To compute effect size, the square root of the ratio of the between-group variance to the error
variance, you must specify the total sample size in the n() option, the power in the power() option,
and the number of groups in the ngroups() option. If the varerror() option is also specified, the
target between-group variance is reported in addition to the effect size.

To compute sample size or power for a test of a mean contrast, in addition to the respective options
power() or n() as described above, you must specify the alternative meanspec and the corresponding
contrast coefficients in the contrast() option. A contrast coefficient must be specified for each of
the group means, and the specified coefficients must sum to zero. The null value for the specified
contrast is assumed to be zero but may be changed by specifying the null() suboption within
contrast(). The default test is an F test. You can instead request a one-sided t test by specifying
the onesided suboption within contrast(). Effect-size determination is not available when testing
a mean contrast.
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For all the above computations, the error or within-group variance is assumed to be 1. You can
change this value by specifying the varerror() option.

By default, all computations assume a balanced or equal-allocation design. You can use the gr-
weights() option to specify an unbalanced design for power, sample-size, or effect-size computations.
For power and effect-size computations, you can specify individual group sizes in options n1(),
n2(), and so on instead of a combination of n() and grweights() to accommodate an unbalanced
design. For a balanced design, you can also specify the npergroup() option to specify a group size
instead of a total sample size in n().

In a one-way analysis of variance, sample size and effect size depend on the noncentrality parameter
of the F distribution, and their estimation requires iteration. The default initial values are obtained
from a bisection search that brackets the solution. If you desire, you may change this by specifying
your own value in the init() option. See [PSS] power for the descriptions of other options that
control the iteration procedure.

Alternative ways of specifying effect

To compute power or sample size, you must specify the magnitude of the effect desired to be
detected by the test. With power oneway, you can do this by specifying either the individual alternative
meanspec, for example,

power oneway m1 m2 . . . mJ, . . .

or the variance of J group means (between-group variance) and the number of groups J :

power oneway, varmeans(#) ngroups(#)
[
. . .
]

You can also specify multiple values for variances in varmeans().

There are multiple ways in which you can supply the group means to power oneway.

As we showed above, you may specify group means following the command line as

power oneway m1 m2 . . . mJ, . . .

At least two means must be specified.

Alternatively, you can define a Stata matrix as a row or a column vector, and use it with power
oneway. The dimension of the Stata matrix must be at least 2. For example,

matrix define meanmat = (m1, m2,. . . , mJ)

power oneway meanmat, . . .

You can also specify multiple values or a numlist for each of the group means in parentheses:

power oneway (m1,1 m1,2 . . . m1,K1
) (m2,1 m2,2 . . . m2,K2

) . . ., . . .

Each of the numlists may contain different numbers of values, K1 6= K2 6= . . . 6= KJ . power
oneway will produce results for all possible combinations of values across numlists. If instead you
would like to treat each specification as a separate scenario, you can specify the parallel option.

Similarly, you can accommodate multiple sets of group means in a matrix form by adding a row
for each specification. The columns of a matrix with multiple rows correspond to J group means,
and values within each column j correspond to multiple specifications of the jth group mean or a
numlist for the jth group mean.
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For example, the following two specifications are the same:

power oneway (m1,1 m1,2 m1,3) (m2,1 m2,2 m2,3), . . .

and

matrix define meanmat = (m1,1, m2,1 \ m1,2, m2,2 \ m1,3, m2,3)

power oneway meanmat, . . .

In the above specification, if you wish to specify a numlist only for the first group, you may define
your matrix as

matrix define meanmat = (m1,1, m2,1 \ m1,2, . \ m1,3, .)

and the results of

power oneway meanmat, . . .

will be the same as the results of

power oneway (m1,1 m1,2 m1,3) m2,1, . . .

If you wish to treat the rows of meanmat as separate scenarios, you must specify the parallel
option.

In the following sections, we describe the use of power oneway accompanied by examples for
computing sample size, power, and effect size.

Computing sample size

To compute sample size, you must specify the alternative group means or their variance and,
optionally, the power of the test in the power() option. A power of 0.8 is assumed if power() is
not specified.

Example 1: Sample size for a one-way ANOVA

Consider an example from van Belle, Fisher, Heagerty, and Lumley (2004, 367), where the authors
report the results of a study of the association between cholesterol level and the number of diseased
blood vessels, which indicate the presence of coronary artery disease, in patients undergoing coronary
bypass surgery. Suppose we wish to plan a similar new study in which a cholesterol level is considered
a risk factor that may be associated with the number of diseased blood vessels, our grouping variable.
We consider three groups of subjects with 1, 2, or 3 numbers of diseased blood vessels. We would
like to know how many subjects we need to observe in each group to detect differences between
cholesterol levels across groups. Our projected cholesterol levels in three groups are 260, 289, and
295 mg/dL, respectively. Suppose that we anticipate the within-group or error variance is 4,900. To
compute the total sample size for power oneway’s default setting of a balanced design with 5%
significance level and 80% power, we type
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. power oneway 260 289 295, varerror(4900)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2183

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

Var_m = 233.5556
Var_e = 4900.0000

Estimated sample sizes:

N = 207
N per group = 69

We find that a total sample of 207 subjects, 69 subjects per group, is required to detect a change in
average cholesterol levels in at least 1 of the 3 groups for this study.

In addition to the specified and implied study parameters, power oneway reports the value of the
effect size, delta =

√
233.556/4900 = 0.2183, computed as a square root of the ratio between the

variance of the group means Var m and the error variance Var e. The two variances are also often
referred to as the between-group variance and the within-group variance, respectively. The effect size
δ provides a unit-less measure of the magnitude of an effect with a lower bound of zero meaning
no effect. It corresponds to Cohen’s effect-size measure f (Cohen 1988). Cohen’s convention is that
f = 0.1 means small effect size, f = 0.25 means medium effect size, and f = 0.4 means large effect
size. According to this convention, the effect size considered in our example is medium.

Example 2: Alternative ways of specifying effect

Instead of specifying the alternative means as in example 1, we can specify the variance between
them and the number of groups. From example 1, the variance between the group means was computed
to be 233.5556. We specify this value in varmeans() as well as the number of groups in ngroups():

. power oneway, varmeans(233.5556) ngroups(3) varerror(4900)

Estimated sample size for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2183

N_g = 3
Var_m = 233.5556
Var_e = 4900.0000

Estimated sample sizes:

N = 207
N per group = 69

We obtain the exact same results as in example 1.
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Instead of specifying alternative means directly following the command line, we can define a
matrix, say, means, containing these means and use it with power oneway:

. matrix define means = (260,289,295)

. power oneway means, varerror(4900)
(output omitted )

You can verify that the results are identical to the previous results.

Example 3: Computing sample size for a mean contrast

Continuing example 1, suppose we would like to test whether the average of the first two cholesterol
levels is different from the cholesterol level of the third group. We construct the following contrast
(0.5, 0.5,−1) to test this hypothesis. To compute sample size, we specify the contrast coefficients in
the contrast() option:

. power oneway 260 289 295, varerror(4900) contrast(.5 .5 -1)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for contrast of means
Ho: Cm = 0 versus Ha: Cm != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1381

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

C*m = -20.5000
c0 = 0.0000

Var_Cm = 93.3889
Var_e = 4900.0000

Estimated sample sizes:

N = 414
N per group = 138

The required sample size to achieve this study objective is 414 with 138 subjects per group.

For a test of a mean contrast, we can also test a directional hypothesis by specifying the onesided
option within contrast(). In this case, the computation is based on the t test instead of the F test.
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For example, to test whether the average of the first two cholesterol levels is less than the cholesterol
level of the third group, we type

. power oneway 260 289 295, varerror(4900) contrast(.5 .5 -1, onesided)

Performing iteration ...

Estimated sample size for one-way ANOVA
t test for contrast of means
Ho: Cm = 0 versus Ha: Cm < 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1381

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

C*m = -20.5000
c0 = 0.0000

Var_Cm = 93.3889
Var_e = 4900.0000

Estimated sample sizes:

N = 327
N per group = 109

The results show that the required sample size reduces to a total of 327 subjects for this lower
one-sided hypothesis.

The default null value for the contrast is zero, but you can change this by specifying contrast()’s
suboption null().

Example 4: Unbalanced design

Continuing example 1, suppose we anticipate that the first group will have twice as many subjects
as the second and the third groups. We can accommodate this unbalanced design by specifying the
corresponding group weights in the grweights() option:

. power oneway 260 289 295, varerror(4900) grweights(2 1 1)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2306

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

Var_m = 260.5000
Var_e = 4900.0000

Estimated sample sizes:

N = 188
Average N = 62.6667

N1 = 94
N2 = 47
N3 = 47
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The required total sample size for this unbalanced design is 188 with 94 subjects in the first group
and 47 subjects in the second and third groups. The average number of subjects per group is 62.67.

We can compute results for multiple sets of group weights. The specification of group weights
within grweights() is exactly the same as the specification of group means described in Alternative
ways of specifying effect. Suppose that we would like to compute sample sizes for two unbalanced
designs. The first design has twice as many subjects in the first group as the other two groups.
The second design has the first two groups with twice as many subjects as the third group. We
specify multiple group weights for the first and second groups in parentheses. We also specify the
parallel option to treat multiple weight values in parallel instead of computing results for all
possible combinations of these values, which would have been done by default.

. local tabcols alpha power N N1 N2 N3 grwgt1 grwgt2 grwgt3 Var_m Var_e

. power oneway 260 289 295, varerror(4900) grweights((2 2) (1 2) 1) parallel
> table(‘tabcols’, formats("%6.0g"))

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

alpha power N N1 N2 N3 grwgt1 grwgt2 grwgt3 Var_m Var_e

.05 .8 188 94 47 47 2 1 1 260.5 4900

.05 .8 205 82 82 41 2 2 1 235.4 4900

The default table does not include group weights, so we request a table with custom columns containing
group weights via table(). We also request a smaller format to make the table more compact.

Computing power

To compute power, you must specify the total sample size in the n() option and the alternative
group means or their variance.

Example 5: Power for a one-way ANOVA

Continuing example 1, suppose that we anticipate obtaining a total sample of 300 subjects. To
compute the corresponding power, we specify the sample size of 300 in n():

. power oneway 260 289 295, n(300) varerror(4900)

Estimated power for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
N = 300

N per group = 100
delta = 0.2183

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

Var_m = 233.5556
Var_e = 4900.0000

Estimated power:

power = 0.9308
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The power increases to 93.08% for a larger sample of 300 subjects.

Example 6: Multiple values of study parameters

Continuing example 5, we may want to check powers for several sample sizes. We simply list
multiple sample-size values in n():

. power oneway 260 289 295, n(100 200 300) varerror(4900)
> table(, labels(N_per_group "N/N_g") formats("%6.2g"))

Estimated power for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

alpha power N N/N_g delta N_g m1 m2 m3 Var_m Var_e

.05 .47 100 33 .22 3 260 289 295 234 4900

.05 .78 200 66 .22 3 260 289 295 234 4900

.05 .93 300 100 .22 3 260 289 295 234 4900

To shorten our default table, we specified a shorter label for the N per group column and reduced
the default display format for all table columns by specifying the corresponding options within the
table() option.

We can compute results for multiple values of group means. For example, to see how power
changes when the first group mean takes values of 245, 260, and 280, we specify these values in
parentheses:

. power oneway (245 260 280) 289 295, n(300) varerror(4900)
> table(, labels(N_per_group "N/N_g") formats("%6.2g"))

Estimated power for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

alpha power N N/N_g delta N_g m1 m2 m3 Var_m Var_e

.05 1 300 100 .32 3 245 289 295 497 4900

.05 .93 300 100 .22 3 260 289 295 234 4900

.05 .25 300 100 .088 3 280 289 295 38 4900

We can compute results for a combination of multiple sample sizes and multiple mean values or
a combination of multiple values of other study parameters.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.
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Computing effect size and between-group variance

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, power, sample size, and the
number of groups must be specified.

The effect size is defined as a square root of the ratio of the variance of the tested effect, for example,
the between-group variance, to the error variance. Both the effect size and the target between-group
variance are computed.

The effect-size determination is not available for testing a mean contrast.

Example 7: Effect size for a one-way analysis of variance

Continuing example 5, we now want to compute the effect size that can be detected for a sample
of 300 subjects and a power of 80%. We specify both parameters in the respective options. For the
effect-size determination, we must also specify the number of groups in ngroups():

. power oneway, varerror(4900) n(300) power(0.80) ngroups(3)

Performing iteration ...

Estimated between-group variance for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 300
N per group = 100

N_g = 3
Var_e = 4900.0000

Estimated effect size and between-group variance:

delta = 0.1801
Var_m = 158.9648

For a larger sample size, given the same power, we can detect a smaller effect size, 0.18, compared
with the effect size of 0.22 from example 1. The corresponding estimate of the between-group variance
is 158.96, given the error variance of 4,900.

Testing hypotheses about multiple group means

There are several ways in which you can compare group means of a single factor on the collected data.
Two commonly used commands to do this are oneway (or anova) and contrast. We demonstrate
a quick use of these commands here using the systolic blood pressure example; see [R] oneway and
[R] contrast for more examples. Also see [R] anova for general ANOVA models.

Example 8: One-way ANOVA

Consider systolic.dta containing 58 patients undergoing 4 different drug treatments for reducing
systolic blood pressure. The systolic variable records the change in systolic blood pressure and
the drug variable records four treatment levels. We would like to test whether the average change in
systolic blood pressure is the same for all treatments. We use oneway to do this:
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. use http://www.stata-press.com/data/r13/systolic
(Systolic Blood Pressure Data)

. oneway systolic drug

Analysis of Variance
Source SS df MS F Prob > F

Between groups 3133.23851 3 1044.41284 9.09 0.0001
Within groups 6206.91667 54 114.942901

Total 9340.15517 57 163.862371

Bartlett’s test for equal variances: chi2(3) = 1.0063 Prob>chi2 = 0.800

We reject the null hypothesis that all treatment means are equal at the 5% significance level; the
p-value is less than 0.0001.

Suppose we wish to design a new similar study. We use the estimates from this study to perform
a sample-size analysis for our new study. First, we estimate the means of systolic blood pressure for
different treatment levels:

. mean systolic, over(drug)

Mean estimation Number of obs = 58

1: drug = 1
2: drug = 2
3: drug = 3
4: drug = 4

Over Mean Std. Err. [95% Conf. Interval]

systolic
1 26.06667 3.014989 20.02926 32.10408
2 25.53333 2.999788 19.52636 31.54031
3 8.75 2.892323 2.958224 14.54178
4 13.5 2.330951 8.832351 18.16765

From the oneway output, the estimate of the error variance is roughly 115. Second, we specify
the means and the error variance with power oneway and compute the required sample size for a
balanced design assuming 5% significance level and 90% power.

. power oneway 26.07 25.53 8.75 13.5, varerror(115) power(.9)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.7021

N_g = 4
m1 = 26.0700
m2 = 25.5300
m3 = 8.7500
m4 = 13.5000

Var_m = 56.6957
Var_e = 115.0000

Estimated sample sizes:

N = 36
N per group = 9
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The effect size for this ANOVA model specification is rather large, 0.7021. So we need only 36
subjects, 9 per group, to detect the effect of this magnitude with 90% power.

Suppose that in addition to testing the overall equality of treatment means, we are interested in
testing a specific hypothesis of whether the average of the first two treatment means is equal to the
average of the last two treatment means.

To perform this test on the collected data, we can use the contrast command. The contrast
command is not available after oneway, so we repeat our one-way ANOVA analysis using the anova
command before using contrast; see [R] contrast for details.

. anova systolic i.drug

Number of obs = 58 R-squared = 0.3355
Root MSE = 10.7211 Adj R-squared = 0.2985

Source Partial SS df MS F Prob > F

Model 3133.23851 3 1044.41284 9.09 0.0001

drug 3133.23851 3 1044.41284 9.09 0.0001

Residual 6206.91667 54 114.942901

Total 9340.15517 57 163.862371

. contrast {drug .5 .5 -.5 -.5}

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

drug 1 26.85 0.0000

Denominator 54

Contrast Std. Err. [95% Conf. Interval]

drug
(1) 14.675 2.832324 8.996533 20.35347

As with the overall equality test, we find statistical evidence to reject this hypothesis as well.
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To compute the required sample size for this hypothesis, we specify the contrast coefficients in
the contrast() option of power oneway:

. power oneway 26.07 25.53 8.75 13.5, varerror(115) power(.9) contrast(.5 .5 -.5 -.5)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for contrast of means
Ho: Cm = 0 versus Ha: Cm != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.6842

N_g = 4
m1 = 26.0700
m2 = 25.5300
m3 = 8.7500
m4 = 13.5000

C*m = 14.6750
c0 = 0.0000

Var_Cm = 53.8389
Var_e = 115.0000

Estimated sample sizes:

N = 28
N per group = 7

The required sample size is 28 subjects with 7 subjects per group, which is smaller than the required
sample size computed earlier for the overall test of the equality of means.

Stored results
power oneway stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N avg) average sample size
r(N#) number of subjects in group #
r(N per group) number of subjects per group
r(N g) number of groups
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(balanced) 1 for a balanced design; 0 otherwise
r(grwgt#) group weight #
r(onesided) 1 for a one-sided test of a mean contrast; 0 otherwise
r(m#) group mean #
r(Cm) mean contrast
r(c0) null mean contrast
r(Var m) group-means (between-group) variance
r(Var Cm) contrast variance
r(Var e) error (within-group) variance
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for the sample size or effect size
r(maxiter) maximum number of iterations
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r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) oneway
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider a single factor A with J groups or levels, where each level comprises nj observations

for j = 1, . . . , J . The total number of observations is n =
∑J
j=1 nj . Let Yij denote the response for

the jth level of the ith individual and µj denote the factor-level or group means. Individual responses
from J populations are assumed to be normally distributed with mean µj and a constant variance σ2

e .

The hypothesis of an overall F test of the equality of group means is

H0: µ1 = · · · = µJ

versus
Ha: µj’s are not all equal (1)

The hypothesis for a test of a mean contrast is

H0:

J∑
j=1

cjµj = c0 (2)

versus a two-sided Ha:
∑J
j=1 cjµj 6= c0, upper one-sided Ha:

∑J
j=1 cjµj > c0, and lower one-sided

Ha:
∑J
j=1 cjµj < c0, where cj’s are contrast coefficients such that

∑J
i=1 cj = 0 and c0 is a null

value of a mean constant. The two-sided hypothesis is tested using an F test, and one-sided hypotheses
are tested using a t test.

Computing power

Hypotheses (1) and (2) can be tested in a general linear model framework. Consider a linear model

y = Xb + ε

where y is an n× 1 vector of observations, X is an n× p matrix of predictors, b is a p× 1 vector
of unknown and fixed coefficients, and ε is an n× 1 vector of error terms that are independent and
identically distributed as N(0, σ2

e).

For the one-way model, p = J and the contents of b = (b1, . . . , bJ)′ are the µj , j = 1, . . . , J .
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A general linear hypothesis in this framework is given by

Cb = c0

where C is a ν × p matrix with rank(C) = ν ≤ p, and c0 is a vector of constants. For an overall
test of the means in (1), c0 = 0. The estimates of b and σ2

e , respectively, are given by

b̂ = (X′X)−1X′y

σ̂2
e = (y −Xb̂)′(y −Xb̂)/(n− p)

A general test statistic for testing hypotheses (1) and (2) is given by

FC =
SSC

(p− 1)σ̂2
e

(3)

where SSC = (Cb̂− c0)′{C(X′X)−1C′}−1(Cb̂− c0). Let α be the significance level, β be the
probability of a type II error, and Fp−1,n−p,1−α be the (1− α)th quantile of an F distribution with
p − 1 numerator and n − p denominator degrees of freedom. We reject the null hypothesis if we
observe a statistic FC > Fp−1,n−p,1−α.

The test statistic in (3) under the alternative hypothesis is distributed as a noncentral F distribution
with p− 1 numerator and n− p denominator degrees of freedom with a noncentrality parameter λ
given by

λ = (Cb− c0)′{C(X′X)−1C′}−1(Cb− c0)/σ2
e

= n(Cb− c0)′{C(Ẍ′WẌ)−1C′}−1(Cb− c0)/σ2
e

= nδ2

where the matrix Ẍ contains the unique rows of X and W = diag(w1, . . . , wp). We define δ as the
effect size.

For the one-way design, the dimension of Ẍ is J × J . The weights are formally wj = nj/n
but can also be expressed in terms of the group weights (specified in grweights()), normalized by
the sum of the group weights, making wj independent of n. Specifically, let the group weights be
denoted w̃j , then define a cell sample size multiplier as nc = n/

∑
j w̃j so that nj = ncw̃j . The

cell-means parameterization simplifies Ẍ to the identity matrix, IJ .

See O’Brien and Muller (1993) for details.

The power of the overall F test in (1) is given by

1− β = Fν,n−p,λ (Fν,n−p,1−α) (4)

where F·,·,λ (·) is the cdf of a noncentral F distribution.

Total sample size and effect size are obtained by iteratively solving the nonlinear equation (4).
When the grweights() option is specified, a constant multiplier nc is computed and rounded to an
integer unless the nfractional option is specified. The group sizes are then computed as w̃jnc.
The actual sample size, N a, is the sum of the group sizes.

See Kutner et al. (2005) for details.
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The power of the test (2) for a mean contrast is given by

1− β =


1− T

n−1,̃λ
(tn−1,1−α) for an upper one-sided test

T
n−1,̃λ

(−tn−1,1−α) for a lower one-sided test
F1,n−p,λ (F1,n−p,1−α) for a two-sided test

(5)

where T
.,̃λ

(·) is the cumulative of a noncentral Student’s t distribution with the noncentrality parameter

λ̃ given by

λ̃ =
√
n(Cb− c0)′

√{
C(Ẍ′WẌ)−1C′

}−1

/σ2
e

=
√
nδ̃

Sample size is obtained by iteratively solving the nonlinear equation (5).
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power twoway — Power analysis for two-way analysis of variance

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power twoway meanspec
[
, power(numlist) options

]

Compute power

power twoway meanspec, n(numlist)
[

options
]

Compute effect size and target effect variance

power twoway, n(numlist) power(numlist) nrows(#) ncols(#)
[

options
]

where meanspec is either a matrix matname containing cell means or individual cell means in a matrix
form:

m1,1 m1,2

[
. . .
]
\ m2,1 m2,2

[
. . .
] [

\ . . . \ mJ,1 . . .mJ,K

]
mjk, where j = 1, 2, . . . , J and k = 1, 2, . . . ,K, is the alternative cell mean or the cell mean of
the jth row and kth column under the alternative hypothesis.

matname is the name of a Stata matrix with J rows and K columns containing values of alternative
cell means.

255
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
nfractional allow fractional sample sizes
∗npercell(numlist) number of subjects per cell; implies balanced design
cellweights(wgtspec) cell weights; default is one for each cell, meaning

equal-cell sizes
nrows(#) number of rows
ncols(#) number of columns
factor(row | column | rowcol) tested effect
∗vareffect(numlist) variance explained by the tested effect in factor()
∗varrow(numlist) variance explained by the row effect; synonym for

factor(row) and vareffect(numlist)
∗varcolumn(numlist) variance explained by the column effect; synonym for

factor(column) and vareffect(numlist)
∗varrowcolumn(numlist) variance explained by the row–column interaction effect;

synonym for factor(rowcol) and vareffect(numlist)
∗varerror(numlist) error variance; default is varerror(1)

showmatrices display cell means and sample sizes as matrices
showmeans display cell means
showcellsizes display cell sizes
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph

Iteration

init(#) initial value for the sample size or the effect size;
default is to use a bisection algorithm to bound the solution

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title
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∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.

wgtspec Description

#1,1 . . . #1,K \ . . . \ #J,1 . . . #J,K J ×K cell weights; weights must be positive and must be
integers unless option nfractional is specified

matname J ×K matrix containing cell weights

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N per cell number of subjects per cell N/Nrc
N avg average number of subjects per cell Navg

N#1 #2 number of subjects in cell (#1, #2) N#1,#2

delta effect size δ
N rc number of cells Nrc
N r number of rows Nr
N c number of columns Nc
m#1 #2 cell mean (#1, #2) µ#1,#2

Var r variance explained by the row effect σ2
r

Var c variance explained by the column effect σ2
c

Var rc variance explained by the row–column interaction σ2
rc

Var e error variance σ2
e

cwgt#1 #2 cell weight (#1, #2) w#1,#2

target target parameter; synonym for target effect variance
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column N per cell is available and is shown in the default table only for balanced designs.
Column N avg is shown in the default table only for unbalanced designs.
Columns N#1 #2, N rc, m#1 #2, and cwgt#1 #2 are not shown in the default table.

Menu
Statistics > Power and sample size



258 power twoway — Power analysis for two-way analysis of variance

Description

power twoway computes sample size, power, or effect size for two-way analysis of variance
(ANOVA). By default, it computes sample size for given power and effect size. Alternatively, it can
compute power for given sample size and effect size or compute effect size for given sample size,
power, and number of cells. You can choose between testing for main row or column effect or their
interaction. Also see [PSS] power for a general introduction to the power command using hypothesis
tests.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power.

npercell(numlist) specifies the cell size. Only positive integers are allowed. This option implies a
balanced design. npercell() cannot be specified with n() or cellweights().

cellweights(wgtspec) specifies J×K cell weights for an unbalanced design. The weights must be
positive and must also be integers unless the nfractional option is specified. cellweights()
cannot be specified with npercell().

nrows(#) specifies the number of rows or the number of levels of the row factor in a two-way
ANOVA. At least two rows must be specified. This option is required if meanspec is not specified.
This option is also required for effect-size determination unless cellweights() is specified.

ncols(#) specifies the number of columns or the number of levels of the column factor in a two-way
ANOVA. At least two columns must be specified. This option is required if meanspec is not specified.
This option is also required for effect-size determination unless cellweights() is specified.

factor(row | column | rowcol) specifies the effect of interest for which power and sample-size
analysis is to be performed. In a two-way ANOVA, the tested effects include the main effects of
a row factor (row effect), the main effects of a column factor (column effect), or the interaction
effects between the row and column factors (row–column effect). The default is factor(row).

vareffect(numlist) specifies the variance explained by the tested effect specified in factor().
For example, if factor(row) is specified, vareffect() specifies the variance explained by the
row factor. This option is required if the factor() option is specified and cell means are not
specified. This option is not allowed with the effect-size determination. Only one of vareffect(),
varrow(), varcolumn(), or varrowcolumn() may be specified.

varrow(numlist) specifies the variance explained by the row factor. This option is equivalent to
specifying factor(row) and vareffect(numlist) and thus cannot be combined with factor().
This option is not allowed with the effect-size determination. Only one of vareffect(), varrow(),
varcolumn(), or varrowcolumn() may be specified.

varcolumn(numlist) specifies the variance explained by the column factor. This option is equivalent
to specifying factor(column) and vareffect(numlist) and thus cannot be combined with
factor(). This option is not allowed with the effect-size determination. Only one of vareffect(),
varrow(), varcolumn(), or varrowcolumn() may be specified.

varrowcolumn(numlist) specifies the variance explained by the interaction between row and column
factors. This option is equivalent to specifying factor(rowcol) and vareffect(numlist) and thus
cannot be combined with factor(). This option is not allowed with the effect-size determination.
Only one of vareffect(), varrow(), varcolumn(), or varrowcolumn() may be specified.
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varerror(numlist) specifies the error (within-cell) variance. The default is varerror(1). If var-
error() is not specified with effect-size determination, only effect size δ is reported; otherwise,
the estimated variance of the tested effect is also reported.

showmatrices specifies that the matrices of cell means and cell sizes be displayed, when applicable.
The cell means will be displayed only if specified. The cell sizes will be displayed only for an
unbalanced design.

showmeans specifies that the cell means be reported. For a text or graphical output, this option is
equivalent to showmatrices except only the cell-mean matrix will be reported. For a tabular
output, the columns containing cell means will be included in the default table.

showcellsizes specifies that the cell sizes be reported. For a text or graphical output, this option
is equivalent to showmatrices except only the cell-sizes matrix will be reported. For a tabular
output, the columns containing cell sizes will be included in the default table.

parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the effect size δ for the effect-size determination. The default uses a bisection algorithm
to bracket the solution.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power twoway but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twoway

Alternative ways of specifying effect
Computing sample size
Computing power
Computing effect size and target variance explained by the tested effect
Testing hypotheses about means from multiple populations

This entry describes the power twoway command and the methodology for power and sample-size
analysis for two-way ANOVA. See [PSS] intro for a general introduction to power and sample-size
analysis and [PSS] power for a general introduction to the power command using hypothesis tests.
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Introduction
ANOVA has been one of the most widely used statistical tools in many scientific applications.

Two-way ANOVA models allow analysts to study the effects of two factors simultaneously. The term
“two way” refers to two factors each containing an arbitrary number of groups or levels.

For example, consider a type of drug with three levels of dosage in reducing blood pressure for
males and females. In this case, three interesting hypotheses arise: an investigator may wish to test
whether the average change in blood pressure is the same for both genders, whether the average
change in blood pressure is the same across all levels of dosage regardless of gender, or whether
there is any interaction between dosage levels and gender.

This entry describes power and sample-size analysis for the inference about main and interaction
effects of two factors based on hypothesis testing. Let µjk be the cell mean of the jth row and the kth
column in a two-way cell-means ANOVA model, µj· be the marginal mean of the jth row, µ·k be the
marginal mean of the kth column, and µ·· be the grand mean. The jth-row-by-kth-column interaction
effect is then (ab)jk = µjk−µj·−µ·k+µ··. We consider the null hypotheses 1) H0: µ1· = . . . = µJ·,
for testing the main row effect; 2) H0: µ·1 = . . . = µ·K , for testing the main column effect; and
3) H0: all (ab)jk = 0, for testing the row-by-column interaction effect.

The test statistic for each of the three hypotheses is based on the ratio of the variance explained
by the tested effect to the error variance. Under the null hypothesis, the test statistics used for items
1, 2, and 3 above have an F distribution. We will refer to the corresponding tests as F tests for
row, column, and row-by-column effects. For power analysis, we consider the distribution of the test
statistic under the alternative hypothesis. This distribution is a noncentral F distribution for all the
considered tests. Power is a function of the noncentrality parameter, and the noncentrality parameter
is a function of the ratio of the standard deviation of the tested effect to the standard deviation of the
errors. As such, the effect size for each of the F tests is defined as the square root of the ratio of
the variance explained by the tested effect to the error variance.

power twoway performs power and sample-size computation for a two-way fixed-effects ANOVA
model based on an F test of the effect of interest.

Using power twoway

power twoway computes sample size, power, or effect size and target variance of the effect for a
two-way fixed-effects ANOVA. All computations are performed assuming a significance level of 0.05.
You may change the significance level by specifying the alpha() option.

By default, the computations are performed for an F test of the main row effects; factor(row) is
assumed. You can instead request a test of the main column effects by specifying factor(column)
or a test of the row-by-column interaction effects by specifying factor(rowcol). The error variance
for all tests is assumed to be 1 but may be changed by specifying the varerror() option.

To compute the total sample size, you must specify the alternative meanspec and, optionally, the
power of the test in the power() option. The default power is set to 0.8.

To compute power, you must specify the total sample size in the n() option and the alternative
meanspec.

Instead of the alternative cell means, you can specify the number of rows in the nrows() option,
the number of columns in the ncols() option, and the variance explained by the tested effect in
the vareffect() option when computing sample size or power. See Alternative ways of specifying
effect.

To compute effect size, the square root of the ratio of the variance explained by the tested factor
to the error variance, you must specify the total sample size in the n() option, the power in the
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power() option, and the number of rows and columns in nrows() and ncols(), respectively. If the
varerror() option is also specified, the target variance explained by the tested effect is reported in
addition to the effect size.

By default, all computations assume a balanced or an equal-allocation design. You can use
the cellweights() option to specify an unbalanced design for power, sample-size, or effect-size
computations. For power and effect-size computations of a balanced design, you can also specify the
npercell() option to specify a cell size instead of a total sample size in n().

In a two-way ANOVA, sample size and effect size depend on the noncentrality parameter of the
F distribution, and their estimation requires iteration. The default initial values are obtained from a
bisection search that brackets the solution. If you desire, you may change this by specifying your
own value in the init() option. See [PSS] power for the descriptions of other options that control
the iteration procedure.

In a two-way ANOVA, all computations depend on the noncentrality parameter of the F distribution.
The sample-size and effect-size computation requires a nonlinear search algorithm where the default
initial value is obtained using a bisection search algorithm that brackets the solution.

power twoway provides several ways of specifying the study parameters that we discuss next.

Alternative ways of specifying effect

To compute power or sample size, you must specify the magnitude of the effect desired to be
detected by the test. With power twoway, you can do this in several ways. For example, consider
a two-way model with J = 2 ≥ 2 row-factor levels and K = 3 ≥ 2 column-factor levels. You can
specify either the individual alternative meanspec,

power twoway m1,1 m1,2 m1,3 \ m2,1 m2,2 m2,3

[
, factor() . . .

]
or the variance of the tested effect and the number of rows J and columns K:

power twoway, factor() vareffect(#) nrows(2) ncols(3)
[
. . .
]

You can also replace vareffect() and factor() in the above with the varrow(), varcolumn(),
or varrowcolumn() option. And you can specify multiple values of the variances in these options.

As an alternative to directly specifying alternative cell means following the command name, you
can define a Stata matrix containing these means and use it with power twoway. For example,

matrix define meanmat = (m1,1, m1,2, m1,3 \ m2,1, m2,2, m2,3)

The matrix must have at least two rows and two columns.

power twoway meanmat, . . .

In the following sections, we describe the use of power twoway accompanied by examples for
computing sample size, power, and effect size.

Computing sample size

To compute sample size, you must specify the alternative cell means or the variance of the tested
effect and, optionally, the power of the test in the power() option. A power of 0.8 is assumed if
power() is not specified.
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Example 1: Sample size for a two-way ANOVA—row effect

van Belle et al. (2004, 376) provide an example of an experimental study that investigates the
effect of an automobile emission pollutant, nitrogen dioxide (NO2). The experiment considers the
effect of NO2 exposure on protein leakage in the lungs of mice. In the experimental group, mice
were exposed to 0.5 part per million (ppm) NO2 for 10, 12, and 14 days. Measurements on the
response variable, serum fluorescence, were taken on mice in the experimental (exposed) and control
(unexposed) groups. The analysis of these data used a two-way ANOVA model with the exposure status
as a row factor and the number of days of exposure to NO2 as a column factor. The row factor has
two levels, exposed or unexposed, and the column factor has three levels: 10, 12, and 14 days.

Suppose that investigators are planning to conduct another similar study. They would like to know
how many subjects, mice, they need for the experiment. We will use the estimates of parameters from
the above study to answer this question.

The estimated cell means from this study over the number of days are 134.4, 143, and 91.3 in
the control group and 106.4, 173.2, and 145.5 in the experimental group. From the ANOVA table on
page 379 (van Belle et al. 2004), the estimated residual variance is 1417.35. For convenience, we
round these numbers down to the nearest integers in our computations.

We begin by computing sample size for testing the main treatment (exposure) effects using power
twoway’s defaults for other aspects of the study: a balanced design, a 5% significance level, and 80%
power. (Option factor(row) is assumed by default.)

. power twoway 134 143 91 \ 106 173 145, varerror(1417)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for row effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2479

N_r = 2
N_c = 3

means = <matrix>
Var_r = 87.1111
Var_e = 1417.0000

Estimated sample sizes:

N = 132
N per cell = 22

Assuming a balanced design, we need a total of 132 mice with 22 mice per cell to detect the effect
of exposure to NO2 on the protein leakage of mice.

Like all other power methods, power twoway reports study parameters first and the estimated
parameters next. The reported study parameters include the specified and implied parameters such as
significance level, power, number of rows, number of columns, and so on. power twoway does not
display the specified cell means by default but indicates in the output that the means are specified.
You can specify the showmeans option to display cell means as a matrix.

In addition to the specified and implied study parameters, power twoway reports the value of the
effect size, delta =

√
87.1111/1417 = 0.2479, computed as a square root of the ratio between the

variance of the row effect Var r and the error variance Var e. As for the one-way ANOVA models,
the effect size δ provides a unit-less measure of the magnitude of an effect with a lower bound
of zero, meaning no effect. It corresponds to Cohen’s effect-size measure f (Cohen 1988). Cohen’s
convention is that f = 0.1 means small effect size, f = 0.25 means medium effect size, and f = 0.4
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means large effect size. According to this convention, the effect size considered in our example is
medium.

Example 2: Sample size for a two-way ANOVA—column effect

Continuing example 1, we can compute the required sample size for the main column effects by
specifying the factor(column) option:

. power twoway 134 143 91 \ 106 173 145, varerror(1417) factor(column)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for column effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4889

N_r = 2
N_c = 3

means = <matrix>
Var_c = 338.6667
Var_e = 1417.0000

Estimated sample sizes:

N = 48
N per cell = 8

Assuming a balanced design, we need a total of 48 mice with 8 mice per cell to detect the effect of
the length of exposure to NO2 on the protein leakage of mice.

Similarly to the row effect, the effect size for the column effect, delta =
√

338.6667/1417 =
0.4889, is computed as a square root of the ratio between the variance of the column effect Var c and
the error variance Var e. The interpretation remains the same but with respect to the main column
effects. According to Cohen’s scale, the effect size corresponding to the test of the main column
effects is large, so we need fewer subjects to detect the column effect than we need to detect the
previous row effect.

Example 3: Sample size for a two-way ANOVA—row-by-column effect

Continuing example 2, we can also compute the required sample size for the row-by-column effects
interaction by specifying the factor(rowcol) option:
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. power twoway 134 143 91 \ 106 173 145, varerror(1417) factor(rowcol)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for row-by-column effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4572

N_r = 2
N_c = 3

means = <matrix>
Var_rc = 296.2222
Var_e = 1417.0000

Estimated sample sizes:

N = 54
N per cell = 9

For a balanced design, we need a total of 54 mice with 9 mice per cell to detect the joint effects of
exposure and the length of exposure to NO2 on the protein leakage of mice.

Similarly to the row-by-column effects, the effect size for the row-by-column effect, delta =√
296.2222/1417 = 0.4572, is computed as a square root of the ratio between the variance of the

row-by-column effect Var rc and the error variance Var e. The interpretation is again the same
but with respect to the interaction of row-by-column effects. According to Cohen’s scale, the effect
size corresponding to the test of the row-by-column effects is also large, so we need fewer subjects
to detect this effect than we need to detect the row effect. The effect size is similar to the column
effect size, so the required numbers of subjects are comparable for the two tests. As a final sample
size, we would choose the largest of the three sizes to ensure that we have enough subjects to detect
any of the considered effects.

Example 4: Alternative ways of specifying effect

Instead of specifying the alternative cell means as in previous examples, we can specify the variance
explained by the corresponding tested effect and the numbers of rows and columns.

For instance, from example 2, the variance explained by the column effect was computed to be
338.6667. We specify this value in vareffect() as well as the number of rows in nrows() and
the number of columns in ncols():
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. power twoway, varerror(1417) factor(column) vareffect(338.6667) nrows(2) ncols(3)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for column effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4889

N_r = 2
N_c = 3

Var_c = 338.6667
Var_e = 1417.0000

Estimated sample sizes:

N = 48
N per cell = 8

We obtain the exact same results as in example 2.

A shorthand for the specification of factor(column) and vareffect() is the varcolumn()
option. You can verify that the specification

. power twoway, varerror(1417) varcolumn(338.6667) nrows(2) ncols(3)
(output omitted )

produces results identical to the results above.

You can also use similar alternative specifications for the tests of row and row-by-column effects
with intuitive modifications to the syntax.

power twoway also provides another alternative specification of the cell means. Instead of specifying
alternative cell means directly following the command line, as in example 2, we can define a matrix,
say, means, containing these means and use it with power twoway:

. matrix define means = (134, 143, 91 \ 106, 173, 145)

. power twoway means, varerror(1417) factor(column)
(output omitted )

You can again verify that the results are identical to the previous results.

Example 5: Unbalanced design

Continuing example 1, let’s compute the required sample size for an unbalanced design. For instance,
consider a design in which the control group (the first row) contains twice as many subjects as the
experimental group (the second row) for each level of the other factor. We use the cellweights()
option to specify weights for each cell.
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. power twoway 134 143 91 \ 106 173 145, varerror(1417) cellweights(2 2 2 \ 1 1 1)
> showcellsizes

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for row effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2338

N_r = 2
N_c = 3

means = <matrix>
Var_r = 77.4321
Var_e = 1417.0000

Estimated sample sizes:

N = 153
Average N = 25.5000

Cell sample sizes

columns
1 2 3

rows
1 34 34 34
2 17 17 17

The required total sample size for this unbalanced design is 153 with the average number of subjects
in a cell of 25.5. We specified the showcellsizes option to display the number of subjects for each
cell along with the total and average sample sizes that are displayed by default for an unbalanced
design.

You can alternatively specify cell weights as a matrix.

Computing power

To compute power, you must specify the total sample size in the n() option and the desired effect
size, expressed using alternative cell means, for example. See Alternative ways of specifying effect.

Example 6: Power for a two-way ANOVA

Continuing example 1, suppose that we anticipate a sample of 90 mice. To compute the corresponding
power, we specify the sample size of 90 in n().
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. power twoway 134 143 91 \ 106 173 145, varerror(1417) n(90)

Estimated power for two-way ANOVA
F test for row effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
N = 90

N per cell = 15
delta = 0.2479

N_r = 2
N_c = 3

means = <matrix>
Var_r = 87.1111
Var_e = 1417.0000

Estimated power:

power = 0.6426

For this smaller sample size, the power for detecting the effect size of 0.25 is only 64%.

Example 7: Multiple values of study parameters

Continuing example 6, we may want to check powers for several sample sizes. We simply list
multiple sample-size values in n():

. power twoway 134 143 91 \ 106 173 145, varerror(1417) n(90 114 126)

Estimated power for two-way ANOVA
F test for row effect
Ho: delta = 0 versus Ha: delta != 0

means = <matrix>

alpha power N N_per_cell delta N_r N_c Var_r Var_e

.05 .6426 90 15 .2479 2 3 87.11 1417

.05 .7466 114 19 .2479 2 3 87.11 1417

.05 .7884 126 21 .2479 2 3 87.11 1417

The larger the sample size, the larger the power.

We can even compute results for multiple sample sizes and, for example, multiple values of error
variances.
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. power twoway 134 143 91 \ 106 173 145, varerror(1000 1800) n(90 114 126)
> table(, sep(3))

Estimated power for two-way ANOVA
F test for row effect
Ho: delta = 0 versus Ha: delta != 0

means = <matrix>

alpha power N N_per_cell delta N_r N_c Var_r Var_e

.05 .7904 90 15 .2951 2 3 87.11 1000

.05 .8776 114 19 .2951 2 3 87.11 1000

.05 .9076 126 21 .2951 2 3 87.11 1000

.05 .5411 90 15 .22 2 3 87.11 1800

.05 .6436 114 19 .22 2 3 87.11 1800

.05 .6878 126 21 .22 2 3 87.11 1800

We specified table()’s suboption separator(), abbreviated to sep(), to improve readability of
the table.

We can also compute results for combinations of multiple values of other study parameters.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Computing effect size and target variance explained by the tested effect

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, power, sample size, and the
numbers of rows and columns must be specified.

The effect size is defined as a square root of the ratio of the variance explained by the tested effect
to the error variance. The effect size is computed by default. If the error variance is specified in the
varerror() option, the target variance of the effect is also reported.

Example 8: Effect size for a two-way ANOVA—row effect

Continuing example 6, we now want to compute the effect size that can be detected for a sample
of 90 subjects and a power of 80%. We specify both parameters in the respective options. For the
effect-size determination, we must also specify the number of rows in nrows() and the number of
columns in ncols():
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. power twoway, varerror(1417) n(90) power(0.8) nrows(2) ncols(3)

Performing iteration ...

Estimated row variance for two-way ANOVA
F test for row effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 90
N per cell = 15

N_r = 2
N_c = 3

Var_e = 1417.0000

Estimated effect size and row variance:

delta = 0.2987
Var_r = 126.4634

With a smaller sample size, given the same power, we can only detect a larger effect size of 0.2987,
compared with the effect size of 0.2479 from example 1. The corresponding estimate of the variance
explained by the row effect is 126.46, given the error variance of 1417.

Testing hypotheses about means from multiple populations

Example 9: Two-way ANOVA

After the initial power and sample-size planning, we can use Stata’s anova command to perform
inference for two-way ANOVA based on the collected sample. We show a quick example of how to
do this here; see [R] anova for more examples and details.

We use data on systolic blood pressure. Consider a sample of 58 patients, each suffering from 1
of 3 different diseases, who were randomly assigned to 1 of 4 different drug treatments and whose
change in systolic blood pressure was recorded. To test for the effects of the drug and the disease
and their interaction, we type the following:

. use http://www.stata-press.com/data/r13/systolic
(Systolic Blood Pressure Data)

. anova systolic drug disease drug#disease

Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob > F

Model 4259.33851 11 387.212591 3.51 0.0013

drug 2997.47186 3 999.157287 9.05 0.0001
disease 415.873046 2 207.936523 1.88 0.1637

drug#disease 707.266259 6 117.87771 1.07 0.3958

Residual 5080.81667 46 110.452536

Total 9340.15517 57 163.862371

We find that only the main effect of the drug is significant.
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Suppose that we would like to conduct a similar study. We use the estimates from the study above
to compute the required sample size for our new study. We are particularly interested in testing the
interaction between the drug and disease, so we would like to compute the sample size for this test.

First, we estimate the cell means of systolic blood pressure for different treatment and disease
levels:

. table drug disease, contents(mean systolic) format(%9.0f)

Patient’s Disease
Drug Used 1 2 3

1 29 28 20
2 28 34 18
3 16 4 8
4 14 13 14

From the twoway output, the estimate of the error variance is roughly 110. Second, we specify
the means and the error variance with power twoway and compute the required sample size for a
balanced design assuming 5% significance level and 80% power for the test of interaction effects.

. power twoway 29 28 20 \ 28 34 18 \ 16 4 8 \ 14 13 14, varerror(110) f(rowcol)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for row-by-column effect
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.3465

N_r = 4
N_c = 3

means = <matrix>
Var_rc = 13.2083
Var_e = 110.0000

Estimated sample sizes:

N = 132
N per cell = 11

We need a total of 132 subjects with 11 subjects per cell to detect the drug-by-disease effect size of
0.3465 for this design.

To determine the final sample size, you may want to repeat the same computations for the tests
of the main effects of drug and the main effects of disease and select the sample size based on the
three tests.
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Stored results
power twoway stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N avg) average sample size
r(N#1 #2) number of subjects in cell (#1, #2)
r(N per cell) number of subjects per cell
r(N rc) number of cells
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(balanced) 1 for a balanced design; 0 otherwise
r(cwgt#1 #2) cell weight (#1, #2)
r(onesided) 1 for a one-sided test of a mean contrast; 0 otherwise
r(N r) number of rows
r(N c) number of columns
r(m#1 #2) cell mean (#1, #2)
r(Var r) row variance
r(Var c) column variance
r(Var rc) row-by-column variance
r(Var e) error variance
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for sample size or effect size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) twoway
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results
r(Nij) cell-sizes matrix
r(means) cell-means matrix
r(cwgt) cell-weights matrix

Methods and formulas

Consider factor A with J levels and factor B with K levels. Let µjk be the mean of cell (j, k)
in a table formed by the levels of factors A and B. For example, let J = 3 and K = 3; then the
following cell-means table summarizes the experiment.
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Factor B
Factor A k = 1 k = 2 k = 3 Total

j = 1 µ11 µ12 µ13 µ1·
j = 2 µ21 µ22 µ23 µ2·
j = 3 µ31 µ32 µ33 µ3·

Total µ·1 µ·2 µ·3 µ··

Methods and formulas are presented under the following headings:

Main effects
Interaction effects
Hypothesis testing

Main effects

Main effects measure the deviation of the factor-level means from the overall or grand mean. The
larger the main effect, the more likely you can detect the effect. From the above table, the main effect
of factor A at the jth level is aj = µj· − µ··. Similarly, the main effect of factor B at the kth level
is bk = µ·k − µ··. The overall mean can be expressed as

µ·· =

∑J
j=1

∑K
k=1 µjk

JK
=

∑J
j=1 µj·

J
=

∑K
k=1 µ·k
K

This implies that

J∑
j=1

aj = 0 and
K∑
k=1

bk = 0

Interaction effects
Unlike main effects that measure the effect of individual factors on the dependent variable,

interaction effects measure the effect of the two factors jointly on the dependent variable. For
example, the interaction effect of factor A at the jth level and factor B at the kth level is
(ab)jk = µjk − µj· − µ·k + µ··

The sum of interaction effects is zero:

J∑
j=1

(ab)jk = 0 at each level of k = 1, . . . ,K

K∑
k=1

(ab)jk = 0 at each level of j = 1, . . . , J

This implies

J∑
j=1

K∑
k=1

(ab)jk = 0
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Hypothesis testing

Let n denote the total sample size and yijk denote the response of ith individual at the jth level
of factor A and kth level of factor B for i = 1, . . . , njk such that n =

∑
j,k njk. ANOVA models

assume that responses yijk within each cell are independent and identically distributed random normal
with constant variance σ2

e . Using the definitions of aj , bk, and (ab)jk from the previous sections,
our linear model is expressed as

yijk = µ·· + aj + bk + (ab)jk + eijk

= µjk + eijk

where µ·· is the overall mean, and eijk’s are the independent error terms that have the standard normal
distribution. The first equation corresponds to the formulation of an ANOVA model using effects, and
the second formulation corresponds to the cell-means formulation.

The variance explained by the row effects is σ2
a =

∑
j a

2
j/J , by the column effects is σ2

b =∑
k b

2
k/K, and by the row-by-column effects is σ2

(ab) =
∑
j,k(ab)2

jk/JK.

The following sets of hypotheses are of interest in a two-way ANOVA:

H0: all aj = 0 versus Ha: at least one aj 6= 0 (1)

H0: all bk = 0 versus Ha: at least one bk 6= 0 (2)

H0: all (ab)jk = 0 versus Ha: at least one (ab)jk 6= 0 (3)

Hypotheses (1) and (2) test the main effects of factors A and B, respectively, and hypothesis (3) tests
the interaction effects between A and B.

To test the above hypotheses, we can use the general linear model framework discussed in Methods
and formulas of [PSS] power oneway. We recapitulate it here with application to the two-way model.

A general test statistic for testing hypotheses like (1), (2), and (3) is given by

FC =
SSC
νσ̂2

e

(4)

where SSC = (Cb̂)′{C(X′X)−1C′}−1(Cb̂). The n× JK matrix X specifies the coding for the
two-way design. Matrix C is ν × JK and contains the contrasts for the means that are used to test
each of the three hypotheses. For the two-way design, v is J − 1, K − 1, or (J − 1)(K − 1) for
hypotheses (1), (2), and (3), respectively.

Let α be the significance level and Fν,n−JK,1−α be the (1− α)th quantile of an F distribution
with ν numerator and n− JK denominator degrees of freedom. We reject the null hypothesis if we
observe a statistic FC > Fν,n−JK,1−α.

Under the alternative hypothesis, the test statistic (4) is distributed as a noncentral F distribution
with ν numerator and n − JK denominator degrees of freedom and a noncentrality parameter λ
given by

λ = n(Cb)′{C(Ẍ′WẌ)−1C′}−1(Cb)/σ2
e

= nδ2

where the matrix Ẍ contains the unique rows of X such that µ = Ẍb, W = diag(w1, . . . , wJK),
and δ is the effect size. For a two-way design, the dimension of Ẍ is JK × JK, and the weights
are wi = njk/n, i = (k − 1)J + j. The cell-means parameterization simplifies Ẍ to the identity
matrix, IJK .
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The rows of Ẍ and weights wi are associated with the column-major, vec(), order of the two-way
table with factor A indexed on the rows and factor B indexed on the columns. (See the 3× 3 table in
the beginning of this section, and scan each column k = 1, 2, 3.) The weight wi can be reexpressed as
a cell weight w̃i, which is independent of the sample size n; see Methods and formulas of [PSS] power
oneway for details.

When the cellweights() option is specified, a constant cell-size multiplier nc is computed and
rounded to an integer unless the nfractional option is specified. The cell sizes are then computed
as w̃jnc. The actual sample size, N a, is the sum of the cell sizes.
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Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power oneway — Power analysis for one-way analysis of variance

[PSS] power repeated — Power analysis for repeated-measures analysis of variance

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[R] anova — Analysis of variance and covariance
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power repeated — Power analysis for repeated-measures analysis of variance

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

Compute sample size

power repeated meanspec, corrspec
[
power(numlist) options

]

Compute power

power repeated meanspec, n(numlist) corrspec
[

options
]

Compute effect size

power repeated, n(numlist) power(numlist) ngroups(#) corrspec
[

options
]

where meanspec is either a matrix matname containing cell means or individual cell means in a matrix
form:

m1,1 m1,2

[
. . . m1,K

] [
\ . . .

[
\ mJ,1 mJ,2

[
. . . mJ,K

] ] ]
mjk, where j = 1, 2, . . . , J and k = 1, 2, . . . ,K, is the alternative cell mean or the cell mean of
the jth row (group) and kth column (repeated measure) under the alternative hypothesis.

matname is the name of a Stata matrix with J rows and K columns containing values of alternative
cell means.

At least one group, J = 1, and two repeated measures, K = 2, must be specified.

where corrspec for computing power and sample size is {corr(numlist) | covmatrix(matname)}, and
corrspec for computing effect size is {nrepeated(#) corr(numlist) | covmatrix(matname)}.

275
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
nfractional allow fractional sample sizes
∗npergroup(numlist) number of subjects per group; implies balanced design
∗n#(numlist) number of subjects in group #
grweights(wgtspec) group weights; default is one for each group, meaning

equal-group sizes
ngroups(#) number of groups
nrepeated(#) number of repeated measures
∗corr(numlist) correlation between repeated measures; one of corr()

or covmatrix() is required
covmatrix(matname) covariance between repeated measures; one of corr()

or covmatrix() is required
factor(between | within | bwithin) tested effect: between, within, or between–within;

default is factor(between)
∗vareffect(numlist) variance explained by the tested effect specified in factor()
∗varbetween(numlist) variance explained by the between-subjects effect; synonym

for factor(between) and vareffect(numlist)
∗varwithin(numlist) variance explained by the within-subject effect; synonym

for factor(within) and vareffect(numlist)
∗varbwithin(numlist) variance explained by the between–within effect; synonym

for factor(bwithin) and vareffect(numlist)
∗varerror(numlist) error variance; default is varerror(1) when corr()

is specified; not allowed with covmatrix()

showmatrices display cell-means matrix and covariance matrix
showmeans display cell means
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS] power, graph
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Iteration

init(#) initial value for the sample size or the effect size; default
is to use a bisection algorithm to bound the solution

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.
notitle does not appear in the dialog box.

wgtspec Description

#1 #2 . . . #J J group weights. Weights must be positive and must be
integers unless option nfractional is specified. Multiple
values for each group weight #j can be specifed as a
numlist enclosed in parentheses.

matname matrix with J columns containing J group weights. Multiple
rows are allowed, in which case each row corresponds
to a different set of J weights or, equivalently, column j
corresponds to a numlist for the jth weight.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N per group number of subjects per group N/Ng
N avg average number of subjects per group Navg

N# number of subjects in group # N#

delta effect size δ
N g number of groups Ng
N rep number of repeated measurements Nrep

m#1 #2 cell mean (#1, #2): group #1, occasion #2 µ#1,#2

Var b between-subjects variance σ2
b

Var w within-subject variance σ2
w

Var bw between–within (group-by-occasion) variance σ2
bw

Var be between-subjects error variance σ2
be

Var we within-subject error variance σ2
we

Var bwe between–within (group-by-occasion) error variance σ2
bwe

Var e error variance σ2
e

corr correlation between repeated measures ρ
grwgt# group weight # w#

target target parameter; synonym for target effect variance
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column N per group is available and is shown in the default table only for balanced designs.
Columns N avg and N# are shown in the default table only for unbalanced designs.
Columns m#1 #2 are not shown in the default table.
Columns Var b and Var be are shown in the default table for the between-subjects test, Var w and Var we for the

within-subjects test, and Var bw and Var bwe for the between–within test.
Columns grwgt# are not shown in the default table.

Menu
Statistics > Power and sample size

Description
power repeated computes sample size, power, or effect size for one-way or two-way repeated-

measures analysis of variance (ANOVA). By default, it computes sample size for given power and
effect size. Alternatively, it can compute power for given sample size and effect size or compute
effect size for given sample size, power, and number of groups. Also see [PSS] power for a general
introduction to the power command using hypothesis tests.
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Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS] power.

npergroup(numlist) specifies the group size. Only positive integers are allowed. This option implies
a balanced design. npergroup() cannot be specified with n(), n#(), or grweights().

n#(numlist) specifies the size of the #th group. Only positive integers are allowed. All group sizes
must be specified. For example, all three options n1(), n2(), and n3() must be specified for a
design with three groups. n#() cannot be specified with n(), npergroup(), or grweights().

grweights(wgtspec) specifies J group weights for an unbalanced design. The weights may be
specified either as a list of values or as a matrix, and multiple sets of weights are allowed; see
wgtspec for details. The weights must be positive and must also be integers unless the nfractional
option is specified. grweights() cannot be specified with npergroup() or n#().

ngroups(#) specifies the number of groups. This option is required if meanspec is not specified.
This option is also required for effect-size determination unless grweights() is specified. For a
one-way repeated-measures ANOVA, specify ngroups(1).

nrepeated(#) specifies the number of repeated measurements within each subject. At least two
repeated measurements must be specified. This option is required if the corr() option is specified
and meanspec is not specified. This option is also required for effect-size determination unless
covmatrix() is specified.

corr(numlist) specifies the correlation between repeated measurements. corr() cannot be specified
with covmatrix(). This option requires the nrepeated() option unless meanspec is specified.

covmatrix(matname) specifies the covariance matrix between repeated measurements. covmatrix()
cannot be specified with corr() or varerror().

factor(between | within | bwithin) specifies the effect of interest for which power and sample-size
analysis is to be performed. For a one-way repeated-measures ANOVA, only factor(within) is
allowed and is implied when only one group is specified. In a two-way repeated-measures ANOVA,
the tested effects include the between effect or main effect of a between-subjects factor, the within
effect or main effect of a within-subject factor, and the between–within effect or interaction effect
of the between-subjects factor and the within-subject factor. The default for a two-way repeated
design is factor(between).

vareffect(numlist) specifies the variance explained by the tested effect specified in factor().
For example, if factor(between) is specified, vareffect() specifies the variance explained
by the between-subjects factor. This option is required if the factor() option is specified and
meanspec is not specified. This option is not allowed with the effect-size determination. Only one
of vareffect(), varbetween(), varwithin(), or varbwithin() may be specified.

varbetween(numlist) specifies the variance explained by the between-subjects factor. This option
is equivalent to specifying factor(between) and vareffect(numlist) and thus cannot be
combined with factor(). This option is not allowed with the effect-size determination. Only
one of vareffect(), varbetween(), varwithin(), or varbwithin() may be specified. This
option is not allowed when only one group is specified.

varwithin(numlist) specifies the variance explained by the within-subject factor. This option is
equivalent to specifying factor(within) and vareffect(numlist) and thus cannot be com-
bined with factor(). This option is not allowed with the effect-size determination. Only one of
vareffect(), varbetween(), varwithin(), or varbwithin() may be specified.
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varbwithin(numlist) specifies the variance explained by the interaction between a between-subjects
factor and a within-subject factor. This option is equivalent to specifying factor(bwithin) and
vareffect(numlist) and thus cannot be combined with factor(). This option is not allowed
with the effect-size determination. Only one of vareffect(), varbetween(), varwithin(), or
varbwithin() may be specified. This option is not allowed when only one group is specified.

varerror(numlist) specifies the error variance if covmatrix() is not specified. This option is
allowed only if corr() is specified. When corr() is specified, the default is varerror(1). If
varerror() is not specified with effect-size determination, only effect size δ is reported, otherwise
the estimated variance of the tested effect is also reported.

showmatrices specifies that the cell-means matrix and the covariance matrix be displayed, when
applicable.

showmeans specifies that the cell means be reported. For a text or graphical output, this option is
equivalent to showmatrices except only the cell-mean matrix will be reported. For a tabular
output, the columns containing cell means will be included in the default table.

parallel; see [PSS] power.

� � �
Table �

table, table(tablespec), notable; see [PSS] power, table.

saving(); see [PSS] power.

� � �
Graph �

graph, graph(); see [PSS] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the effect size δ for the effect-size determination. The default uses a bisection algorithm
to bracket the solution.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS] power.

The following option is available with power repeated but is not shown in the dialog box:

notitle; see [PSS] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power repeated
Computing sample size
Computing power
Computing effect size and target variance explained by the tested effect
Testing hypotheses about means from multiple dependent populations

This entry describes the power repeated command and the methodology for power and sample-
size analysis for one-way and two-way repeated-measures ANOVA. See [PSS] intro for a general
introduction to power and sample-size analysis and [PSS] power for a general introduction to the
power command using hypothesis tests.
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Introduction
Repeated-measures ANOVA models are popular among experimenters because of their increased

power compared with regular ANOVA models. Repeated-measures designs allow multiple measurements
on the same subject. The repeated measurements often correspond to outcomes measured over time
for each subject, but they can also correspond to different measurements of the same treatment or
measurements of different treatments. The key point is that multiple measurements are made on the
same subject.

One example of a repeated-measures design is a longitudinal study that offers an important
alternative to a cross-sectional study because of its ability to establish a temporal relationship between
the treatment and the outcome. For example, patients with hypertension might be randomized to
receive a new experimental drug or standard care and have their systolic blood pressure measured at
baseline and each year for two years.

Baseline Year 1 Year 2
Old drug 145 135 130
New drug 145 130 120

What makes repeated-measures designs more powerful? Using each subject as his or her own
control reduces subject-to-subject variability that is explained by anything other than the effect of the
treatment under study. This may dramatically increase power for detecting the effect of the treatment
of interest.

Two classes of methods can be used to analyze repeated-measures data: univariate methods such
as regular F tests and multivariate methods such as Wilks’ lambda test, Pillai’s trace test, and the
Lawley–Hotelling trace test. The multivariate methods are more flexible in terms of the assumptions
about the repeated-measures covariance structure, but they have lower power than regular F tests. In
this entry, we concentrate on the univariate methods.

A repeated-measures design belongs to a class of within-subject designs, designs that contain one or
more within-subject factors. A within-subject factor is a factor for which each subject receives several
or all levels. A between-subjects factor, on the other hand, is any factor for which each subject receives
only one level. In what follows, we consider designs with one fixed within-subject factor—one-way
fixed-effects repeated-measures ANOVA models—or designs with one fixed between-subjects factor
and one fixed within-subjects factor—two-way fixed-effects repeated-measures ANOVA models.

In a one-way repeated-measures model, the within-subject effect is the effect of interest. In a
two-way repeated-measures model, you can choose between the three effects of interest: a main
between-subjects effect or the between effect, a main within-subject effect or the within effect, and an
interaction effect between the between-subjects factor and within-subject factor or the between–within
effect. power repeated provides power and sample-size computations for the tests of all of these
effects.

Repeated-measures ANOVA assumes that errors are normally distributed with zero mean and constant
variance. The measurements between subjects are independent, but the measurements within a subject
are assumed to be correlated. The within-subject covariance matrices must be constant between groups
defined by the levels of between-subjects factors. The validity of the regular F test also relies on
the so-called sphericity assumption (or, more generally, the circularity assumption). You can think
of this assumption as all differences between levels of the within-subject factor having the same
variances. A special case of this assumption is compound symmetry, a less stringent assumption. A
covariance matrix is said to have a compound-symmetry structure if all the variances are equal and
all the covariances are equal.
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The assumption of sphericity is rather restrictive. When it is violated, the distribution of the test
statistic of the regular F test of within and between–within effects is no longer an exact F distribution.
To compensate for this, several nonsphericity corrections such as the Greenhouse–Geisser correction
or Huynh–Feldt correction for the degrees of freedom of the regular F test are proposed (for example,
Geisser and Greenhouse [1958]; Huynh and Feldt [1976]).

The distribution of the test statistic under the alternative hypothesis is a noncentral F distribution for
all the considered tests. Thus power is a function of the noncentrality parameter, and the noncentrality
parameter is a function of the ratio of the variance of the tested effect to the comparison error variance
used in the denominator of the corresponding F test. For example, for a test of the within effect,
the comparison error variance is the within-effect error variance. In what follows, by comparison
error variance, we will imply one of the between-effect, within-effect, or between–within-effect error
variance, whichever is appropriate for the considered test. The effect size for each of the F tests is
defined as the square root of the ratio of the variance of the tested effect to the comparison error
variance.

This entry describes power and sample-size analysis of repeated-measures ANOVA using the
univariate F test with Greenhouse–Geisser correction for the nonsphericity.

Using power repeated

power repeated computes sample size, power, or effect size for one-way and two-way fixed-
effects repeated-measures ANOVA models. A one-way repeated-measures ANOVA model includes one
fixed within-subject factor. The supported two-way repeated-measures ANOVA includes one fixed
between-subjects factor and one fixed within-subject factor. A one-way model is available as a special
case of a two-way model with one group. At least one group and two repeated measures must be
specified.

All computations are performed assuming a significance level of 0.05. You may change the
significance level by specifying the alpha() option.

The computations are performed for an F test of the effect of interest. In a one-way model, the
only effect of interest is a within-subject effect. In a two-way model, you can choose between the
three effects of interest: between-subjects effect with factor(between) (the default), within-subject
effect with factor(within), and between–within effect with factor(bwithin).

All computations require that you specify a residual covariance between repeated measures. You
can either specify any unstructured covariance matrix in covmatrix() or specify the correlation
between repeated measures in corr() and the error variance in varerror(). If corr() is specified,
varerror(1) is assumed. The latter specification implies a residual covariance with compound-
symmetry structure.

To compute the total sample size, you must also specify the alternative meanspec and, optionally,
the power of the test in power(). The default power is set to 0.8.

To compute power, you must specify the total sample size in the n() option and the alternative
meanspec.

Instead of the alternative cell means, you can specify the number of groups (rows) in the ngroups()
option, the number of repeated measures (columns) in the nrepeated() option, and the variance
explained by the tested effect in the vareffect() option when computing sample size or power. See
Alternative ways of specifying effect in [PSS] power twoway; substitute ngroups() for nrows(),
nrepeated() for ncols(), varbetween() for varrow(), varwithin() for varcolumn(), and
varbwithin() for varrowcolumn(). If covmatrix() is specified, the nrepeated() option is not
required—the number of repeated measures is determined by the dimensionality of the specified
covariance matrix.
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To compute effect size, the square root of the ratio of the variance explained by the tested factor
to the comparison error variance, in addition to the residual covariance, you must specify the total
sample size in n(), the power in power(), the number of groups in ngroups(), and the number
of repeated measures in nrepeated() if corr() is specified. If varerror() or covmatrix() is
specified, the target variance explained by the tested effect is reported in addition to the effect size.

By default, all computations assume a balanced or an equal-allocation design. You can use
grweights() to specify an unbalanced design for power, sample-size, or effect-size computations.
For power and effect-size computations, you can specify individual group sizes in n1(), n2(), and
so on, instead of a combination of n() and grweights() to accommodate an unbalanced design.
For a balanced design, you can also specify npergroup() to specify a group size instead of a total
sample size in n().

In repeated-measures ANOVA, sample size and effect size depend on the noncentrality parameter
of the F distribution, and their estimation requires iteration. The default initial values are obtained
from a bisection search that brackets the solution. If you desire, you may change this by specifying
your own value in the init() option. See [PSS] power for the descriptions of other options that
control the iteration procedure.

Computing sample size

To compute sample size, you must specify a repeated-measures covariance, an alternative cell
means, or the variance of the tested effect and, optionally, the power of the test in the power()
option. A power of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-way repeated-measures ANOVA

Consider a version of the study described in Winer, Brown, and Michels (1991, 228). Suppose that
researchers would like to conduct a similar study to investigate the effects of three drugs on reaction
time to a series of standardized tasks. Per design, each subject will receive all three drugs, and a
subject’s score (mean reaction time to a task) will be recorded for each of the three drugs; that is, there
will be three repeated measurements on each subject. This is a simple one-way repeated-measures
design in which drug is the within-subject factor. See Winer, Brown, and Michels (1991) for other
details of the design.

Before conducting the study, researchers would like to compute the required sample size to detect
the effect of interest with 80% power and a 5% significance level. Suppose that the postulated means
for the three drug levels are 26.4, 25.6, and 21; the correlation between repeated measurements is
0.6; and the error variance is 77. We use power repeated to compute the sample size:
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. power repeated 26.4 25.6 21, corr(0.6) varerror(77)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse-Geisser correction
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7426

N_g = 1
N_rep = 3
means = <matrix>
Var_w = 5.6622

Var_we = 10.2667
Var_e = 77.0000

rho = 0.6000

Estimated sample sizes:

N = 20
N per group = 20

We need to recruit 20 subjects to detect the effect size of 0.7426 =
√

5.6622/10.2667 in this study.

Repeated-measures covariance in this study has a compound-symmetry structure by design, so the
assumption of sphericity, underlying the F test of means for the within-subject factor, is automatically
satisfied. Thus no correction to the degrees of freedom of the test is made.

Example 2: Alternative ways of specifying effect and repeated-measures covariance

Instead of specifying the alternative cell means as in example 1, we can specify the variance
between them. Here we also need to specify the number of groups and the number of repeated
measures. From example 1, the variance between the means was computed as 5.6622. We specify this
value in varwithin(), the number of groups in ngroups(), and the number of repeated measures
in nrepeated():

. power repeated, ngroups(1) varwithin(5.6622) nrepeated(3) corr(0.6) varerror(77)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse-Geisser correction
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7426

N_g = 1
N_rep = 3
Var_w = 5.6622

Var_we = 10.2667
Var_e = 77.0000

rho = 0.6000

Estimated sample sizes:

N = 20
N per group = 20

We obtain the exact same results as in example 1.
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Instead of specifying alternative means directly following the command line, we can define a
matrix, say, M, containing these means and use it with power repeated:

. matrix M = (26.4,25.6,21)

. power repeated M, corr(0.6) varerror(77) showmatrices

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse-Geisser correction
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7426

N_g = 1
N_rep = 3
means = <matrix>
Var_w = 5.6622

Var_we = 10.2667
Var_e = 77.0000

rho = 0.6000

Study matrices:

Cell means

repeated
1 2 3

groups
1 26.4 25.6 21

Covariance

repeated
1 2 3

repeated
1 77
2 46.2 77
3 46.2 46.2 77

Estimated sample sizes:

N = 20
N per group = 20

We used the showmatrices option to display the cell-means matrix and the covariance matrix.

We can also use the covmatrix() option to specify the repeated-measures covariance matrix.
This option allows you to specify unstructured covariance matrices.

We could have typed the values of the covariance matrix displayed above, but instead, we simply
retrieve it from the stored result r(Cov). We then display the values of the covariance matrix to
verify that we have the correct matrix.

. matrix Cov = r(Cov)

. matlist Cov

repeated
1 2 3

repeated
1 77
2 46.2 77
3 46.2 46.2 77
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We specify the covariance matrix in covmatrix():

. power repeated M, covmatrix(Cov)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse-Geisser correction
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7426

N_g = 1
N_rep = 3
means = <matrix>
Var_w = 5.6622

Var_we = 10.2667
Cov = <matrix>

spherical = true

Estimated sample sizes:

N = 20
N per group = 20

We obtain the exact same results as before.

Example 3: Sample size for a two-way repeated-measures ANOVA—between effect

A group of researchers would like to design a study to determine whether a new antihypertension
medication is more effective than the best medication currently available. They plan their study based
on the design and results of the ALLHAT clinical trial (1996, 2002). Average systolic blood pressure
(SBP) is assumed to be 145 mm/Hg at baseline in both treatment groups. Using the results of the
ALLHAT study, the researchers expect a mean SBP of 135 at year 1 and 130 at year 2 in the old drug
group. Using the results of pilot studies, the researchers expect a mean SBP of 130 at year 1 and 120
at year 2 in the new drug group.

Baseline Year 1 Year 2
Old drug 145 135 130
New drug 145 130 120

There are two factors in this experiment: treatment group is the between-subjects factor, and mea-
surement time (baseline, year 1, and year 2) is the within-subject factor. Using the ALLHAT study and
the pilot data, the researchers assume that the variance of SBP will be 225 for both groups at each of
the three measurements. They also assume that the correlation between the repeated measurements is
0.7, so the covariance matrix is

Σ =

 225 157.5 157.5
157.5 225 157.5
157.5 157.5 225


There are potentially three tests of interest here: the test of the main effect of treatment, the test of
the main effect of time, and the test of the interaction effect between treatment and time.

Let’s compute the required sample size for the test of the between effect, treatment. This is the
default test in power repeated when there is more than one group.
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We begin by defining a matrix of means and a covariance matrix.

. matrix M = (145,135,130\145,130,120)

. matrix Cov = (225,157.5,157.5\157.5,225,157.5\157.5,157.5,225)

We can use the matlist command to display these matrices to verify that we typed them correctly:

. matlist M

c1 c2 c3

r1 145 135 130
r2 145 130 120

. matlist Cov

c1 c2 c3

r1 225
r2 157.5 225
r3 157.5 157.5 225

For brevity, we use one of the alternative specifications from example 2 to compute sample size.
We specify the cell-means matrix M following the command name and the covariance matrix Cov in
covmatrix():

. power repeated M, covmatrix(Cov)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between subjects
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1863

N_g = 2
N_rep = 3
means = <matrix>
Var_b = 6.2500

Var_be = 180.0000
Cov = <matrix>

Estimated sample sizes:

N = 228
N per group = 114

To detect the treatment effect of the specified magnitude, δ = 0.1863 =
√

6.25/180, we need to
enroll 228 subjects with 114 subjects per treatment. Note that the sphericity requirement is not needed
for the F test of between effects, so no correction is done to the degrees of freedom of the test.
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By default, power repeated does not display the specified matrices. If desired, we can use the
showmatrices option to display them:

. power repeated M, covmatrix(Cov) showmatrices

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between subjects
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1863

N_g = 2
N_rep = 3
means = <matrix>
Var_b = 6.2500

Var_be = 180.0000
Cov = <matrix>

Study matrices:

Cell means

repeated
1 2 3

groups
1 145 135 130
2 145 130 120

Covariance

repeated
1 2 3

repeated
1 225
2 157.5 225
3 157.5 157.5 225

Estimated sample sizes:

N = 228
N per group = 114

Similar to the alternative specifications discussed in example 2, all the specifications below will
produce identical results:

. power repeated 145 135 130 \ 145 130 120, covmatrix(Cov)
(output omitted )

. power repeated M, corr(0.7) varerror(225)
(output omitted )

. power repeated, nrepeated(3) corr(0.7) varerror(225) ngroups(2) varbetween(6.25)
(output omitted )
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Example 4: Sample size for a two-way repeated-measures ANOVA—within effect

Continuing example 3, we now compute the required sample size for the test of the main effects
of time, the within effects.

. power repeated M, covmatrix(Cov) factor(within)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse-Geisser correction
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.7392

N_g = 2
N_rep = 3
means = <matrix>
Var_w = 68.0556

Var_we = 22.5000
Cov = <matrix>

spherical = true

Estimated sample sizes:

N = 6
N per group = 3

We only need a total of 6 subjects, 3 per group, to detect the within effect in this study.

We can also obtain identical results by using the following alternative specification:
. power repeated, covmatrix(Cov) ngroups(2) varwithin(68.0556)

(output omitted )

Example 5: Sample size for a two-way repeated-measures ANOVA—between–within
effect

Continuing example 3, we can also compute the required sample size for the test of the between–
within interaction effects, interaction between treatment and time.

. power repeated M, covmatrix(Cov) factor(bwithin)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between-within subjects with Greenhouse-Geisser correction
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4303

N_g = 2
N_rep = 3
means = <matrix>

Var_bw = 4.1667
Var_bwe = 22.5000

Cov = <matrix>
spherical = true

Estimated sample sizes:

N = 54
N per group = 27

For this test, we need a total of 54 subjects with 27 subjects per group.
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If we are interested in performing all three tests (between, within, and between–within) during
our analysis, we should pick the largest of the three sample sizes as our final sample size. In our
examples, the largest sample size is 228 for the test of between effects.

We can also obtain results identical to the above by using the following alternative specification:

. power repeated, covmatrix(Cov) ngroups(2) varbwithin(4.1667)
(output omitted )

Example 6: Unbalanced design

Continuing example 2, suppose we anticipate that the first group will have twice as many subjects
as the second group. We can accommodate this unbalanced design by specifying the corresponding
group weights in grweights():

. power repeated M, covmatrix(Cov) grweights(2 1)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between subjects
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1757

N_g = 2
N_rep = 3
means = <matrix>
Var_b = 5.5556

Var_be = 180.0000
Cov = <matrix>

Estimated sample sizes:

N = 258
Average N = 129.0000

N1 = 172
N2 = 86

The required total sample size for this unbalanced design is 258 with 172 subjects in the first group
and 86 subjects in the second group. The average number of subjects per group is 129.

We can compute results for multiple sets of group weights. The specification of group weights
within grweights() is exactly the same as the specification of group means described in Alternative
ways of specifying effect. Suppose that we would like to compute sample sizes for two unbalanced
designs. The first design has twice as many subjects in the first group, and the second design has
twice as many subjects in the second group. We specify multiple group weights for the first and
second groups in parentheses. We also specify the parallel option to treat multiple weight values
in parallel instead of computing results for all possible combinations of these values that would have
been done by default.
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. local columns alpha power N N1 N2 grwgt1 grwgt2 delta N_rep Var_b Var_be

. power repeated M, covmatrix(Cov) grweights((2 1) (1 2)) parallel table(‘columns’,
formats("%6.0g"))

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between subjects
Ho: delta = 0 versus Ha: delta != 0

means = <matrix>
Cov = <matrix>

alpha power N N1 N2 grwgt1 grwgt2 delta N_rep Var_b Var_be

.05 .8 258 172 86 2 1 .1757 3 5.556 180

.05 .8 258 86 172 1 2 .1757 3 5.556 180

The default table does not include group weights, so we request a table with custom columns containing
group weights via table(). We also request a smaller format to make the table more compact.

Computing power

To compute power, you must specify a repeated-measures covariance, the total sample size in n(),
and the alternative cell means or the variance of the tested effect.

Example 7: Power for a two-way repeated-measures ANOVA

The team discovers that they are only able to recruit a maximum of n = 200 participants. They
would like to calculate the statistical power for the between-subjects effect given this constraint and
assuming a balanced design.

. power repeated M, covmatrix(Cov) n(200)

Estimated power for repeated-measures ANOVA
F test for between subjects
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
N = 200

N per group = 100
delta = 0.1863

N_g = 2
N_rep = 3
means = <matrix>
Var_b = 6.2500

Var_be = 180.0000
Cov = <matrix>

Estimated power:

power = 0.7462

The power corresponding to this design is 75%.
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Example 8: Multiple values of study parameters

Continuing example 7, suppose that the researchers would like to know whether randomizing 60%
of the participants to the new drug group and 40% to the old drug group will have an effect on
statistical power. For comparison, we will also include the results from a balanced design.

To accommodate this unbalanced design, we could use grweights(), as we demonstrated in
example 6. For variety, we instead use n1() and n2() to specify unequal group sizes directly. We
also display only a subset of table columns, including power and sample sizes.

. power repeated M, covmat(Cov) n1(100 80) n2(100 120) parallel table(power N1 N2 N)

Estimated power for repeated-measures ANOVA
F test for between subjects
Ho: delta = 0 versus Ha: delta != 0

means = <matrix>
Cov = <matrix>

power N1 N2 N

.7462 100 100 200

.7289 80 120 200

For the specified unbalanced design, the power decreases slightly to 73% from 75%.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS] power, table. If you wish to produce a power plot,
see [PSS] power, graph.

Computing effect size and target variance explained by the tested effect

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, repeated-measures covariance,
power, sample size, the numbers of groups, and possibly the number of repeated measurements must
be specified.

The effect size in power repeated is defined as a square root of the ratio of the variance explained
by the tested effect to the comparison error variance. The effect size is computed by default. If the
error variance is specified in varerror(), the target variance of the effect is also reported.

Example 9: Effect size for a two-way repeated-measures ANOVA

Continuing example 7, suppose that researchers would like to know how large the between-subjects
variance must be to achieve a power of 80% with a total sample size of 200 using a balanced design.
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. power repeated, covmat(Cov) n(200) power(0.8) ngroups(2)

Performing iteration ...

Estimated between-subjects variance for repeated-measures ANOVA
F test for between subjects
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 200
N per group = 100

N_g = 2
N_rep = 3

Var_be = 180.0000
Cov = <matrix>

Estimated effect size and between-subjects variance:

delta = 0.1991
Var_b = 7.1331

We see that to achieve a power of at least 80%, the between-subjects variance must increase to 7.1331
from 6.250, which achieved a power of 0.7462 in example 7. The effect size increases from 0.1863
to 0.1991.

Testing hypotheses about means from multiple dependent populations

After the data are collected, we can use Stata’s anova command, for example, to perform inference
for repeated-measures ANOVA. We show a quick example of how to do this here; see [R] anova for
more examples and details.

Example 10: One-way repeated-measures ANOVA

Suppose that researchers conduct their study and collect the data. Consider the data from Winer,
Brown, and Michels (1991, 228), a version of which was discussed in example 1.

t43.dta contains 20 observations of scores of 4 repeated measurements identified by the drug
variable from 5 people identified by the person variable. We use the anova command to fit a one-way
repeated-measures model to these data.
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. use http://www.stata-press.com/data/r13/t43
(T4.3 -- Winer, Brown, Michels)

. anova score person drug, repeated(drug)

Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803

Source Partial SS df MS F Prob > F

Model 1379 7 197 20.96 0.0000

person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.733333 24.76 0.0000

Residual 112.8 12 9.4

Total 1491.8 19 78.5157895

Between-subjects error term: person
Levels: 5 (4 df)

Lowest b.s.e. variable: person

Repeated variable: drug
Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12

We are interested in the test of the effect of drug. The regular F test reports a significant result.
The anova output for the repeated variable drug, however, indicates that the sphericity assumption
is not met in these data; for example, the Greenhouse–Geisser epsilon of 0.6049 is different from 1.

When the sphericity assumption is not met, the degrees of freedom of a regular F test must be
adjusted. Even after the adjustment, the effect of a drug is still significant according to all tests, at
least at the 1% level.

To design a new study based on the results of this experiment, we can use power repeated to
compute the required sample size. To perform this computation, we will need the estimates of the
repeated-measures covariance and within-drug score means.

anova saves the estimated repeated-measures covariance in e(Srep). We save it to a new matrix
Cov and display it:

. mat Cov = e(Srep)

. matlist Cov

c1 c2 c3 c4

r1 76.8
r2 53.2 42.8
r3 29.2 15.8 14.8
r4 69 47 27 64

We now use the mean command to estimate means for each of the four drug levels. We store the
resulting matrix of means in M:
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. mean score, over(drug)

Mean estimation Number of obs = 20

1: drug = 1
2: drug = 2
3: drug = 3
4: drug = 4

Over Mean Std. Err. [95% Conf. Interval]

score
1 26.4 3.919184 18.19705 34.60295
2 25.6 2.925748 19.47634 31.72366
3 15.6 1.720465 11.99903 19.20097
4 32 3.577709 24.51177 39.48823

. mat M = e(b)

We now specify the obtained matrices with power repeated to compute the sample size:

. power repeated M, covmatrix(Cov)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse-Geisser correction
Ho: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 3.8543

N_g = 1
N_rep = 4
means = <matrix>
Var_w = 34.9100

Var_we = 2.3500
Cov = <matrix>

spherical = false

Estimated sample sizes:

N = 4
N per group = 4

We only need 4 subjects to detect the effect of a drug in a study with 80% power and a 5% significance
level.

Stored results
power repeated stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N avg) average sample size
r(N#1 #2) number of subjects in group (#1, #2)
r(N per group) number of subjects per group
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r(N g) number of groups
r(nfractional) 1 if nfractional is specified; 0 otherwise
r(balanced) 1 for a balanced design; 0 otherwise
r(grwgt#1 #2) group weight (#1, #2)
r(N rep) number of rows
r(m#1 #2) cell mean (#1, #2)
r(Var b) between-subjects variance
r(Var w) within-subject variance
r(Var bw) between–within subjects, interaction variance
r(Var be) between-subjects error variance
r(Var we) within-subject error variance
r(Var bwe) between–within subjects, interaction error variance
r(Var e) error variance
r(spherical) 1 covariance is spherical; 0 otherwise
r(epsilon) nonsphericity correction
r(epsilon m) mean nonsphericity correction
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table; 0 otherwise
r(init) initial value for sample size or effect size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged; 0 otherwise

Macros
r(type) test
r(method) repeated
r(factor) between, within, or bwithin
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results
r(means) cell-means matrix
r(Cov) repeated-measures covariance

Methods and formulas
Consider a sample of n units where each observation comprises q responses based on p predictors.

A general linear multivariate model can then be expressed as

Y = XB + E (1)

where Y is an n× q matrix of dependent variables, X is an n×p matrix of fixed predictor variables,
B is a p × q matrix of coefficients, and the error E is an n × q matrix where each row is an
independent and identically distributed random variable drawn from a p-dimensional multivariate
normal with mean 0 and a variance–covariance matrix Σ. In our repeated measures design, q = K
is the number of repeated measures within p = J treatments or groups.

For expositional purposes, consider a two-way repeated-measures design with one between-subjects
factor, treatment, and one within-subject factor, time. Suppose we wish to test the effect of a treatment
with three levels. The response of each individual is measured at the beginning of the experiment and
at three time periods after one of the three treatments is administered. To put this into perspective,
we see that K = 4 is the number of repeated measures and that J = 3 is the number of columns of
treatment levels. We can express this model as
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y1,1 y1,2 y1,3 y1,4

y2,1 y2,2 y2,3 y2,4

. . . .

. . . .
yn,1 yn,2 yn,3 yn,4

 =


1 x1,1 x1,2

1 x2,1 x2,2

. . .

. . .
1 xn,1 xn,2


 µ1 µ2 µ3 µ4

α1,1 α1,2 α1,3 α1,4

α2,1 α2,2 α2,3 α2,4

+


ε′1
ε′2
.
.
ε′n


where yi,k is the response of the ith individual at time period k = 1, 2, 3, 4 and

xi1 =

{ 1 if subject i received treatment 1
0 if subject i received treatment 2
−1 if subject i received treatment 3

xi2 =

{ 0 if subject i received treatment 1
1 if subject i received treatment 2
−1 if subject i received treatment 3

represent the effects of a treatment for individual i. The elements in the coefficient matrix B have the
following interpretation: µk is the mean-treatment response at time period k, αj,k is the jth treatment
effect, j = 1, 2, at time period k, and α3,k = −α1,k − α2,k. The treatment-by-time means are
µ = XB. The εi are independent normal vectors of length K with mean 0 and variance–covariance
Σ.

Methods and formulas are presented under the following headings:
Hypothesis testing
Computing power

Hypothesis testing

A hypothesis test for a general linear multivariate model can be formed as

H0: Θ = 0 Ha: Θ 6= 0

where Θ = CBU is a dc × du matrix with arbitrary dimensions dc and du that depend on the
specified contrast matrices C and U. C is a dc × p matrix of full rank, where rank(C) = dc ≤ p,
and U is a q × du matrix of full rank, where rank(U) = du ≤ q.

Each row of C corresponds to the row of Θ and forms a contrast to test the between-subjects
effects. Similarly, each column of U corresponds to the column of Θ and forms a contrast to test the
within-subject effect. Together, C and U can also be used to test for interaction effects.

The estimates are given by

B̂ = (X′X)−1X′Y

Θ̂ = CB̂U (2)

Ĥ = Θ̂
′
{C(X′X)−1C′}−1Θ̂ (3)

Define Ê = U′Σ̂U(n− p). Then, under the assumption of sphericity, the test statistic is given by

FC,U =
tr(Ĥ)/dcdu

tr(Ê)/{du(n− p)}
(4)
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where the statistic follows an F distribution with dcdu numerator and du(n−p) denominator degrees
of freedom. However, if the assumption is not met, then the test statistic follows an F distribution
with dcduε numerator and du(n− p)ε denominator degrees of freedom, where

ε =
tr2(Σ̂)

du tr(Σ̂
2
)

=

(∑du
k=1 λk

)2

du
∑du
k=1 λ

2
k

Under the alternative hypothesis, the power is obtained using a noncentral F distribution with
noncentrality parameter equal to

λ = dcduεFC,U

Computing power

To compute power, we make conjectures about the parameters of interest, B and Σ, and rewrite
(2), (3), and (4) as

Θ = CBU

H = nΘ′{C(Ẍ′WẌ)−1C′}−1Θ

= nH∗

E = U′ΣU(n− p)
= Σ∗(n− p)

where Ẍ is the p× p model matrix containing all the unique rows of X in a special order, and W is
a diagonal matrix containing nj/n, the sample size for the jth treatment divided by the total sample
size. In our three-treatment example, the matrix Ẍ is

Ẍ =

 1 1 0
1 0 1
1 −1 −1


The FC,U statistic using the parameter matrices H and E is

FC,U =
tr(H)/dcdu

tr(E)/{du(n− p)}

=
n

dc

tr(H∗)
tr(Σ∗)

from which we obtain the noncentrality parameter as

λ = dudcεFC,U

= nεδ2
(5)

where the effect size δ is defined as δ =
√
dutr(H∗)/tr(Σ∗).
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The effect variance (Var b, Var w, or Var bw) reported by power repeated is computed as
tr(H∗)/dc. The effect error variance (Var be, Var we, or Var bwe) is computed as tr(Σ∗)/(dcdu).

Under the alternative hypothesis, the test statistic in (4) is distributed as a noncentral F distribution
with dcduε numerator and du(n− p)ε denominator degrees of freedom and noncentrality parameter
λ from (5).

The power of the overall F test is

1− β = Fdcduε,du(n−p)ε,λ
(
Fdcduεm,du(n−p)εm,1−α

)
(6)

where F·,·,λ (·) is the cdf of a noncentral F distribution, and εm = E(ε) is computed as described
in Muller and Barton (1989, 551).

Total sample size and effect size are obtained by iteratively solving the nonlinear equation (6).
When the grweights() option is specified, a constant multiplier nc is computed and rounded to an
integer unless the nfractional option is specified. The group sizes are then computed as w̃jnc,
where w̃ is a standardized weight; see Methods and formulas of [PSS] power oneway for details.
The actual sample size, N a, is the sum of the group sizes.

See Muller et al. (1992) for details.
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Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] power oneway — Power analysis for one-way analysis of variance

[PSS] power pairedmeans — Power analysis for a two-sample paired-means test

[PSS] power twoway — Power analysis for two-way analysis of variance

[PSS] power, graph — Graph results from the power command

[PSS] power, table — Produce table of results from the power command

[PSS] Glossary
[R] anova — Analysis of variance and covariance
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unbalanced designs — Specifications for unbalanced designs

Syntax Description Options Remarks and examples Also see

Syntax

Two samples, compute sample size for unbalanced designs

Compute total sample size

power . . ., nratio(numlist)
[
nfractional

]
. . .

Compute one group size given the other

power . . ., n#(numlist) compute(n1 | n2)
[
nfractional

]
. . .

Two samples, specify sample size for unbalanced designs

Specify total sample size and allocation ratio

power . . ., n(numlist) nratio(numlist)
[
nfractional

]
. . .

Specify one of the group sizes and allocation ratio

power . . ., n#(numlist) nratio(numlist)
[
nfractional

]
. . .

Specify total sample size and one of the group sizes

power . . ., n(numlist) n#(numlist) . . .

Specify group sizes

power . . ., n1(numlist) n2(numlist) . . .

twosampleopts Description

∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(n1 | n2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes

∗Starred options may be specified either as one number or as a list of values; see [U] 11.1.8 numlist.

301
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Description
This entry describes the specifications of unbalanced designs with the power command for two-

sample hypothesis tests. See [PSS] power for a general introduction to the power command using
hypothesis tests.

Options

� � �
Main �

n(numlist) specifies the total number of subjects in the study to be used for power or effect-size
determination. If n() is specified, the power is computed. If n() and power() or beta() are
specified, the minimum effect size that is likely to be detected in a study is computed.

n1(numlist) specifies the number of subjects in the control group to be used for power or effect-size
determination.

n2(numlist) specifies the number of subjects in the experimental group to be used for power or
effect-size determination.

nratio(numlist) specifies the sample-size ratio of the experimental group relative to the control group,
N2/N1 for power or effect-size determination for two-sample tests. The default is nratio(1),
meaning equal allocation between the two groups.

compute(n1 | n2) requests that the power command compute one of the group sample sizes given
the other one instead of the total sample size for two-sample tests. To compute the control-group
sample size, you must specify compute(n1) and the experimental-group sample size in n2().
Alternatively, to compute the experimental-group sample size, you must specify compute(n2)
and the control-group sample size in n1().

nfractional specifies that fractional sample sizes be allowed. When this option is specified, fractional
sample sizes are used in the intermediate computations and are also displayed in the output.

Remarks and examples
Remarks are presented under the following headings:

Two samples
Fractional sample sizes

By default, for a two-sample test, the power command assumes a balanced design, but you may
request an unbalanced design. A common way of specifying an unbalanced design is by specifying
the nratio() option. You can also specify group sample sizes directly in the n1() and n2() options.

All considered options that accept arguments allow you to specify either one value # or a numlist,
a list of values as described in [U] 11.1.8 numlist. For simplicity, we demonstrate these options using
only one value.

Below we describe in detail the specifications of unbalanced designs for two-sample methods and
the handling of fractional sample sizes.



unbalanced designs — Specifications for unbalanced designs 303

Two samples

All two-sample methods such as power twomeans and power twoproportions support the
following options for specifying sample sizes: the total sample size n(), individual sample sizes n1()
and n2(), and allocation ratio nratio(). The compute() option is useful if you want to compute
one of the group sizes given the other one instead of the total sample size.

We first describe the specifications and then demonstrate their use in real examples.

We start with the sample-size determination—the default computation performed by the power
command. The “switch” option for sample-size determination is the power() option. If you do not
specify this option, it is implied with the default value of 0.8 corresponding to 80% power.

By default, group sizes are assumed to be equal; that is, the nratio(1) option is implied.

. power . . . ,
[
nratio(1)

]
. . .

You can supply a different allocation ratio n2/n1 to nratio() to request an unbalanced design.

. power . . . , nratio(#) . . .

To compute power or effect size, you must supply information about group sample sizes to power.
There are several ways for you to do this. The simplest one, perhaps, is to specify the total sample
size in the n() option.

. power . . . , n(#) . . .

The specification above assumes a balanced design in which the two group sizes are the same.

To request an unbalanced design, you can specify the desired allocation ratio between the two
groups in the nratio() option.

. power . . . , n(#) nratio(#) . . .

The nratio() options assumes that the supplied values are the ratios of the second (experimental or
comparison) group to the first (control or reference) group.

Alternatively, you can specify the two group sizes directly,

. power . . . , n1(#) n2(#) . . .

or you can specify one of the group sizes and the allocation ratio:

. power . . . , n1(#) nratio(#) . . .

. power . . . , n2(#) nratio(#) . . .

Also supported, but perhaps more rarely used, is a combination of the total sample size and one
of the group sizes:

. power . . . , n(#) n1(#) . . .

. power . . . , n(#) n2(#) . . .

Below we demonstrate the described specifications using the power twomeans command, which
provides PSS analysis for tests of two independent means; see [PSS] power twomeans for details. In
all examples, we use a value of 0 for the control-group mean, a value of 1 for the experimental-group
mean, and the default values of the other study parameters.
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Example 1: Sample-size determination for a balanced design

By default, power twomeans computes sample size for a balanced design.

. power twomeans 0 1

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated sample sizes:

N = 34
N per group = 17

The required total sample size is 34, with 17 subjects in each group.

The above is equivalent to specifying the nratio(1) option:

. power twomeans 0 1, nratio(1)

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated sample sizes:

N = 34
N per group = 17

Example 2: Sample-size determination for an unbalanced design

To compute sample size for an unbalanced design, we specify the ratio of the experimental-group
size to the control-group size in the nratio() option. For example, if we anticipate twice as many
subjects in the experimental group as in the control group, we compute the corresponding sample
size by specifying nratio(2):
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. power twomeans 0 1, nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

N2/N1 = 2.0000

Estimated sample sizes:

N = 39
N1 = 13
N2 = 26

The required total sample size is 39, with 13 subjects in the control group and 26 subjects in
the experimental group. Generally, unbalanced designs require more subjects than the corresponding
balanced designs.

Example 3: Power determination for a balanced design

To computer power for a balanced design, we specify the total sample size in the n() option:

. power twomeans 0 1, n(30)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N per group = 15
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7529
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Equivalently, we specify one of the group sizes in the n1() or n2() option:

. power twomeans 0 1, n1(15)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 15
N2 = 15

delta = 1.0000
m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7529

Both specifications imply the nratio(1) option.

Example 4: Power determination for an unbalanced design

As we described in Two samples, there are a number of ways for you to request an unbalanced
design for power determination. Below we provide an example for each specification.

Specifying total sample size and allocation ratio

Similarly to example 2 but for power determination, we request an unbalanced design with twice
as many subjects in the experimental group as in the control group by specifying the nratio(2)
option:

. power twomeans 0 1, n(30) nratio(2)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 10
N2 = 20

N2/N1 = 2.0000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7029

The computed power of 0.7029 is lower than the power of 0.7529 of the corresponding balanced
design from example 3.
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Specifying group sample sizes

Instead of the total sample size and the allocation ratio, we can specify the group sample sizes
directly in the n1() and n2() options:

. power twomeans 0 1, n1(10) n2(20)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 10
N2 = 20

N2/N1 = 2.0000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7029

Specifying one of the group sample sizes and allocation ratio

Alternatively, we can specify one of the group sizes and the allocation ratio. Here we specify the
control-group size.

. power twomeans 0 1, n1(10) nratio(2)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 10
N2 = 20

N2/N1 = 2.0000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7029

We could have specified the experimental-group size instead:

. power twomeans 0 1, n2(20) nratio(2)
(output omitted )
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Specifying total sample size and one of the group sample sizes

Finally, we can specify a combination of the total sample size and one of the group sizes—the
control group:

. power twomeans 0 1, n1(10) n(30)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 10
N2 = 20

N2/N1 = 2.0000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7029

or the experimental group:

. power twomeans 0 1, n2(20) n(30)
(output omitted )

Options n(), n1(), and n2() require integer numbers. When you specify the n1() and n2()
options, your sample sizes are guaranteed to be integers. This is not necessarily true for other
specifications for which the resulting sample sizes may be fractional. See Fractional sample sizes for
details about how the power command handles fractional sample sizes.

Fractional sample sizes

Certain sample-size specifications may lead to fractional sample sizes. For example, if you specify
an odd value for the total sample size of a two-sample study, the two group sample sizes would have
to be fractional to accommodate the specified total sample size. Also, if you specify the nratio()
option with a two-sample method, the resulting sample sizes may be fractional.

By default, the power command rounds sample sizes to integers and uses integer values in the
computations. To ensure conservative results, the command rounds down the input sample sizes and
rounds up the output sample sizes.

Example 5: Output sample sizes

For example, when we compute sample size, the sample size is rounded up to the nearest integer
by default:
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. power onemean 0 1.5

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.5000

m0 = 0.0000
ma = 1.5000
sd = 1.0000

Estimated sample size:

N = 6

We computed sample size for a one-sample mean test; see [PSS] power onemean for details.

We can specify the nfractional option to see the corresponding fractional sample size:

. power onemean 0 1.5, nfractional

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.5000

m0 = 0.0000
ma = 1.5000
sd = 1.0000

Estimated sample size:

N = 5.6861

The sample size of 6 reported above is the ceiling for the fractional sample size 5.6861.

We can also compute the actual power corresponding to the rounded sample size:

. power onemean 0 1.5, n(6)

Estimated power for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 6

delta = 1.5000
m0 = 0.0000
ma = 1.5000
sd = 1.0000

Estimated power:

power = 0.8325

The actual power corresponding to the sample size of 6 is larger than the specified power of 0.8 from
the two previous examples because the sample size was rounded up.

On the other hand, the power command rounds down the input sample sizes.
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Example 6: Input sample sizes

For example, let’s use power twomeans to compute the power of a two-sample means test using
a total sample size of 51 and the default settings for other parameters; see [PSS] power twomeans
for details.

. power twomeans 0 1, n(51)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 51

delta = 1.0000
m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Actual sample sizes:

N = 50
N per group = 25

Estimated power:

power = 0.9337

By default, power twomeans assumes a balanced design. To accommodate a balanced design, the
command rounds down the group sample sizes from 25.5 to 25 for an actual total sample size of 50.

When the specified sample sizes differ from the resulting rounded sample sizes, the actual sample
sizes used in the computations are reported. In our example, we requested a total sample size of 51,
but the actual sample size used to compute the power was 50.

We can specify the nfractional option to request that fractional sample sizes be used in the
computations.

. power twomeans 0 1, n(51) nfractional

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 51.0000

N per group = 25.5000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.9382

The fractional group sample sizes of 25.5 are now used in the computations.
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If we want to preserve the total sample size of 51 and ensure that group sample sizes are integers,
we can specify the group sizes directly:

. power twomeans 0 1, n1(25) n2(26)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 51

N1 = 25
N2 = 26

N2/N1 = 1.0400
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.9381

Alternatively, we can specify one of the group sizes (or the total sample size) and the corresponding
allocation ratio n2/n1 = 26/25 = 1.04:

. power twomeans 0 1, n1(25) nratio(1.04)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 51

N1 = 25
N2 = 26

N2/N1 = 1.0400
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.9381

We obtain the same power of 0.9381.
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In the above, the specified value of a sample-size ratio resulted in integer sample sizes. This may
not always be the case. For example, if we specify the sample-size ratio of 1.3,

. power twomeans 0 1, n1(25) nratio(1.3)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N1 = 25

N2/N1 = 1.3000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Actual sample sizes:

N = 57
N1 = 25
N2 = 32

N2/N1 = 1.2800

Estimated power:

power = 0.9573

the experimental-group size of 32.5 is rounded down to 32. The total sample size used in the
computation is 57, and the actual sample-size ratio is 1.28.

As before, we can specify the nfractional option to use the fractional experimental-group size
of 32.5 in the computations:

. power twomeans 0 1, n1(25) nratio(1.3) nfractional

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 57.5000

N1 = 25.0000
N2 = 32.5000

N2/N1 = 1.3000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.9585

Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] Glossary
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2 × 2 contingency table. A 2 × 2 contingency table is used to describe the association between a
binary independent variable and a binary response variable of interest.

acceptance region. In hypothesis testing, an acceptance region is a set of sample values for which
the null hypothesis cannot be rejected or can be accepted. It is the complement of the rejection
region.

actual alpha, actual significance level. This is an attained or observed significance level.

allocation ratio. This ratio n2/n1 represents the number of subjects in the comparison, experimental
group relative to the number of subjects in the reference, control group. Also see [PSS] unbalanced
designs.

alpha. Alpha, α, denotes the significance level.

alternative hypothesis. In hypothesis testing, the alternative hypothesis represents the counterpoint to
which the null hypothesis is compared. When the parameter being tested is a scalar, the alternative
hypothesis can be either one sided or two sided.

alternative value, alternative parameter. This value of the parameter of interest under the alternative
hypothesis is fixed by the investigator in a power and sample-size analysis. For example, alternative
mean value and alternative mean refer to a value of the mean parameter under the alternative
hypothesis.

analysis of variance, ANOVA. This is a class of statistical models that studies differences between
means from multiple populations by partitioning the variance of the continuous outcome into
independent sources of variation due to effects of interest and random variation. The test statistic is
then formed as a ratio of the expected variation due to the effects of interest to the expected random
variation. Also see one-way ANOVA, two-way ANOVA, one-way repeated-measures ANOVA, and
two-way repeated-measures ANOVA.

balanced design. A balanced design represents an experiment in which the numbers of treated and
untreated subjects are equal. For many types of two-sample hypothesis tests, the power of the test
is maximized with balanced designs.

beta. Beta, β, denotes the probability of committing a type II error, namely, failing to reject the null
hypothesis even though it is false.

between-subjects design. This is an experiment that has only between-subjects factors. See
[PSS] power oneway and [PSS] power twoway.

between-subjects factor. This is a factor for which each subject receives only one of the levels.

binomial test. A binomial test is a test for which the exact sampling distribution of the test statistic
is binomial; see [R] bitest. Also see [PSS] power oneproportion.

bisection method. This method finds a root x of a function f(x) such that f(x) = 0 by repeatedly
subdividing an interval on which f(x) is defined until the change in successive root estimates is
within the requested tolerance and function f(·) evaluated at the current estimate is sufficiently
close to zero.

case–control study. An observational study that retrospectively compares characteristics of subjects
with a certain problem (cases) with characteristics of subjects without the problem (controls). For
example, to study association between smoking and lung cancer, investigators will sample subjects
with and without lung cancer and record their smoking status. Case–control studies are often used
to study rare diseases.

313
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CCT. See controlled clinical trial.

cell means. These are means of the outcome of interest within cells formed by the cross-classification
of the two factors. See [PSS] power twoway and [PSS] power repeated.

cell-means model. A cell-means model is an ANOVA model formulated in terms of cell means.

chi-squared test, χ2 test. This test for which either an asymptotic sampling distribution or a sampling
distribution of a test statistic is χ2. See [PSS] power onevariance and [PSS] power twoproportions.

clinical trial. A clinical trials is an experiment testing a medical treatment or procedure on human
subjects.

clinically meaningful difference, clinically meaningful effect, clinically significant difference.
Clinically meaningful difference represents the magnitude of an effect of interest that is of clinical
importance. What is meant by “clinically meaningful” may vary from study to study. In clinical
trials, for example, if no prior knowledge is available about the performance of the considered
clinical procedure, a standardized effect size (adjusted for standard deviation) between 0.25 and
0.5 may be considered of clinical importance.

cohort study. Typically an observational study, a cohort study may also be an experimental study in
which a cohort, a group of subjects who have similar characteristics, is followed over time and
evaluated at the end of the study. For example, cohorts of vaccinated and unvaccinated subjects
are followed over time to study the effectiveness of influenza vaccines.

columns in graph. Think of power, graph() as graphing the columns of power, table. One of
the columns will be placed on the x axis, another will be placed on the y axis, and, if you have
more columns with varying values, separate plots will be created for each. Similarly, we use the
terms “column symbol”, “column name”, and “column label” to refer to symbols, names, and
labels that appear in tables when tabular output is requested.

comparison value. See alternative value.

compound symmetry. A covariance matrix has a compound-symmetry structure if all the variances
are equal and all the covariances are equal. This is a special case of the sphericity assumption.

concordant pairs. In a 2× 2 contingency table, a concordant pair is a pair of observations that are
both either successes or failures. Also see discordant pairs and Introduction under Remarks and
examples in [PSS] power pairedproportions.

contrasts. Contrasts refers to a linear combination of cell means such that the sum of contrast
coefficients is zero.

control group. A control group comprises subjects that are randomly assigned to a group where
they receive no treatment or receives a standard treatment. In hypothesis testing, this is usually a
reference group. Also see experimental group.

controlled clinical trial. This is an experimental study in which treatments are assigned to two or
more groups of subjects without the randomization.

critical region. See rejection region.

critical value. In hypothesis testing, a critical value is a boundary of the rejection region.

cross-sectional study. This type of observational study measures various population characteristics at
one point in time or over a short period of time. For example, a study of the prevalence of breast
cancer in the population is a cross-sectional study.

delta. Delta, δ, in the context of power and sample-size calculations, denotes the effect size.

directional test. See one-sided test.
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discordant pairs. In a 2 × 2 contingency table, discordant pairs are the success–failure or failure–
success pairs of observations. Also see concordant pairs and Introduction under Remarks and
examples in [PSS] power pairedproportions.

discordant proportion. This is a proportion of discordant pairs. Also see Introduction under Remarks
and examples in [PSS] power pairedproportions.

dropout. Dropout is the withdrawal of subjects before the end of a study and leads to incomplete or
missing data.

effect size. The effect size is the size of the clinically significant difference between the treatments
being compared, typically expressed as a quantity that is independent of the unit of measure. For
example, in a one-sample mean test, the effect size is a standardized difference between the mean
and its reference value. In other cases, the effect size may be measured as an odds ratio or a risk
ratio. See [PSS] intro to learn more about the relationship between effect size and the power of a
test.

effect-size curve. The effect-size curve is a graph of the estimated effect size or target parameter
as a function of some other study parameter such as the sample size. The effect size or target
parameter is plotted on the y axis, and the sample size or other parameter is plotted on the x axis.

effect-size determination. This pertains to the computation of an effect size or a target parameter
given power, sample size, and other study parameters.

equal-allocation design. See balanced design.

exact test. An exact test is one for which the probability of observing the data under the null
hypothesis is calculated directly, often by enumeration. Exact tests do not rely on any asymptotic
approximations and are therefore widely used with small datasets. See [PSS] power oneproportion
and [PSS] power twoproportions.

experimental group. An experimental group is a group of subjects that receives a treatment or
procedure of interest defined in a controlled experiment. In hypothesis testing, this is usually a
comparison group. Also see control group.

experimental study. In an experimental study, as opposed to an observational study, the assignment
of subjects to treatments is controlled by investigators. For example, a study that compares a
new treatment with a standard treatment by assigning each treatment to a group of subjects is an
experimental study.

F test. An F test is a test for which a sampling distribution of a test statistic is an F distribution.
See [PSS] power twovariances.

factor, factor variables. This is a categorical explanatory variable with any number of levels.

finite population correction. When sampling is performed without replacement from a finite pop-
ulation, a finite population correction is applied to the standard error of the estimator to reduce
sampling variance.

Fisher–Irwin’s exact test. See Fisher’s exact test.

Fisher’s exact test. Fisher’s exact test is an exact small sample test of independence between rows
and columns in a 2 × 2 contingency table. Conditional on the marginal totals, the test statistic
has a hypergeometric distribution under the null hypothesis. See [PSS] power twoproportions and
[R] tabulate twoway.

Fisher’s z test. This is a z test comparing one or two correlations. See [PSS] power onecorrelation
and [PSS] power twocorrelations. Also see Fisher’s z transformation.

Fisher’s z transformation. Fisher’s z transformation applies an inverse hyperbolic tangent transfor-
mation to the sample correlation coefficient. This transformation is useful for testing hypothesis
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concerning Pearson’s correlation coefficient. The exact sampling distribution of the correlation
coefficient is complicated, while the transformed statistic is approximately standard normal.

fixed effects. Fixed effects represent all levels of the factor that are of interest.

follow-up study. See cohort study.

Greenhouse–Geisser correction. See nonsphericity correction.

H0. See null hypothesis.

Ha. See alternative hypothesis.

hypothesis. A hypothesis is a statement about a population parameter of interest.

hypothesis testing, hypothesis test. This method of inference evaluates the validity of a hypothesis
based on a sample from the population. See Hypothesis testing under Remarks and examples in
[PSS] intro.

hypothesized value. See null value.

interaction effects. Interaction effects measure the dependence of the effects of one factor on the
levels of the other factor. Mathematically, they can be defined as the differences among treatment
means that are left after main effects are removed from these differences.

Lagrange multiplier test. See score test.

likelihood-ratio test. The likelihood-ratio (LR) test is one of the three classical testing procedures used
to compare the fit of two models, one of which, the constrained model, is nested within the full
(unconstrained) model. Under the null hypothesis, the constrained model fits the data as well as the
full model. The LR test requires one to determine the maximal value of the log-likelihood function
for both the constrained and the full models. See [PSS] power twoproportions and [R] lrtest.

lower one-sided test, lower one-tailed test. A lower one-sided test is a one-sided test of a scalar
parameter in which the alternative hypothesis is lower one sided, meaning that the alternative
hypothesis states that the parameter is less than the value conjectured under the null hypothesis.
Also see One-sided test versus two-sided test under Remarks and examples in [PSS] intro.

main effects. These are average, additive effects that are associated with each level of each factor.
For example, the main effect of level j of a factor is the difference between the mean of all
observations on the outcome of interest at level j and the grand mean.

marginal homogeneity. Marginal homogeneity refers to the equality of one or more row marginal
proportions with the corresponding column proportions. Also see Introduction under Remarks and
examples in [PSS] power pairedproportions.

marginal proportion. This represents a ratio of the number of observations in a row or column
of a contingency table relative to the total number of observations. Also see Introduction under
Remarks and examples in [PSS] power pairedproportions.

matched study. In a matched study, an observation from one group is matched to an observation
from another group with respect to one or more characteristics of interest. Also see paired data.

McNemar’s test. McNemar’s test is a test used to compare two dependent binary populations. The
null hypothesis is formulated in the context of a 2×2 contingency table as a hypothesis of marginal
homogeneity. See [PSS] power pairedproportions and [ST] epitab.

MDES. See minimum detectable effect size.

mean contrasts. See contrasts.

minimum detectable effect size. The minimum detectable effect size is the smallest effect size that
can be detected by hypothesis testing for a given power and sample size.
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minimum detectable value. The minimum detectable value represents the smallest amount or con-
centration of a substance that can be reliably measured.

mixed design. A mixed design is an experiment that has at least one between-subjects factor and one
within-subject factor. See [PSS] power repeated.

negative effect size. In power and sample-size analysis, we obtain a negative effect size when the
postulated value of the parameter under the alternative hypothesis is less than the hypothesized
value of the parameter under the null hypothesis. Also see positive effect size.

nominal alpha, nominal significance level. This is a desired or requested significance level.

noncentrality parameter. In power and sample-size analysis, a noncentrality parameter is the expected
value of the test statistic under the alternative hypothesis.

nondirectional test. See two-sided test.

nonsphericity correction. This is a correction used for the degrees of freedom of a regular F test
in a repeated-measures ANOVA to compensate for the lack of sphericity of the repeated-measures
covariance matrix.

null hypothesis. In hypothesis testing, the null hypothesis typically represents the conjecture that one
is attempting to disprove. Often the null hypothesis is that a treatment has no effect or that a
statistic is equal across populations.

null value, null parameter. This value of the parameter of interest under the null hypothesis is fixed
by the investigator in a power and sample-size analysis. For example, null mean value and null
mean refer to the value of the mean parameter under the null hypothesis.

observational study. In an observational study, as opposed to an experimental study, the assignment of
subjects to treatments happens naturally and is thus beyond the control of investigators. Investigators
can only observe subjects and measure their characteristics. For example, a study that evaluates
the effect of exposure of children to household pesticides is an observational study.

observed level of significance. See p-value.

odds and odds ratio. The odds in favor of an event are Odds = p/(1−p), where p is the probability
of the event. Thus if p = 0.2, the odds are 0.25, and if p = 0.8, the odds are 4.

The log of the odds is ln(Odds) = logit(p) = ln{p/(1− p)}, and logistic regression models, for
instance, fit ln(Odds) as a linear function of the covariates.

The odds ratio is a ratio of two odds: Odds2/Odds1. The individual odds that appear in the ratio
are usually for an experimental group and a control group or for two different demographic groups.

one-sample test. A one-sample test compares a parameter of interest from one sample with a reference
value. For example, a one-sample mean test compares a mean of the sample with a reference
value.

one-sided test, one-tailed test. A one-sided test is a hypothesis test of a scalar parameter in which the
alternative hypothesis is one sided, meaning that the alternative hypothesis states that the parameter
is either less than or greater than the value conjectured under the null hypothesis but not both.
Also see One-sided test versus two-sided test under Remarks and examples in [PSS] intro.

one-way ANOVA, one-way analysis of variance. A one-way ANOVA model has a single factor. Also
see [PSS] power oneway.

one-way repeated-measures ANOVA. A one-way repeated-measures ANOVA model has a single
within-subject factor. Also see [PSS] power repeated.

paired data. Paired data consist of pairs of observations that share some characteristics of interest. For
example, measurements on twins, pretest and posttest measurements, before and after measurements,
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repeated measurements on the same individual. Paired data are correlated and thus must be analyzed
by using a paired test.

paired observations. See paired data.

paired test. A paired test is used to test whether the parameters of interest of two paired populations are
equal. The test takes into account the dependence between measurements. For this reason, paired
tests are usually more powerful than their two-sample counterparts. For example, a paired-means
or paired-difference test is used to test whether the means of two paired (correlated) populations
are equal.

Pearson’s correlation. Pearson’s correlation ρ, also known as the product-moment correlation, mea-
sures the degree of association between two variables. Pearson’s correlation equals the variables’
covariance divided by their respective standard deviations, and ranges between −1 and 1. Zero
indicates no correlation between the two variables.

population parameter. See target parameter.

positive effect size. In power and sample-size analysis, we obtain a positive effect size when the
postulated value of the parameter under the alternative hypothesis is greater than the hypothesized
value of the parameter under the null hypothesis. Also see negative effect size.

postulated value. See alternative value.

power. The power of a test is the probability of correctly rejecting the null hypothesis when it is false.
It is often denoted as 1 − β in the statistical literature, where β is the type II error probability.
Commonly used values for power are 80% and 90%. See [PSS] intro for more details about power.

power and sample-size analysis. Power and sample-size analysis investigates the optimal allocation
of study resources to increase the likelihood of the successful achievement of a study objective.
See [PSS] intro.

power curve. A power curve is a graph of the estimated power as a function of some other study
parameter such as the sample size. The power is plotted on the y axis, and the sample size or
other parameter is plotted on the x axis. See [PSS] power, graph.

power determination. This pertains to the computation of a power given sample size, effect size,
and other study parameters.

power function. The power functions is a function of the population parameter θ, defined as the
probability that the observed sample belongs to the rejection region of a test for given θ. See
Hypothesis testing under Remarks and examples in [PSS] intro.

power graph. See power curve.

probability of a type I error. This is the probability of committing a type I error of incorrectly
rejecting the null hypothesis. Also see significance level.

probability of a type II error. This is the probability of committing a type II error of incorrectly
accepting the null hypothesis. Common values for the probability of a type II error are 0.1 and
0.2 or, equivalently, 10% and 20%. Also see beta and power.

prospective study. In a prospective study, the population or cohort is classified according to specific
risk factors, such that the outcome of interest, typically various manifestations of a disease, can
be observed over time and tied in to the initial classification. Also see retrospective study.

PSS analysis. See power and sample-size analysis.

PSS Control Panel. The PSS Control Panel is a point-and-click graphical user interface for power
and sample-size analysis. See [PSS] GUI.
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p-value. P -value is a probability of obtaining a test statistic as extreme or more extreme as the one
observed in a sample assuming the null hypothesis is true.

random effects. Random effects represent a random sample of levels from all possible levels, and
the interest lies in all possible levels.

randomized controlled trial. In this experimental study, treatments are randomly assigned to two or
more groups of subjects.

RCT. See randomized controlled trial.

reference value. See null value.

rejection region. In hypothesis testing, a rejection region is a set of sample values for which the null
hypothesis can be rejected.

relative risk. See risk ratio.

retrospective study. In a retrospective study, a group with a disease of interest is compared with a
group without the disease, and information is gathered in a retrospective way about the exposure in
each group to various risk factors that might be associated with the disease. Also see prospective
study.

risk difference. A risk difference is defined as the probability of an event occurring when a risk
factor is increased by one unit minus the probability of the event occurring without the increase
in the risk factor.

When the risk factor is binary, the risk difference is the probability of the outcome when the risk
factor is present minus the probability when the risk factor is not present.

When one compares two populations, a risk difference is defined as a difference between the
probabilities of an event in the two groups. It is typically a difference between the probability in
the comparison group or experimental group and the probability in the reference group or control
group.

risk factor. A risk factor is a variable that is associated with an increased or decreased probability
of an outcome.

risk ratio. A risk ratio, also called a relative risk, measures the increase in the likelihood of an event
occurring when a risk factor is increased by one unit. It is the ratio of the probability of the event
when the risk factor is increased by one unit over the probability without that increase.

When the risk factor is binary, the risk ratio is the ratio of the probability of the event when the
risk factor occurs over the probability when the risk factor does not occur.

When one compares two populations, a risk ratio is defined as a ratio of the probabilities of
an event in the two groups. It is typically a ratio of the probability in the comparison group or
experimental group to the probability in the reference group or control group.

sample size. This is the number of subjects in a sample. See [PSS] intro to learn more about the
relationship between sample size and the power of a test.

sample-size curve. A sample-size curve is a graph of the estimated sample size as a function of some
other study parameter such as power. The sample size is plotted on the y axis, and the power or
other parameter is plotted on the x axis.

sample-size determination. This pertains to the computation of a sample size given power, effect
size, and other study parameters.

Satterthwaite’s t test. Satterthwaite’s t test is a modification of the two-sample t test to account for
unequal variances in the two populations. See Methods and formulas in [PSS] power twomeans
for details.
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score test. A score test, also known as a Lagrange multiplier test, is one of the three classical testing
procedures used to compare the fit of two models, one of which, the constrained model, is nested
within the full (unconstrained) model. The null hypothesis is that the constrained model fits the
data as well as the full model. The score test only requires one to fit the constrained model. See
[PSS] power oneproportion and [R] prtest.

sensitivity analysis. Sensitivity analysis investigates the effect of varying study parameters on power,
sample size, and other components of a study. The true values of study parameters are usually
unknown, and power and sample-size analysis uses best guesses for these values. It is therefore
important to evaluate the sensitivity of the computed power or sample size in response to changes
in study parameters. See [PSS] power, table and [PSS] power, graph for details.

sign test. A sign test is used to test the null hypothesis that the median of a distribution is equal to
some reference value. A sign test is carried out as a test of binomial proportion with a reference
value of 0.5. See [PSS] power oneproportion and [R] bitest.

significance level. In hypothesis testing, the significance level α is an upper bound for a probability
of a type I error. See [PSS] intro to learn more about the relationship between significance level
and the power of a test.

size of test. See significance level.

sphericity assumption. All differences between levels of the within-subject factor within-subject
factor have the same variances.

symmetry. In a 2×2 contingency table, symmetry refers to the equality of the off-diagonal elements.
For a 2× 2 table, a test of marginal homogeneity reduces to a test of symmetry.

t test. A t test is a test for which the sampling distribution of the test statistic is a Student’s t
distribution.

A one-sample t test is used to test whether the mean of a population is equal to a specified value
when the variance must also be estimated. The test statistic follows Student’s t distribution with
N − 1 degrees of freedom, where N is the sample size.

A two-sample t test is used to test whether the means of two populations are equal when the
variances of the populations must also be estimated. When the two populations’ variances are
unequal, a modification to the standard two-sample t test is used; see Satterthwaite’s t test.

target parameter. In power and sample-size analysis, the target parameter is the parameter of interest
or the parameter in the study about which hypothesis tests are conducted.

test statistic. In hypothesis testing, a test statistic is a function of the sample that does not depend
on any unknown parameters.

two-independent-samples test. See two-sample test.

two-sample paired test. See paired test.

two-sample test. A two-sample test is used to test whether the parameters of interest of the two
independent populations are equal. For example, two-sample means test, two-sample variances,
two-sample proportions test, two-sample correlations test.

two-sided test, two-tailed test. A two-sided test is a hypothesis test of a parameter in which the
alternative hypothesis is the complement of the null hypothesis. In the context of a test of a scalar
parameter, the alternative hypothesis states that the parameter is less than or greater than the value
conjectured under the null hypothesis.

two-way ANOVA, two-way analysis of variance. A two-way ANOVA model contains two factors.
Also see [PSS] power twoway.
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two-way repeated-measures ANOVA, two-factor ANOVA. This is a repeated-measures ANOVA model
with one within-subject factor and one between-subjects factor. The model can be additive (contain
only main effects of the factors) or can contain main effects and an interaction between the two
factors. Also see [PSS] power repeated.

type I error. The type I error of a test is the error of rejecting the null hypothesis when it is true;
see [PSS] intro for more details.

type II error. The type II error of a test is the error of not rejecting the null hypothesis when it is
false; see [PSS] intro for more details.

type I error probability. See probability of a type I error.

type II error probability. See probability of a type II error.

unbalanced design. An unbalanced design indicates an experiment in which the numbers of treated
and untreated subjects differ. Also see [PSS] unbalanced designs.

unequal-allocation design. See unbalanced design.

upper one-sided test, upper one-tailed test. An upper one-sided test is a one-sided test of a scalar
parameter in which the alternative hypothesis is upper one sided, meaning that the alternative
hypothesis states that the parameter is greater than the value conjectured under the null hypothesis.
Also see One-sided test versus two-sided test under Remarks and examples in [PSS] intro.

Wald test. A Wald test is one of the three classical testing procedures used to compare the fit of
two models, one of which, the constrained model, is nested within the full (unconstrained) model.
Under the null hypothesis, the constrained model fits the data as well as the full model. The Wald
test requires one to fit the full model but does not require one to fit the constrained model. Also
see [PSS] power oneproportion and [R] test.

within-subject design. This is an experiment that has at least one within-subject factor. See [PSS] power
repeated.

within-subject factor. This is a factor for which each subject receives several or all the levels.

z test. A z test is a test for which a potentially asymptotic sampling distribution of the test statistic
is a normal distribution. For example, a one-sample z test of means is used to test whether the
mean of a population is equal to a specified value when the variance is assumed to be known.
The distribution of its test statistic is normal. See [PSS] power onemean, [PSS] power twomeans,
and [PSS] power pairedmeans.
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posttreatment, [PSS] intro, [PSS] power,
[PSS] power pairedmeans

pretreatment, [PSS] intro, [PSS] power,
[PSS] power pairedmeans

two-sample, [PSS] intro, [PSS] power, [PSS] power
twomeans, [PSS] power pairedmeans,
[PSS] unbalanced designs

Michels, K. M., [PSS] intro, [PSS] power repeated
minimum

detectable effect size, [PSS] intro, [PSS] GUI,
[PSS] power, [PSS] power, graph,
[PSS] power, table, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] Glossary

detectable value, [PSS] Glossary
missing observations, see dropout
mixed design, [PSS] Glossary
Muller, K. E., [PSS] power oneway, [PSS] power

repeated
multiple-sample

means, see means, multiple-sample
study, [PSS] power oneway, [PSS] power twoway,

[PSS] power repeated
test, [PSS] power oneway, [PSS] power twoway,

[PSS] power repeated
independent samples, [PSS] power oneway,

[PSS] power twoway, [PSS] power repeated
means, [PSS] power oneway, [PSS] power

twoway, [PSS] power repeated

N
Nachtsheim, C. J., [PSS] power oneway
negative effect size, [PSS] intro, [PSS] power,

[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] Glossary

nested number list, [PSS] intro, [PSS] power,
[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated

Neter, J., [PSS] power oneway
Newson, R. B., [PSS] intro
Newton’s method, see iteration, Newton’s method
nominal

alpha, [PSS] Glossary, also see significance level,
nominal

power, see power, nominal
sample size, see sample size, nominal
significance level, see significance level, nominal

noncentral distribution, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated

noncentrality parameter, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated,
[PSS] Glossary

nondirectional test, see two-sided test
nonmonotonic power, see saw-toothed power function
nonsphericity correction, [PSS] power repeated,

[PSS] Glossary
nonzero null, [PSS] power onemean, [PSS] power

pairedmeans, [PSS] power oneproportion,
[PSS] power onevariance, [PSS] power
onecorrelation

null
correlation, [PSS] intro, [PSS] power
hypothesis and alternative hypothesis, [PSS] intro,

[PSS] power, [PSS] power, graph,
[PSS] power, table, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary
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null, continued
mean, [PSS] intro, [PSS] GUI, [PSS] power,

[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power
oneproportion, [PSS] power onecorrelation,
[PSS] unbalanced designs

mean difference, [PSS] intro, [PSS] power,
[PSS] power pairedmeans

parameter, see null value
proportion, [PSS] intro, [PSS] power
space, [PSS] intro
standard deviation, [PSS] intro, [PSS] power,

[PSS] power onevariance
value, see hypothesized value
variance, [PSS] intro, [PSS] power, [PSS] power

onevariance

O
O’Brien, R. G., [PSS] power oneway
observational study, [PSS] intro, [PSS] power,

[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] Glossary

observed level of significance, see p-value
odds, [PSS] Glossary
odds ratio, [PSS] intro, [PSS] power,

[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] Glossary

onecorrelation, power subcommand, [PSS] power
onecorrelation

onemean, power subcommand, [PSS] power onemean
oneproportion, power subcommand, [PSS] power

oneproportion
one-sample

correlation, see correlations, one-sample
mean, see means, one-sample
proportion, see proportions, one-sample
standard deviation, see standard deviations, one-

sample
study, [PSS] intro, [PSS] GUI, [PSS] power,

[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power
oneproportion, [PSS] power onevariance,
[PSS] power onecorrelation, [PSS] unbalanced
designs

test, [PSS] intro, [PSS] power, [PSS] power
onemean, [PSS] power oneproportion,
[PSS] power onevariance, [PSS] power
onecorrelation, [PSS] Glossary
correlation, [PSS] intro, [PSS] power,

[PSS] power onecorrelation, [PSS] Glossary
mean, [PSS] intro, [PSS] power, [PSS] power,

graph, [PSS] power, table, [PSS] power
onemean, [PSS] unbalanced designs,
[PSS] Glossary

one-sample test, continued
proportion, [PSS] intro, [PSS] power,

[PSS] power oneproportion, [PSS] Glossary
variance, [PSS] intro, [PSS] power, [PSS] power

onevariance, [PSS] Glossary
variance, see variances, one-sample

one-sided test, [PSS] intro, [PSS] power, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] Glossary

lower, [PSS] intro, [PSS] power, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] Glossary

upper, [PSS] intro, [PSS] power, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] Glossary

one-tailed test, see one-sided test
onevariance, power subcommand, [PSS] power

onevariance
one-way analysis of variance, [PSS] power,

[PSS] power oneway, [PSS] Glossary
one-way repeated-measures ANOVA, [PSS] power

repeated, [PSS] Glossary
oneway, power subcommand, [PSS] power oneway
Oparil, S., [PSS] intro, [PSS] power repeated

P
Pagano, M., [PSS] intro
Paik, M. C., [PSS] intro, [PSS] power oneproportion,

[PSS] power twoproportions
paired

data, [PSS] Glossary
means, see means, paired
observations, see paired data
proportions, see proportions, paired
study, [PSS] intro, [PSS] power, [PSS] power

pairedmeans, [PSS] power pairedproportions
test, [PSS] Glossary

pairedmeans, power subcommand, [PSS] power
pairedmeans

pairedproportions, power subcommand,
[PSS] power pairedproportions

paired-sample test, [PSS] intro, [PSS] power,
[PSS] power pairedmeans, [PSS] power
pairedproportions, [PSS] Glossary
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paired-sample test, continued
means, [PSS] intro, [PSS] power, [PSS] power

pairedmeans, [PSS] Glossary
proportions, [PSS] intro, [PSS] power, [PSS] power

pairedproportions, [PSS] Glossary
parallel number list, [PSS] intro, [PSS] power,

[PSS] power, graph, [PSS] power, table
Parmar, M. K. B., [PSS] intro
Pearson’s correlation, [PSS] power onecorrelation,

[PSS] power twocorrelations, [PSS] Glossary
Peng, J., [PSS] intro, [PSS] power oneproportion
Perry, H. M., [PSS] intro, [PSS] power repeated
Pike, M. C., [PSS] intro, [PSS] power twoproportions
point-and-click analysis, see graphical user interface
population parameter, [PSS] intro, [PSS] GUI,

[PSS] power, [PSS] power, graph,
[PSS] power, table, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

population size, [PSS] power, [PSS] power onemean,
[PSS] power pairedmeans

positive effect size, [PSS] intro, [PSS] power,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] Glossary

posttreatment mean, see means, posttreatment
postulated value, [PSS] power, [PSS] Glossary
power

analysis, see power and sample-size analysis
curve, [PSS] intro, [PSS] GUI, [PSS] power,

[PSS] power, graph, [PSS] Glossary
determination, [PSS] intro, [PSS] GUI,

[PSS] power, [PSS] power, graph,
[PSS] power, table, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

function, [PSS] intro, [PSS] Glossary
graph, see power curve
graphical output, [PSS] power, graph

power

command, [PSS] intro, [PSS] power, [PSS] power,
graph, [PSS] power, table

onecorrelation command, [PSS] power
onecorrelation

onemean command, [PSS] power onemean
oneproportion command, [PSS] power

oneproportion
onevariance command, [PSS] power onevariance
oneway command, [PSS] power oneway
pairedmeans command, [PSS] power pairedmeans
pairedproportions command, [PSS] power

pairedproportions
repeated command, [PSS] power repeated
twocorrelations command, [PSS] power

twocorrelations
twomeans command, [PSS] power twomeans
twoproportions command, [PSS] power

twoproportions
twovariances command, [PSS] power

twovariances
twoway command, [PSS] power twoway

power, [PSS] intro, [PSS] GUI, [PSS] power,
[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated,
[PSS] unbalanced designs, [PSS] Glossary

actual, [PSS] intro, [PSS] power, [PSS] power,
graph, [PSS] power, table, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

nominal, [PSS] intro, [PSS] power, [PSS] power,
graph, [PSS] power, table, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary
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power and sample-size analysis, [PSS] GUI,
[PSS] power, [PSS] power, graph,
[PSS] power, table, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

goals of, [PSS] intro
prospective, [PSS] intro, [PSS] Glossary
retrospective, [PSS] intro, [PSS] Glossary

Pressel, S., [PSS] intro, [PSS] power repeated
pretreatment mean, see means, pretreatment
probability

of a type I error, [PSS] intro, [PSS] power,
[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated,
[PSS] Glossary

of a type II error, [PSS] intro, [PSS] power,
[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated,
[PSS] Glossary

proportions, [PSS] intro, [PSS] power, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions

control-group, [PSS] intro, [PSS] power,
[PSS] power twoproportions

correlated, see proportions, paired
discordant, [PSS] intro, [PSS] power, [PSS] power

pairedproportions
experimental-group, [PSS] intro, [PSS] power,

[PSS] power twoproportions
independent, see proportions, two-sample
marginal, [PSS] intro, [PSS] power, [PSS] power

pairedproportions, [PSS] Glossary
one-sample, [PSS] intro, [PSS] power, [PSS] power

oneproportion
paired, [PSS] intro, [PSS] power, [PSS] power

pairedproportions
two-sample, [PSS] intro, [PSS] power, [PSS] power

twoproportions, [PSS] power pairedproportions

Proschan, M., [PSS] intro, [PSS] power repeated
prospective study, [PSS] intro, [PSS] power,

[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] Glossary

PSS analysis, see power and sample-size analysis
PSS Control Panel, [PSS] GUI, [PSS] Glossary
p-value, [PSS] intro, [PSS] Glossary

R
Ramey, C. T., [PSS] power repeated
random effects, [PSS] Glossary
randomized controlled trial study, [PSS] intro,

[PSS] power, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] Glossary

ratio of sample sizes, see allocation ratio
RCT, see randomized controlled trial study
reference

group, see control group
value, [PSS] Glossary

rejection region, [PSS] intro, [PSS] Glossary
relative risk, [PSS] intro, [PSS] power,

[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] Glossary

repeated measures, [PSS] power pairedmeans,
[PSS] power pairedproportions

repeated, power subcommand, [PSS] power repeated
repeated-measures ANOVA, [PSS] power, [PSS] power

repeated
retrospective study, [PSS] intro, [PSS] power,

[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] Glossary

risk
difference, [PSS] intro, [PSS] power,

[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] Glossary

factor, [PSS] Glossary
ratio, [PSS] Glossary, also see relative risk

Roberts, C., [PSS] power
Roberts, S., [PSS] power
rounding rules, [PSS] unbalanced designs
Royston, P., [PSS] intro
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S
sample size, [PSS] intro, [PSS] GUI, [PSS] power,

[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated,
[PSS] unbalanced designs, [PSS] Glossary

actual, [PSS] intro, [PSS] power, [PSS] power,
graph, [PSS] power, table, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

cell, [PSS] power twoway
control-group, [PSS] intro, [PSS] power twomeans,

[PSS] power twoproportions, [PSS] power
twovariances, [PSS] power twocorrelations,
[PSS] unbalanced designs

experimental-group, [PSS] intro, [PSS] power
twomeans, [PSS] power twoproportions,
[PSS] power twovariances, [PSS] power
twocorrelations, [PSS] unbalanced designs

fractional, [PSS] intro, [PSS] GUI, [PSS] power,
[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated,
[PSS] unbalanced designs, [PSS] Glossary

group, [PSS] power oneway, [PSS] power repeated
nominal, [PSS] intro, [PSS] power, [PSS] power,

graph, [PSS] power, table, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

total, [PSS] intro, [PSS] power twomeans,
[PSS] power twoproportions, [PSS] power
twovariances, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs

sample-size
analysis, see power and sample-size analysis
curve, [PSS] intro, [PSS] power, [PSS] power,

graph, [PSS] Glossary
determination, [PSS] intro, [PSS] GUI,

[PSS] power, [PSS] power, graph,
[PSS] power, table, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

rounding rules for, [PSS] unbalanced designs
sampling rate, [PSS] power, [PSS] power onemean,

[PSS] power pairedmeans
Satterthwaite’s t test, [PSS] power, [PSS] power

twomeans, [PSS] Glossary
Saunders, C. L., [PSS] intro
saw-toothed power function, [PSS] power

oneproportion, [PSS] power twoproportions
Schork, M. A., [PSS] intro
score test, [PSS] power oneproportion, [PSS] Glossary
Sempos, C. T., [PSS] intro
sensitivity analysis, [PSS] intro, [PSS] power,

[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated,
[PSS] Glossary

Shao, J., [PSS] intro, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion

sign test, [PSS] power oneproportion, [PSS] Glossary
significance level, [PSS] intro, [PSS] GUI,

[PSS] power, [PSS] power, graph,
[PSS] power, table, [PSS] power onemean,
[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

actual, [PSS] intro, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] Glossary

nominal, [PSS] intro, [PSS] power, [PSS] power,
graph, [PSS] power, table, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
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significance level, nominal, continued
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] Glossary

observed, see p-value
size of test, [PSS] Glossary
Smith, P. G., [PSS] intro, [PSS] power twoproportions
Snedecor, G. W., [PSS] intro
sphericity assumption, [PSS] power repeated,

[PSS] Glossary
standard deviations, [PSS] intro, [PSS] power,

[PSS] power onevariance, [PSS] power
twovariances

control-group, [PSS] intro, [PSS] power,
[PSS] power twovariances

experimental-group, [PSS] intro, [PSS] power,
[PSS] power twovariances

independent, see standard deviations, two-sample
one-sample, [PSS] intro, [PSS] power, [PSS] power

onevariance
two-sample, [PSS] intro, [PSS] power, [PSS] power

twovariances
standardized difference, [PSS] intro, [PSS] power,

[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans

statistical inference, hypothesis testing, see hypothesis
test

study,
case–control, see case–control study
cohort, see cohort study
controlled clinical trial, see controlled clinical trial

study
cross-sectional, see cross-sectional study
experimental, see experimental study
follow-up, see cohort study
matched, see matched study
multiple-sample, see multiple-sample study
observational, see observational study
one-sample, see one-sample study
paired, see paired study
prospective, see prospective study
randomized controlled trial, see randomized

controlled trial study
retrospective, see retrospective study
two-sample, see two-sample study

study design, [PSS] intro
Sturdivant, R. X., [PSS] intro
success–failure proportion, [PSS] power

pairedproportions, [PSS] Glossary
symmetry, [PSS] power, [PSS] power

pairedproportions, [PSS] Glossary

T
t test, [PSS] Glossary

table output, [PSS] intro, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated

Tamhane, A. C., [PSS] intro, [PSS] power onemean
Tan, S. B., [PSS] intro
Tan, S. H., [PSS] intro
target

between-group variance, [PSS] power oneway
correlation, [PSS] intro, [PSS] power, [PSS] power

onecorrelation, [PSS] power twocorrelations
discordant proportions, [PSS] intro, [PSS] power,

[PSS] power pairedproportions
effect variance, [PSS] power twoway, [PSS] power

repeated
mean, [PSS] intro, [PSS] GUI, [PSS] power,

[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] unbalanced designs

mean difference, [PSS] intro, [PSS] power,
[PSS] power pairedmeans

parameter, [PSS] Glossary, also see population
parameter

proportion, [PSS] intro, [PSS] power, [PSS] power
oneproportion, [PSS] power twoproportions

standard deviation, [PSS] intro, [PSS] power,
[PSS] power onevariance, [PSS] power
twovariances

variance, [PSS] intro, [PSS] power, [PSS] power
onevariance, [PSS] power twovariances

test,
binomial, see binomial test
chi-squared, see chi-squared test
exact, see exact test
F , see F test
Fisher–Irwin’s exact, see Fisher–Irwin’s exact test
Fisher’s exact, see Fisher’s exact test
Fisher’s z, see Fisher’s z test
hypothesis, see hypothesis test
likelihood-ratio, see likelihood-ratio test
McNemar’s, see McNemar’s test
multiple-sample, see multiple-sample test
one-sample, see one-sample test
one-sided, see one-sided test
paired-sample, see paired-sample test
score, see score test
t, see t test
two-sample, see two-sample test
two-sided, see two-sided test
Wald, see Wald test
z, see z test

test of symmetry, [PSS] power, [PSS] power
pairedproportions, [PSS] Glossary
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test statistic, [PSS] intro, [PSS] power, [PSS] power
onemean, [PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power onevariance,
[PSS] power twovariances, [PSS] power
onecorrelation, [PSS] power twocorrelations,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] Glossary

total sample size, see sample size, total
treatment effect, [PSS] intro, [PSS] power,

[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated

twocorrelations, power subcommand, [PSS] power
twocorrelations

two-independent-samples test, [PSS] Glossary
twomeans, power subcommand, [PSS] power

twomeans
twoproportions, power subcommand, [PSS] power

twoproportions
two-sample

correlations, see correlations, two-sample
means, see means, two-sample
paired test, [PSS] Glossary
proportions, see proportions, two-sample
standard deviations, see standard deviations, two-

sample
study, [PSS] intro, [PSS] power, [PSS] power

twomeans, [PSS] power pairedmeans,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power twovariances,
[PSS] power twocorrelations, [PSS] unbalanced
designs

test, [PSS] intro, [PSS] power, [PSS] power
twomeans, [PSS] power pairedmeans,
[PSS] power twoproportions, [PSS] power
pairedproportions, [PSS] power twovariances,
[PSS] power twocorrelations, [PSS] Glossary
correlations, [PSS] intro, [PSS] power,

[PSS] power twocorrelations, [PSS] Glossary
independent samples, [PSS] intro, [PSS] power,

[PSS] power twomeans, [PSS] power
twoproportions, [PSS] power twovariances,
[PSS] power twocorrelations, [PSS] Glossary

means, [PSS] intro, [PSS] power, [PSS] power
twomeans, [PSS] unbalanced designs,
[PSS] Glossary

proportions, [PSS] intro, [PSS] power,
[PSS] power twoproportions, [PSS] Glossary

variances, [PSS] intro, [PSS] power,
[PSS] power twovariances, [PSS] Glossary

variances, see variances, two-sample
two-sided test, [PSS] intro, [PSS] GUI, [PSS] power,

[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power
oneproportion, [PSS] power twoproportions,

two-sided test, continued
[PSS] power pairedproportions, [PSS] power
onevariance, [PSS] power twovariances,
[PSS] power onecorrelation, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power repeated, [PSS] unbalanced
designs, [PSS] Glossary

two-tailed test, see two-sided test
twovariances, power subcommand, [PSS] power

twovariances
two-way analysis of variance, [PSS] power,

[PSS] power twoway, [PSS] Glossary
two-way repeated-measures ANOVA, [PSS] power

repeated, [PSS] Glossary
twoway, power subcommand, [PSS] power twoway
type I error, [PSS] intro, [PSS] Glossary
type I error probability, [PSS] intro, [PSS] Glossary,

also see α
type II error, [PSS] intro, [PSS] Glossary
type II error probability, [PSS] Glossary, also see β

U
unbalanced design, [PSS] intro, [PSS] power

twomeans, [PSS] power twoproportions,
[PSS] power twovariances, [PSS] power
twocorrelations, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated,
[PSS] unbalanced designs, [PSS] Glossary

unequal-allocation design, see unbalanced design
upper

one-sided test, [PSS] Glossary, also see one-sided
test, upper

one-tailed test, see upper one-sided test

V
van Belle, G., [PSS] intro, [PSS] power twomeans,

[PSS] power oneway, [PSS] power twoway
variance, analysis of, [PSS] power, [PSS] power

oneway, [PSS] power twoway, [PSS] power
repeated

variances, [PSS] intro, [PSS] power, [PSS] power
onevariance, [PSS] power twovariances

control-group, [PSS] intro, [PSS] power,
[PSS] power twovariances

experimental-group, [PSS] intro, [PSS] power,
[PSS] power twovariances

independent, see variances, two-sample
one-sample, [PSS] intro, [PSS] power, [PSS] power

onevariance
two-sample, [PSS] intro, [PSS] power, [PSS] power

twovariances

W
Wald test, [PSS] Glossary
Wang, H., [PSS] intro, [PSS] power onemean,

[PSS] power twomeans, [PSS] power
pairedmeans, [PSS] power oneproportion
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Whelton, P. K., [PSS] intro, [PSS] power repeated
Wickramaratne, P. J., [PSS] intro
Williams, G. W., [PSS] intro
Winer, B. J., [PSS] intro, [PSS] power repeated
within-cell variance, [PSS] power twoway
within-group variance, [PSS] power oneway
within-subject

design, [PSS] power repeated, [PSS] Glossary
factor, [PSS] power repeated, [PSS] Glossary
variance, [PSS] power repeated

Wright, J. T., Jr, [PSS] intro, [PSS] power repeated

Z
z test, [PSS] Glossary
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