Syntax

mepoisson depvar fe_equation [ || re_equation ] [ || re_equation ... ] [ , options ]

where the syntax of fe_equation is

[ indepvars ] [ if ] [ in ] [ , fe_options ]

and the syntax of re_equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re_options ]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all representing one group comprising all observations.

### fe_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>noconstant</td>
</tr>
<tr>
<td>exposure(varname_o)</td>
</tr>
<tr>
<td>offset(varname_o)</td>
</tr>
</tbody>
</table>

### re_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>covariance(vartype)</td>
</tr>
<tr>
<td>noconstant</td>
</tr>
</tbody>
</table>
### options

<table>
<thead>
<tr>
<th>Description</th>
<th>Model Options</th>
<th>SE/Robust Options</th>
<th>Reporting Options</th>
<th>Integration Options</th>
<th>Maximization Options</th>
<th>vartype Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints (constraints)</td>
<td>apply specified linear constraints</td>
<td>vce(vcetype)</td>
<td>vcetype may be oim, robust, or cluster clustvar</td>
<td>integration method</td>
<td>control the maximization process; seldom used</td>
<td>one unique variance parameter per random effect, all covariances 0; the default unless the R. notation is used</td>
</tr>
<tr>
<td>collinear</td>
<td>keep collinear variables</td>
<td></td>
<td></td>
<td>set the number of integration (quadrature) points for all levels; default is intpoints(7)</td>
<td>method for obtaining starting values</td>
<td>exchangeable equal variances for random effects, and one common pairwise covariance</td>
</tr>
<tr>
<td>SE/Robust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>perform a grid search to improve starting values</td>
<td>identity equal variances for random effects, all covariances 0; the default if the R. notation is used</td>
</tr>
<tr>
<td>vce(vcetype)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>use numerical derivative techniques</td>
<td>unstructured all variances and covariances to be distinctly estimated</td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fixed(matname) user-selected variances and covariances constrained to specified values; the remaining variances and covariances unrestricted</td>
</tr>
<tr>
<td>Level(#)</td>
<td>set confidence level; default is level(95)</td>
<td><em>nocnsreport</em> do not display constraints</td>
<td></td>
<td></td>
<td>coeflegend display legend instead of statistics</td>
<td>pattern(matname) user-selected variances and covariances constrained to be equal; the remaining variances and covariances unrestricted</td>
</tr>
<tr>
<td>irr</td>
<td>report fixed-effects coefficients as incidence-rate ratios</td>
<td><em>notable</em> suppress coefficient table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>nogroup</em> suppress table summarizing groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>nolrtest</em> do not perform likelihood-ratio test comparing with Poisson regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>display_options control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intmethod(intmethod)</td>
<td>integration method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intpoints(#)</td>
<td>set the number of integration (quadrature) points for all levels; default is intpoints(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximize_options</td>
<td>control the maximization process; seldom used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>startvalues(svmethod)</td>
<td>method for obtaining starting values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>startgrid[ (gridspec) ]</td>
<td>perform a grid search to improve starting values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>noestimate</td>
<td>do not fit the model; show starting values instead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dnumerical</td>
<td>use numerical derivative techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coeflegend</td>
<td>display legend instead of statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vartype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>independent</td>
<td>one unique variance parameter per random effect, all covariances 0; the default unless the R. notation is used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exchangeable</td>
<td>equal variances for random effects, and one common pairwise covariance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>identity</td>
<td>equal variances for random effects, all covariances 0; the default if the R. notation is used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unstructured</td>
<td>all variances and covariances to be distinctly estimated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed(matname)</td>
<td>user-selected variances and covariances constrained to specified values; the remaining variances and covariances unrestricted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pattern(matname)</td>
<td>user-selected variances and covariances constrained to be equal; the remaining variances and covariances unrestricted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mepoisson — Multilevel mixed-effects Poisson regression

<table>
<thead>
<tr>
<th>intmethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvaghermite</td>
<td>mean-variance adaptive Gauss–Hermite quadrature; the default unless a crossed random-effects model is fit</td>
</tr>
<tr>
<td>mcaghermite</td>
<td>mode-curvature adaptive Gauss–Hermite quadrature</td>
</tr>
<tr>
<td>ghermite</td>
<td>nonadaptive Gauss–Hermite quadrature</td>
</tr>
<tr>
<td>laplace</td>
<td>Laplacian approximation; the default for crossed random-effects models</td>
</tr>
</tbody>
</table>

indevars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indevars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Multilevel mixed-effects models > Poisson regression

Description

mepoisson fits mixed-effects models for count responses. The conditional distribution of the response given the random effects is assumed to be Poisson.

mepoisson performs optimization with the original metric of variance components. When variance components are near the boundary of the parameter space, you may consider using the meqrpoisson command, which provides alternative parameterizations of variance components; see [ME] meqrpoisson.

Options

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation and for any or all of the random-effects equations.

exposure(varname_e) specifies a variable that reflects the amount of exposure over which the depvar events were observed for each observation; \( \ln(varname_e) \) is included in the fixed-effects portion of the model with the coefficient constrained to be 1.

offset(varname_o) specifies that varname_o be included in the fixed-effects portion of the model with the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may be specified for each random-effects equation. vartype is one of the following: independent, exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random effect within a random-effects equation and assumes that all covariances are 0. The default is covariance(independent) unless a crossed random-effects model is fit, in which case the default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and one common pairwise covariance.
covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation consists of \( p \) random-effects terms, the unstructured covariance matrix will have \( p(p+1)/2 \) unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures provide a convenient way to impose constraints on variances and covariances of random effects. Each specification requires a matname that defines the restrictions placed on variances and covariances. Only elements in the lower triangle of matname are used, and row and column names of matname are ignored. A missing value in matname means that a given element is unrestricted. In a fixed(matname) covariance structure, (co)variance \((i,j)\) is constrained to equal the value specified in the \(i,j\)th entry of matname. In a pattern(matname) covariance structure, (co)variances \((i,j)\) and \((k,l)\) are constrained to be equal if \(\text{matname}[i,j] = \text{matname}[k,l]\).

constraints(constraints), collinear; see [\textit{R}] estimation options.

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and that allow for intragroup correlation (cluster clustvar); see [\textit{R}] vce_option. If vce(robust) is specified, robust variances are clustered at the highest level in the multilevel model.

level(#); see [\textit{R}] estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, \(\exp(\beta)\) rather than \(\beta\). Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated or stored. irr may be specified either at estimation or upon replay.

nocnsreport; see [\textit{R}] estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size, minimum, and maximum) from the output header.

nolrtest prevents mepoisson from performing a likelihood-ratio test that compares the mixed-effects Poisson model with standard (marginal) Poisson regression. This option may also be specified upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nolabel, fvwrap(#), fvwrapon(style), cformat(\texttt{\%fmt}), pformat(\texttt{\%fmt}), sformat(\texttt{\%fmt}), and nolstretch; see [\textit{R}] estimation options.

intmethod(intmethod) specifies the integration method to be used for the random-effects model. mvaghermite performs mean and variance adaptive Gauss–Hermite quadrature; mcaghermite performs mode and curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode curvature adaptive Gaussian quadrature with one integration point.
The default integration method is `mvaghermite` unless a crossed random-effects model is fit, in which case the default integration method is `laplace`. The Laplacian approximation has been known to produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be prohibitively intensive even for a small number of levels. For this reason, the integration method defaults to the Laplacian approximation. You may override this behavior by specifying a different integration method.

`intpoints(#)` sets the number of integration points for quadrature. The default is `intpoints(7)`, which means that seven quadrature points are used for each level of random effects. This option is not allowed with `intmethod(laplace)`.

The more integration points, the more accurate the approximation to the log likelihood. However, computation time increases as a function of the number of quadrature points raised to a power equaling the dimension of the random-effects specification. In crossed random-effects models and in models with many levels or many random coefficients, this increase can be substantial.

Maximization

```
maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), rtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require special mention for mepoisson are listed below.
```

`from()` accepts a properly labeled vector of initial values or a list of coefficient names with values. A list of values is not allowed.

The following options are available with `mepoisson` but are not shown in the dialog box:

```
startvalues(svmethod), startgrid[ gridspec], noestimate, and dnumerical; see [ME] meglm.
```

`coeflegend`; see [R] estimation options.

Remarks and examples

For a general introduction to `me` commands, see [ME] me.

Remarks are presented under the following headings:

- **Introduction**
- A two-level model
- A three-level model

Introduction

Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random effects. In longitudinal data and panel data, random effects are useful for modeling intracluster correlation; that is, observations in the same cluster are correlated because they share common cluster-level random effects.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and McCulloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004); Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2012). Rabe-Hesketh and Skrondal (2012, chap. 13) is a good introductory read on applied multilevel modeling of count data.
mepoisson allows for not just one, but many levels of nested clusters. For example, in a three-level model you can specify random effects for schools and then random effects for classes nested within schools. In this model, the observations (presumably, the students) comprise the first level, the classes comprise the second level, and the schools comprise the third level.

However, for simplicity, for now we consider the two-level model, where for a series of \( M \) independent clusters, and conditional on a set of random effects \( \mathbf{u}_j \),

\[
\Pr(y_{ij} = y | \mathbf{x}_{ij}, \mathbf{u}_j) = \exp \left( -\mu_{ij} \right) \frac{\mu_{ij}^y}{y!}
\]

for \( \mu_{ij} = \exp(\mathbf{x}_{ij} \beta + \mathbf{z}_{ij} \mathbf{u}_j) \), \( j = 1, \ldots, M \) clusters, with cluster \( j \) consisting of \( i = 1, \ldots, n_j \) observations. The responses are counts \( y_{ij} \). The \( 1 \times p \) row vector \( \mathbf{x}_{ij} \) are the covariates for the fixed effects, analogous to the covariates you would find in a standard Poisson regression model, with regression coefficients (fixed effects) \( \beta \). For notational convenience here and throughout this manual entry, we suppress the dependence of \( y_{ij} \) on \( \mathbf{x}_{ij} \).

The \( 1 \times q \) vector \( \mathbf{z}_{ij} \) are the covariates corresponding to the random effects and can be used to represent both random intercepts and random coefficients. For example, in a random-intercept model, \( \mathbf{z}_{ij} \) is simply the scalar 1. The random effects \( \mathbf{u}_j \) are \( M \) realizations from a multivariate normal distribution with mean \( \mathbf{0} \) and \( q \times q \) variance matrix \( \mathbf{\Sigma} \). The random effects are not directly estimated as model parameters but are instead summarized according to the unique elements of \( \mathbf{\Sigma} \), known as variance components. One special case of (1) places \( \mathbf{z}_{ij} = \mathbf{x}_{ij} \) so that all covariate effects are essentially random and distributed as multivariate normal with mean \( \beta \) and variance \( \mathbf{\Sigma} \).

As noted in chapter 13.7 of Rabe-Hesketh and Skrondal (2012), the inclusion of a random intercept causes the marginal variance of \( y_{ij} \) to be greater than the marginal mean, provided the variance of the random intercept is not 0. Thus the random intercept in a mixed-effects Poisson model produces overdispersion, a measure of variability above and beyond that allowed by a Poisson process; see [R] nbreg and [ME] menbreg.

Model (1) is a member of the class of generalized linear mixed models (GLMMs), which generalize the linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there is insight to be gained through examination of the linear mixed model. This is especially true for Stata users because the terminology, syntax, options, and output for fitting these types of models are nearly identical. See [ME] mixed and the references therein, particularly in the Introduction, for more information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out the random effects. One widely used modern method is to directly estimate the integral required to calculate the log likelihood by Gauss–Hermite quadrature or some variation thereof. Because the log likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate, thus minimizing bias.

mepoisson supports three types of Gauss–Hermite quadrature and the Laplacian approximation method; see Methods and formulas of [ME] meglm for details.

Below we present two short examples of mixed-effects Poisson regression; refer to [ME] me and [ME] meglm for additional examples including crossed random-effects models.
A two-level model

We begin with a simple application of (1) as a two-level model, because a one-level model, in our terminology, is just standard Poisson regression; see [R] poisson.

Example 1

Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of the drug progabide for the treatment of epilepsy.

```
use http://www.stata-press.com/data/r13/epilepsy
(Epilepsy data; progabide drug treatment)
describe
Contains data from http://www.stata-press.com/data/r13/epilepsy.dta
obs: 236 31 May 2013 14:09
vars: 8 (_dta has notes)
size: 4,956

storage  display value
variable name   type format label          variable label

subject   byte %9.0g Subject ID: 1-59
seizures  int %9.0g No. of seizures
treat     byte %9.0g 1: progabide; 0: placebo
visit     float %9.0g Dr. visit; coded as (-.3, -.1, .1, .3)
lage      float %9.0g log(age), mean-centered
lbas      float %9.0g log(0.25*baseline seizures), mean-centered
lbas_trt  float %9.0g lbas/treat interaction
v4        byte %8.0g Fourth visit indicator
```

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 progabide, 28 placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to each of four doctor visits (visit). The treatment group is identified by the indicator variable treat. Data were also collected on the logarithm of age (lage) and the logarithm of one-quarter the number of seizures during the eight weeks prior to the study (lbas). The variable lbas_trt represents the interaction between lbas and treatment. lage, lbas, and lbas_trt are mean centered. Because the study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator v4 for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures,

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{treat}_{ij} + \beta_2 \text{lbas}_{ij} + \beta_3 \text{lbas_trt}_{ij} + \beta_4 \text{lage}_{ij} + \beta_5 \text{v4}_{ij} + u_j
\]

for \(j = 1, \ldots, 59\) subjects and \(i = 1, \ldots, 4\) visits. The random effects \(u_j\) are assumed to be normally distributed with mean 0 and variance \(\sigma^2_u\).
`. mepoisson seizures treat lbas lbas_trt lage v4 || subject:

Fitting fixed-effects model:
Iteration 0: log likelihood = -1016.4106
Iteration 1: log likelihood = -819.20112
Iteration 2: log likelihood = -817.66006
Iteration 3: log likelihood = -817.65925
Iteration 4: log likelihood = -817.65925

Refining starting values:
Grid node 0: log likelihood = -680.40523

Fitting full model:
Iteration 0: log likelihood = -680.40523 (not concave)
Iteration 1: log likelihood = -672.95766 (not concave)
Iteration 2: log likelihood = -667.14039
Iteration 3: log likelihood = -665.51823
Iteration 4: log likelihood = -665.29165
Iteration 5: log likelihood = -665.29067
Iteration 6: log likelihood = -665.29067

Mixed-effects Poisson regression
Number of obs = 236
Group variable: subject
Number of groups = 59
Obs per group: min = 4
avg = 4.0
max = 4
Integration method: mvaghermite
Integration points = 7
Wald chi2(5) = 121.70
Log likelihood = -665.29067
Prob > chi2 = 0.0000

| Coef. Std. Err. | z    | P>|z| [95% Conf. Interval] |
|-----------------|------|------------------------|
| treat           | -.9330306 .4007512 | -2.33 0.020 | -1.718489 -.1475727 |
| lbas            | .8844225 .1312033 | 6.74 0.000 | .6272689 1.141576 |
| lbas_trt        | .3382561 .1312033 | 6.74 0.000 | .6272689 1.141576 |
| lage            | .4842226 .1312033 | 6.74 0.000 | .6272689 1.141576 |
| v4              | -1.610871 .0545758 | -2.95 0.003 | -.2680536 -.0541206 |
| _cons           | 2.154578 .2199928 | 9.79 0.000 | 1.7234 2.585756 |

subject
| Coef. Std. Err. | z    | P>|z| [95% Conf. Interval] |
|-----------------|------|------------------------|
| var(_cons)      | .2528664 .0589844 | 4.32 0.000 | .1600801 .399434 |

LR test vs. Poisson regression: chibar2(01) = 304.74 Prob>chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients on
progabide demonstrate a decrease in frequency of seizures compared with the placebo group. The
subject-specific random effects also appear significant: \( \hat{\sigma}_u^2 = 0.25 \) with standard error 0.06.

Because this is a simple random-intercept model, you can obtain equivalent results by using
xtpoisson with the re and normal options.

A three-level model

mepoisson can also fit higher-level models with multiple levels of nested random effects.
Example 2


```stata
use http://www.stata-press.com/data/r13/melanoma
(Skin cancer (melanoma) data)
describe
Contains data from http://localpress.stata.com/data/r13/melanoma.dta
obs: 354 Skin cancer (melanoma) data
vars: 6 30 May 2013 17:10
size: 4,956 (_dta has notes)
```

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage type</th>
<th>display format</th>
<th>label</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>nation</td>
<td>byte</td>
<td>%11.0g</td>
<td>n</td>
<td>Nation ID</td>
</tr>
<tr>
<td>region</td>
<td>byte</td>
<td>%9.0g</td>
<td>Region ID: EEC level-I areas</td>
<td></td>
</tr>
<tr>
<td>county</td>
<td>int</td>
<td>%9.0g</td>
<td>County ID: EEC level-II/level-III areas</td>
<td></td>
</tr>
<tr>
<td>deaths</td>
<td>int</td>
<td>%9.0g</td>
<td>No. deaths during 1971-1980</td>
<td></td>
</tr>
<tr>
<td>expected</td>
<td>float</td>
<td>%9.0g</td>
<td>No. expected deaths</td>
<td></td>
</tr>
<tr>
<td>uv</td>
<td>float</td>
<td>%9.0g</td>
<td>UV dose, mean-centered</td>
<td></td>
</tr>
</tbody>
</table>

Sorted by:

Nine European nations (variable `nation`) are represented, and data were collected over geographical regions defined by EEC statistical services as level I areas (variable `region`), with deaths being recorded for each of 354 counties, which are level II or level III EEC-defined areas (variable `county`, which identifies the observations). Counties are nested within regions, and regions are nested within nations.

The variable `deaths` records the number of deaths for each county, and `expected` records the expected number of deaths (the exposure) on the basis of crude rates for the combined countries. Finally, the variable `uv` is a measure of exposure to ultraviolet (UV) radiation.

In modeling the number of deaths, one possibility is to include dummy variables for the nine nations as fixed effects. Another is to treat these as random effects and fit the three-level random-intercept Poisson model,

\[
\log(\mu_{ijk}) = \log(\text{expected}_{ijk}) + \beta_0 + \beta_1 \text{uv}_{ijk} + u_k + v_{jk}
\]

for nation \(k\), region \(j\), and county \(i\). The model includes an exposure term for expected deaths.
Fitting fixed-effects model:
Iteration 0:  log likelihood = -2136.027
Iteration 1:  log likelihood = -1723.127
Iteration 2:  log likelihood = -1722.976
Iteration 3:  log likelihood = -1722.976
Refining starting values:
Grid node 0:  log likelihood = -1166.977
Fitting full model:
Iteration 0:  log likelihood = -1166.977 (not concave)
Iteration 1:  log likelihood = -1152.607 (not concave)
Iteration 2:  log likelihood = -1151.902 (not concave)
Iteration 3:  log likelihood = -1127.412 (not concave)
Iteration 4:  log likelihood = -1101.925
Iteration 5:  log likelihood = -1094.198
Iteration 6:  log likelihood = -1088.05
Iteration 7:  log likelihood = -1086.909
Iteration 8:  log likelihood = -1086.899
Iteration 9:  log likelihood = -1086.899
Mixed-effects Poisson regression  Number of obs = 354

<table>
<thead>
<tr>
<th>Group Variable</th>
<th>No. of Groups</th>
<th>Observations per Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>nation</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>region</td>
<td>78</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Integration method: mvaghermite  Integration points = 7
Wald chi2(2) = 25.70
Log likelihood = -1086.899
Prob > chi2 = 0.0000

| deaths          | Coef. | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|-----------------|-------|-----------|-------|------|---------------------|
| uv              | .0057002 | .0137919  | 0.41  | 0.679 | -.0213315 , .0327318 |
| c.uv#c.uv      | -.0058377 | .0013879  | -4.21 | 0.000 | -.008558 , -.0031174 |
| _cons           | .1289989 | .1581224  | 0.82  | 0.415 | -.1809154 , .4389132 |

ln(expected)  1 (exposure)

<table>
<thead>
<tr>
<th>nation</th>
<th>var(_cons)</th>
<th>.1841878</th>
<th>.0945722</th>
<th>.0673298</th>
<th>.5038655</th>
</tr>
</thead>
<tbody>
<tr>
<td>nation&gt;region</td>
<td>var(_cons)</td>
<td>.0382645</td>
<td>.0087757</td>
<td>.0244105</td>
<td>.0599811</td>
</tr>
</tbody>
</table>

LR test vs. Poisson regression:  chi2(2) = 1272.15  Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model for the log of the standardized mortality ratio, the ratio of observed deaths to expected deaths that is based on a reference population, the reference population being all nine nations.
Looking at the estimated variance components, we can see that there is more unobserved variability between nations than between regions within each nation. This may be due to, for example, country-specific informational campaigns on the risks of sun exposure.

**Stored results**

`mepoisson` stores the following in `e()`:

**Scalars**
- `e(N)` number of observations
- `e(k)` number of parameters
- `e(kdv)` number of dependent variables
- `e(eq)` number of equations in `e(b)`
- `e(eq_model)` number of equations in overall model test
- `e(f)` number of fixed-effects parameters
- `e(rs)` number of random-effects parameters
- `e(rc)` number of covariances
- `e(df_m)` model degrees of freedom
- `e(ll)` log likelihood
- `e(N_clust)` number of clusters
- `e(chi2)` $\chi^2$
- `e(p)` significance
- `e(llc)` log likelihood, comparison model
- `e(chi2c)` $\chi^2$, comparison model
- `e(df_c)` degrees of freedom, comparison model
- `e(p_c)` significance, comparison model
- `e(rank)` rank of `e(V)`
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

**Macros**
- `e(cmd)` `mepoisson`
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(covariates)` list of covariates
- `e(ivars)` grouping variables
- `e(model)` poisson
- `e(title)` title in estimation output
- `e(link)` log
- `e(family)` poisson
- `e(clustvar)` name of cluster variable
- `e(offset)` offset
- `e(exposure)` exposure variable
- `e(intmethod)` integration method
- `e(n_quad)` number of integration points
- `e(chi2type)` Wald; type of model $\chi^2$
- `e(vce)` vcetype specified in `vce()`
- `e(vcetype)` title used to label Std. Err.
- `e(opt)` type of optimization
- `e(which)` `max` or `min`; whether optimizer is to perform maximization or minimization
- `e(ml_method)` type of ml method
- `e(user)` name of likelihood-evaluator program
- `e(technique)` maximization technique
- `e(datasignature)` the checksum
- `e(datasignaturevars)` variables used in calculation of checksum
- `e(properties)` `b V`
- `e(estat_cmd)` program used to implement `estat`
- `e(predict)` program used to implement `predict`
Methods and formulas

In a two-level Poisson model, for cluster \( j, j = 1, \ldots, M \), the conditional distribution of \( y_j = (y_{j1}, \ldots, y_{jn_j})' \), given a set of cluster-level random effects \( u_j \), is

\[
f(y_j | u_j) = \prod_{i=1}^{n_j} \left[ \exp \left( x_{ij} \beta + z_{ij} u_j \right) \right]^{y_{ij}} \exp \left\{ - \exp \left( x_{ij} \beta + z_{ij} u_j \right) \right\} / y_{ij} !
\]

\[
= \exp \left[ \sum_{i=1}^{n_j} \left\{ y_{ij} (x_{ij} \beta + z_{ij} u_j) - \exp (x_{ij} \beta + z_{ij} u_j) - \log (y_{ij} !) \right\} \right]
\]

Defining \( c(y_j) = \sum_{i=1}^{n_j} \log (y_{ij} !) \), where \( c(y_j) \) does not depend on the model parameters, we can express the above compactly in matrix notation,

\[
f(y_j | u_j) = \exp \left\{ y_j' (X_j \beta + Z_j u_j) - 1' \exp (X_j \beta + Z_j u_j) - c(y_j) \right\}
\]

where \( X_j \) is formed by stacking the row vectors \( x_{ij} \) and \( Z_j \) is formed by stacking the row vectors \( z_{ij} \). We extend the definition of \( \exp(\cdot) \) to be a vector function where necessary.

Because the prior distribution of \( u_j \) is multivariate normal with mean \( 0 \) and \( q \times q \) variance matrix \( \Sigma \), the likelihood contribution for the \( j \)th cluster is obtained by integrating \( u_j \) out of the joint density \( f(y_j, u_j) \),

\[
\mathcal{L}_j(\beta, \Sigma) = (2\pi)^{-q/2} |\Sigma|^{-1/2} \int f(y_j | u_j) \exp \left( -u_j' \Sigma^{-1} u_j / 2 \right) du_j
\]

\[
= \exp \left\{ -c(y_j) \right\} (2\pi)^{-q/2} |\Sigma|^{-1/2} \int \exp \left( h(\beta, \Sigma, u_j) \right) du_j
\]

where

\[
h(\beta, \Sigma, u_j) = y_j' (X_j \beta + Z_j u_j) - 1' \exp (X_j \beta + Z_j u_j) - u_j' \Sigma^{-1} u_j / 2
\]

and for convenience, in the arguments of \( h(\cdot) \) we suppress the dependence on the observable data \((y_j, X_j, Z_j)\).

The integration in (2) has no closed form and thus must be approximated. mepoisson offers four approximation methods: mean–variance adaptive Gauss–Hermite quadrature (default unless a crossed random-effects model is fit), mode-curvature adaptive Gauss–Hermite quadrature, nonadaptive Gauss–Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).
The Laplacian approximation is based on a second-order Taylor expansion of $g(\beta, \Sigma, u_j)$ about the value of $u_j$ that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature; see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the $M$ individual clusters, namely, $L(\beta, \Sigma) = \sum_{j=1}^{M} L_j(\beta, \Sigma)$.

Maximization of $L(\beta, \Sigma)$ is performed with respect to $(\beta, \sigma^2)$, where $\sigma^2$ is a vector comprising the unique elements of $\Sigma$. Parameter estimates are stored in $\mathbf{e}(\beta)$ as $(\hat{\beta}, \hat{\sigma}^2)$, with the corresponding variance–covariance matrix stored in $\mathbf{e}(V)$.

References


**Also see**

[ME] **mepoisson postestimation** — Postestimation tools for mepoisson

[ME] **menbreg** — Multilevel mixed-effects negative binomial regression

[ME] **meqrpoisson** — Multilevel mixed-effects Poisson regression (QR decomposition)

[ME] **me** — Introduction to multilevel mixed-effects models

[SEM] **intro 5** — Tour of models (*Multilevel mixed-effects models*)

[XT] **xtpoisson** — Fixed-effects, random-effects, and population-averaged Poisson models

[U] **20 Estimation and postestimation commands**