menbreg — Multilevel mixed-effects negative binomial regression

Syntax

```
menbreg depvar fe_equation [ || re_equation] [ || re_equation ...] [ , options ]
```

where the syntax of `fe_equation` is
```
[ indepvars ] [ if ] [ in ] [ , fe_options ]
```
and the syntax of `re_equation` is one of the following:

- for random coefficients and intercepts

 `levelvar: varlist [, re_options]`

- for random effects among the values of a factor variable

 `levelvar: R. varname`

`levelvar` is a variable identifying the group structure for the random effects at that level or is `_all` representing one group comprising all observations.

<table>
<thead>
<tr>
<th>fe_options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>noconstant</td>
<td>suppress the constant term from the fixed-effects equation</td>
</tr>
<tr>
<td>exposure(varname_e)</td>
<td>include ln(varname_e) in model with coefficient constrained to 1</td>
</tr>
<tr>
<td>offset(varname_o)</td>
<td>include varname_o in model with coefficient constrained to 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>re_options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>covariance(vartype)</td>
<td>variance–covariance structure of the random effects</td>
</tr>
<tr>
<td>noconstant</td>
<td>suppress constant term from the random-effects equation</td>
</tr>
</tbody>
</table>
options | Description
--- | ---
Model

- **dispersion**: parameterization of the conditional overdispersion; `dispersion` may be **mean** (default) or **constant**
- **constraints**: apply specified linear constraints
- **collinear**: keep collinear variables

SE/Robust
- **vce**: `vcetype` may be **oim**, **robust**, or **cluster clustvar**

Reporting
- **level** : set confidence level; default is `level(95)`
- **irr**: report fixed-effects coefficients as incidence-rate ratios
- **nocnsr**: do not display constraints
- **notable**: suppress coefficient table
- **noheader**: suppress output header
- **nogroup**: suppress table summarizing groups
- **nolrtest**: do not perform likelihood-ratio test comparing with negative binomial regression

- **display_options**: control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Integration
- **intmethod**: integration method
- **intpoints**: set the number of integration (quadrature) points for all levels; default is `intpoints(7)`

Maximization
- **maximize_options**: control the maximization process; seldom used
- **startvalues**: method for obtaining starting values
- **startgrid**: perform a grid search to improve starting values
- **noestimate**: do not fit the model; show starting values instead
- **dnumerical**: use numerical derivative techniques
- **coeflegend**: display legend instead of statistics

vartype	Description
independent: one unique variance parameter per random effect, all covariances 0; the default unless the R. notation is used
exchangeable: equal variances for random effects, and one common pairwise covariance
identity: equal variances for random effects, all covariances 0; the default if the R. notation is used
unstructured: all variances and covariances to be distinctly estimated
fixed(matname): user-selected variances and covariances constrained to specified values; the remaining variances and covariances unrestricted
pattern(matname): user-selected variances and covariances constrained to be equal; the remaining variances and covariances unrestricted
menbreg — Multilevel mixed-effects negative binomial regression

<table>
<thead>
<tr>
<th>intmethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvaghermite</td>
<td>mean-variance adaptive Gauss–Hermite quadrature; the default unless a crossed random-effects model is fit</td>
</tr>
<tr>
<td>mcaghermite</td>
<td>mode-curvature adaptive Gauss–Hermite quadrature</td>
</tr>
<tr>
<td>ghermite</td>
<td>nonadaptive Gauss–Hermite quadrature</td>
</tr>
<tr>
<td>laplace</td>
<td>Laplacian approximation; the default for crossed random-effects models</td>
</tr>
</tbody>
</table>

Options

- **noconstant** suppresses the constant (intercept) term and may be specified for the fixed-effects equation and for any or all of the random-effects equations.
- **exposure(varname_e)** specifies a variable that reflects the amount of exposure over which the depvar events were observed for each observation; \(\ln(varname_e) \) is included in the fixed-effects portion of the model with the coefficient constrained to be 1.
- **offset(varname_o)** specifies that varname_o be included in the fixed-effects portion of the model with the coefficient constrained to be 1.
- **covariance(vartype)** specifies the structure of the covariance matrix for the random effects and may be specified for each random-effects equation. vartype is one of the following: independent, exchangeable, identity, unstructured, fixed(matname), or pattern(matname).
- **covariance(independent)** covariance structure allows for a distinct variance for each random effect within a random-effects equation and assumes that all covariances are 0. The default is covariance(independent) unless a crossed random-effects model is fit, in which case the default is covariance(identity).
- **covariance(exchangeable)** structure specifies one common variance for all random effects and one common pairwise covariance.
- **covariance(identity)** is short for “multiple of the identity”; that is, all variances are equal and all covariances are 0.

Menu

Statistics > Multilevel mixed-effects models > Negative binomial regression

Description

menbreg fits mixed-effects negative binomial models to count data. The conditional distribution of the response given random effects is assumed to follow a Poisson-like process, except that the variation is greater than that of a true Poisson process.

Options

- **noconstant** suppresses the constant (intercept) term and may be specified for the fixed-effects equation and for any or all of the random-effects equations.
- **exposure(varname_e)** specifies a variable that reflects the amount of exposure over which the depvar events were observed for each observation; \(\ln(varname_e) \) is included in the fixed-effects portion of the model with the coefficient constrained to be 1.
- **offset(varname_o)** specifies that varname_o be included in the fixed-effects portion of the model with the coefficient constrained to be 1.
- **covariance(vartype)** specifies the structure of the covariance matrix for the random effects and may be specified for each random-effects equation. vartype is one of the following: independent, exchangeable, identity, unstructured, fixed(matname), or pattern(matname).
- **covariance(independent)** covariance structure allows for a distinct variance for each random effect within a random-effects equation and assumes that all covariances are 0. The default is covariance(independent) unless a crossed random-effects model is fit, in which case the default is covariance(identity).
- **covariance(exchangeable)** structure specifies one common variance for all random effects and one common pairwise covariance.
- **covariance(identity)** is short for “multiple of the identity”; that is, all variances are equal and all covariances are 0.
covariance(unstructured) allows for all variances and covariances to be distinct. If an equation consists of \(p \) random-effects terms, the unstructured covariance matrix will have \(p(p + 1)/2 \) unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures provide a convenient way to impose constraints on variances and covariances of random effects. Each specification requires a matname that defines the restrictions placed on variances and covariances. Only elements in the lower triangle of matname are used, and row and column names of matname are ignored. A missing value in matname means that a given element is unrestricted. In a fixed(matname) covariance structure, (co)variance \((i, j)\) is constrained to equal the value specified in the \(i, j\)th entry of matname. In a pattern(matname) covariance structure, (co)variances \((i, j)\) and \((k, l)\) are constrained to be equal if \(matname[i, j] = matname[k, l]\).

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given random effects. dispersion(mean), the default, yields a model where the conditional overdispersion is a function of the conditional mean given random effects. For example, in a two-level model, the conditional overdispersion is equal to \(1 + \alpha E(y_{ij} | u_j)\). dispersion(constant) yields a model where the conditional overdispersion is constant and is equal to \(1 + \delta\). \(\alpha\) and \(\delta\) are the respective conditional overdispersion parameters.

covariance structures provide a convenient way to impose constraints on variances and covariances of random effects. Each specification requires a matname that defines the restrictions placed on variances and covariances. Only elements in the lower triangle of matname are used, and row and column names of matname are ignored. A missing value in matname means that a given element is unrestricted. In a fixed(matname) covariance structure, (co)variance \((i, j)\) is constrained to equal the value specified in the \(i, j\)th entry of matname. In a pattern(matname) covariance structure, (co)variances \((i, j)\) and \((k, l)\) are constrained to be equal if \(matname[i, j] = matname[k, l]\).

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given random effects. dispersion(mean), the default, yields a model where the conditional overdispersion is a function of the conditional mean given random effects. For example, in a two-level model, the conditional overdispersion is equal to \(1 + \alpha E(y_{ij} | u_j)\). dispersion(constant) yields a model where the conditional overdispersion is constant and is equal to \(1 + \delta\). \(\alpha\) and \(\delta\) are the respective conditional overdispersion parameters.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation consists of \(p \) random-effects terms, the unstructured covariance matrix will have \(p(p + 1)/2 \) unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures provide a convenient way to impose constraints on variances and covariances of random effects. Each specification requires a matname that defines the restrictions placed on variances and covariances. Only elements in the lower triangle of matname are used, and row and column names of matname are ignored. A missing value in matname means that a given element is unrestricted. In a fixed(matname) covariance structure, (co)variance \((i, j)\) is constrained to equal the value specified in the \(i, j\)th entry of matname. In a pattern(matname) covariance structure, (co)variances \((i, j)\) and \((k, l)\) are constrained to be equal if \(matname[i, j] = matname[k, l]\).

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given random effects. dispersion(mean), the default, yields a model where the conditional overdispersion is a function of the conditional mean given random effects. For example, in a two-level model, the conditional overdispersion is equal to \(1 + \alpha E(y_{ij} | u_j)\). dispersion(constant) yields a model where the conditional overdispersion is constant and is equal to \(1 + \delta\). \(\alpha\) and \(\delta\) are the respective conditional overdispersion parameters.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation consists of \(p \) random-effects terms, the unstructured covariance matrix will have \(p(p + 1)/2 \) unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures provide a convenient way to impose constraints on variances and covariances of random effects. Each specification requires a matname that defines the restrictions placed on variances and covariances. Only elements in the lower triangle of matname are used, and row and column names of matname are ignored. A missing value in matname means that a given element is unrestricted. In a fixed(matname) covariance structure, (co)variance \((i, j)\) is constrained to equal the value specified in the \(i, j\)th entry of matname. In a pattern(matname) covariance structure, (co)variances \((i, j)\) and \((k, l)\) are constrained to be equal if \(matname[i, j] = matname[k, l]\).

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given random effects. dispersion(mean), the default, yields a model where the conditional overdispersion is a function of the conditional mean given random effects. For example, in a two-level model, the conditional overdispersion is equal to \(1 + \alpha E(y_{ij} | u_j)\). dispersion(constant) yields a model where the conditional overdispersion is constant and is equal to \(1 + \delta\). \(\alpha\) and \(\delta\) are the respective conditional overdispersion parameters.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation consists of \(p \) random-effects terms, the unstructured covariance matrix will have \(p(p + 1)/2 \) unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures provide a convenient way to impose constraints on variances and covariances of random effects. Each specification requires a matname that defines the restrictions placed on variances and covariances. Only elements in the lower triangle of matname are used, and row and column names of matname are ignored. A missing value in matname means that a given element is unrestricted. In a fixed(matname) covariance structure, (co)variance \((i, j)\) is constrained to equal the value specified in the \(i, j\)th entry of matname. In a pattern(matname) covariance structure, (co)variances \((i, j)\) and \((k, l)\) are constrained to be equal if \(matname[i, j] = matname[k, l]\).

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given random effects. dispersion(mean), the default, yields a model where the conditional overdispersion is a function of the conditional mean given random effects. For example, in a two-level model, the conditional overdispersion is equal to \(1 + \alpha E(y_{ij} | u_j)\). dispersion(constant) yields a model where the conditional overdispersion is constant and is equal to \(1 + \delta\). \(\alpha\) and \(\delta\) are the respective conditional overdispersion parameters.
menbreg — Multilevel mixed-effects negative binomial regression

Integration

intmethod(intmethod) specifies the integration method to be used for the random-effects model. mvaghermite performs mean and variance adaptive Gauss–Hermite quadrature; mcaghermite performs mode and curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which case the default integration method is laplace. The Laplacian approximation has been known to produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be prohibitively intensive even for a small number of levels. For this reason, the integration method defaults to the Laplacian approximation. You may override this behavior by specifying a different integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7), which means that seven quadrature points are used for each level of random effects. This option is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However, computation time increases as a function of the number of quadrature points raised to a power equaling the dimension of the random-effects specification. In crossed random-effects models and in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require special mention for menbreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values. A list of values is not allowed.

The following options are available with menbreg but are not shown in the dialog box:

startvalues(svmethod), startgrid[(gridspec)], noestimate, and dnumerical; see [ME] meglm.

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

menbreg is a convenience command for meglm with a log link and an nbinomial family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction

Two-level models
Introduction

Mixed-effects negative binomial regression is negative binomial regression containing both fixed effects and random effects. In longitudinal data and panel data, random effects are useful for modeling intracluster correlation; that is, observations in the same cluster are correlated because they share common cluster-level random effects.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and McCulloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004); Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2012). Rabe-Hesketh and Skrondal (2012, chap. 13) is a good introductory reading on applied multilevel modeling of count data.

menbreg allows for not just one, but many levels of nested clusters of random effects. For example, in a three-level model you can specify random effects for schools and then random effects for classes nested within schools. In this model, the observations (presumably, the students) comprise the first level, the classes comprise the second level, and the schools comprise the third.

However, for simplicity, consider a two-level model, where for a series of \(M \) independent clusters, and conditional on the latent variable \(\zeta_{ij} \) and a set of random effects \(u_j \),

\[
y_{ij} | \zeta_{ij} \sim \text{Poisson}(\zeta_{ij})
\]

and

\[
\zeta_{ij} | u_j \sim \text{Gamma}(r_{ij}, p_{ij})
\]

and

\[
u_j \sim N(0, \Sigma)
\]

where \(y_{ij} \) is the count response of the \(i \)th observation, \(i = 1, \ldots, n_j \), from the \(j \)th cluster, \(j = 1, \ldots, M \), and \(r_{ij} \) and \(p_{ij} \) have two different parameterizations, (2) and (3) below. The random effects \(u_j \) are \(M \) realizations from a multivariate normal distribution with mean \(0 \) and \(q \times q \) variance matrix \(\Sigma \). The random effects are not directly estimated as model parameters but are instead summarized according to the unique elements of \(\Sigma \), known as variance components.

The probability that a random response \(y_{ij} \) takes the value \(y \) is then given by

\[
\Pr(y_{ij} = y | u_j) = \frac{\Gamma(y + r_{ij})}{\Gamma(y + 1) \Gamma(r_{ij})} p_{ij}^{r_{ij}} (1 - p_{ij})^y
\] (1)

where for convenience we suppress the dependence of the observable data \(y_{ij} \) on \(r_{ij} \) and \(p_{ij} \).

Model (1) is an extension of the standard negative binomial model (see [R] nbreg) to incorporate normally distributed random effects at different hierarchical levels. (The negative binomial model itself can be viewed as a random-effects model, a Poisson model with a gamma-distributed random effect.) The standard negative binomial model is used to model overdispersed count data for which the variance is greater than that of a Poisson model. In a Poisson model, the variance is equal to the mean, and thus overdispersion is defined as the extra variability compared with the mean. According to this definition, the negative binomial model presents two different parameterizations of the overdispersion: the mean parameterization, where the overdispersion is a function of the mean, \(1 + \alpha E(Y|x), \alpha > 0 \); and the constant parameterization, where the overdispersion is a constant function, \(1 + \delta, \delta \geq 0 \). We refer to \(\alpha \) and \(\delta \) as conditional overdispersion parameters.
Let \(\mu_{ij} = E(y_{ij} | x, u_j) = \exp(x_{ij} \beta + z_{ij} u_j) \), where \(x_{ij} \) is the \(1 \times p \) row vector of the fixed-effects covariates, analogous to the covariates you would find in a standard negative binomial regression model, with regression coefficients (fixed effects) \(\beta \); \(z_{ij} \) is the \(1 \times q \) vector of the random-effects covariates and can be used to represent both random intercepts and random coefficients. For example, in a random-intercept model, \(z_{ij} \) is simply the scalar 1. One special case places \(z_{ij} = x_{ij} \), so that all covariate effects are essentially random and distributed as multivariate normal with mean \(\beta \) and variance \(\Sigma \).

Similarly to the standard negative binomial model, we can consider two parameterizations of what we call the conditional overdispersion, the overdispersion conditional on random effects, in a random-effects negative binomial model. For the mean-overdispersion (or, more technically, mean-conditional-overdispersion) parameterization,

\[
r_{ij} = 1/\alpha \text{ and } p_{ij} = \frac{1}{1 + \alpha \mu_{ij}}
\]

and the conditional overdispersion is equal to \(1 + \alpha \mu_{ij} \). For the constant-overdispersion (or, more technically, constant-conditional-overdispersion) parameterization,

\[
r_{ij} = \mu_{ij}/\delta \text{ and } p_{ij} = \frac{1}{1 + \delta}
\]

and the conditional overdispersion is equal to \(1 + \delta \). In what follows, for brevity, we will use the term overdispersion parameter to mean conditional overdispersion parameter, unless stated otherwise.

In the context of random-effects negative binomial models, it is important to decide which model is used as a reference model for the definition of the overdispersion. For example, if we consider a corresponding random-effects Poisson model as a comparison model, the parameters \(\alpha \) and \(\delta \) can still be viewed as unconditional overdispersion parameters, as we show below, although the notion of a constant overdispersion is no longer applicable.

If we retain the definition of the overdispersion as the excess variation with respect to a Poisson process for which the variance is equal to the mean, we need to carefully distinguish between the marginal (unconditional) mean with random effects integrated out and the conditional mean given random effects.

In what follows, for simplicity, we omit the dependence of the formulas on \(x \). Conditionally on random effects, the (conditional) dispersion \(\text{Var}(y_{ij} | u_j) = (1 + \alpha \mu_{ij}) \mu_{ij} \) for the mean parameterization and \(\text{Var}(y_{ij} | u_j) = (1 + \delta) \mu_{ij} \) for the constant parameterization; the usual interpretation of the parameters holds (conditionally).

If we consider the marginal mean or, specifically, the marginal dispersion for, for example, a two-level random-intercept model, then

\[
\text{Var}(y_{ij}) = [1 + \{\exp(\sigma^2)(1 + \alpha) - 1\}E(y_{ij})] E(y_{ij})
\]

for the mean parameterization and

\[
\text{Var}(y_{ij}) = [1 + \delta + \{\exp(\sigma^2) - 1\}E(y_{ij})] E(y_{ij})
\]

for the constant parameterization, where \(\sigma^2 \) is the variance component corresponding to the random intercept.
A few things of interest compared with the standard negative binomial model. First, the random-effects negative binomial model is not strictly an overdispersed model. The combination of values of α and σ^2 can lead to an underdispersed model, a model with smaller variability than the Poisson variability. Underdispersed models are not as common in practice, so we will concentrate on the overdispersion in this entry. Second, α (or δ) no longer solely determine the overdispersion and thus cannot be viewed as unconditional overdispersion parameters. Overdispersion is now a function of both α (or δ) and σ^2. Third, the notion of a constant overdispersion is not applicable.

Two special cases are worth mentioning. When $\sigma^2 = 0$, the dispersion reduces to that of a standard negative binomial model. When $\alpha = 0$ (or $\delta = 0$), the dispersion reduces to that of a two-level random-intercept Poisson model, which itself is, in general, an overdispersed model; see Rabe-Hesketh and Skrondal (2012, chap. 13.7) for more details. As such, α and δ retain the typical interpretation as dispersion parameters relative to a random-intercept Poisson model.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using `mixed` and fit GLMMs by using `meglm`. Because of the relationship between LMEs and GLMMs, there is insight to be gained through examination of the linear mixed model. This is especially true for Stata users because the terminology, syntax, options, and output for fitting these types of models are nearly identical. See [ME] mixed and the references therein, particularly in the Introduction of [ME] mixed, for more information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out the random effects. One widely used modern method is to directly estimate the integral required to calculate the log likelihood by Gauss–Hermite quadrature or some variation thereof. Because the log likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate, thus minimizing bias.

`menbreg` supports three types of Gauss–Hermite quadrature and the Laplacian approximation method; see Methods and formulas of [ME] meglm for details.

Below we present two short examples of mixed-effects negative binomial regression; refer to [ME] me and [ME] meglm for more examples including crossed-effects models.

Two-level models

Example 1

Rabe-Hesketh and Skrondal (2012, chap. 13.7) analyze the data from Winkelmann (2004) on the impact of the 1997 health reform in Germany on the number of doctor visits. The intent of policymakers was to reduce government expenditures on health care. We use a subsample of the data restricted to 1,158 women who were employed full time the year before or after the reform.
The dependent variable, `numvisit`, is a count of doctor visits. The covariate of interest is a dummy variable, `reform`, which indicates whether a doctor visit took place before or after the reform. Other covariates include a self-reported health status, age, education, marital status, and a log of household income.
We first fit a two-level random-intercept Poisson model. We specify the random intercept at the \(id\) level, that is, an individual-person level.

```stata
.mepoisson numvisit reform age educ married badh loginc || id:, irr
Fitting fixed-effects model:
Iteration 0:  log likelihood =  -9326.8542
Iteration 1:  log likelihood =  -5989.7308
Iteration 2:  log likelihood =  -5942.7581
Iteration 3:  log likelihood =  -5942.7243
Iteration 4:  log likelihood =  -5942.7243
Refining starting values:
Grid node 0: log likelihood =  -4761.1257
Fitting full model:
Iteration 0:  log likelihood =  -4761.1257
Iteration 1:  log likelihood =  -4683.2239
Iteration 2:  log likelihood =  -4646.9329
Iteration 3:  log likelihood =  -4645.7360
Iteration 4:  log likelihood =  -4645.7371
Iteration 5:  log likelihood =  -4645.7371
Mixed-effects Poisson regression Number of obs = 2227
Group variable: id Number of groups = 1518
Obs per group: min = 1
avg = 1.5
max = 2
Integration method: mvaghermite Integration points = 7
Wald chi2(6) = 249.37
Log likelihood = -4645.7371 Prob > chi2 = 0.0000
numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]
reform .9517026 .0309352 -1.52 0.128 .8929617 1.014308
age 1.005821 .002817 2.07 0.038 1.000315 1.011357
educ 1.008788 .0127394 0.69 0.488 .9841258 1.034068
married 1.082078 .0596331 1.43 0.152 .9712905 1.205603
badh 2.471857 .151841 14.73 0.000 2.191471 2.788116
loginc 1.094144 .0743018 1.32 0.185 .9577909 1.249909
_cons .5216748 .2668604 -1.27 0.203 .191413 1.421766
id
var(_cons) .8177932 .0503902 .724761 .9227673
LR test vs. Poisson regression: chibar2(01) = 2593.97 Prob>chibar2 = 0.0000
.estimates store mepoisson
```

Because we specified the `irr` option, the parameters are reported as incidence-rate ratios. The healthcare reform seems to reduce the expected number of visits by 5% but without statistical significance.

Because we have only one random effect at the \(id\) level, the table shows only one variance component. The estimate of \(\sigma^2_u\) is 0.82 with standard error 0.05. The reported likelihood-ratio test shows that there is enough variability between women to favor a mixed-effects Poisson regression over a standard Poisson regression; see *Distribution theory for likelihood-ratio test* in [ME] *me* for a discussion of likelihood-ratio testing of variance components.

It is possible that after conditioning on the person-level random effect, the counts of doctor visits are overdispersed. For example, medical problems occurring during the time period leading to the survey can result in extra doctor visits. We thus reexamine the data with `menbreg`.

Because we specified the `irr` option, the parameters are reported as incidence-rate ratios. The healthcare reform seems to reduce the expected number of visits by 5% but without statistical significance.

Because we have only one random effect at the \(id\) level, the table shows only one variance component. The estimate of \(\sigma^2_u\) is 0.82 with standard error 0.05. The reported likelihood-ratio test shows that there is enough variability between women to favor a mixed-effects Poisson regression over a standard Poisson regression; see *Distribution theory for likelihood-ratio test* in [ME] *me* for a discussion of likelihood-ratio testing of variance components.

It is possible that after conditioning on the person-level random effect, the counts of doctor visits are overdispersed. For example, medical problems occurring during the time period leading to the survey can result in extra doctor visits. We thus reexamine the data with `menbreg`.
. menbreg numvisit reform age educ married badh loginc || id:, irr

Fitting fixed-effects model:
Iteration 0: log likelihood = -4610.7165
Iteration 1: log likelihood = -4563.4682
Iteration 2: log likelihood = -4562.3241
Iteration 3: log likelihood = -4562.3238

Refining starting values:
Grid node 0: log likelihood = -4643.5216

Fitting full model:
Iteration 0: log likelihood = -4643.5216 (not concave)
Iteration 1: log likelihood = -4555.961
Iteration 2: log likelihood = -4518.7353
Iteration 3: log likelihood = -4513.1951
Iteration 4: log likelihood = -4513.1853
Iteration 5: log likelihood = -4513.1853

Mixed-effects nbinomial regression

<table>
<thead>
<tr>
<th></th>
<th>Number of obs</th>
<th>Overdispersion: mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group variable: id</td>
<td>2227</td>
<td>1518</td>
</tr>
<tr>
<td>Obs per group: min</td>
<td>1</td>
<td>avg = 1.5</td>
</tr>
<tr>
<td>max</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Integration method: mvaghermite</td>
<td>Integration points = 7</td>
<td></td>
</tr>
<tr>
<td>Wald chi2(6)</td>
<td>237.35</td>
<td></td>
</tr>
<tr>
<td>Prob > chi2</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Log likelihood = -4513.1853

| | IRR | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|---------|-----------|-------|-------|----------------------|
| numvisit | | | | | |
| reform | .9008536| .042022 | -2.24 | 0.025 | .8221449 .9870975 |
| age | 1.003593| .0028206 | 1.28 | 0.202 | .9980799 1.009137 |
| educ | 1.007026| .012827 | 0.55 | 0.583 | .9821969 1.032483 |
| married | 1.089597| .064213 | 1.46 | 0.145 | .970738 1.223008 |
| badh | 3.043562| .2366182 | 14.32 | 0.000 | 2.613404 3.544523 |
| loginc | 1.136342| .0867148 | 1.67 | 0.094 | .9784833 1.319668 |
| _cons | .5017199| .285146 | -1.21 | 0.225 | .1646994 1.528377 |

/lnalpha = -.7962692 .1190614 -6.69 0.000 -1.029625 -.5629132

id var(_cons) = .4740088 .0582404 .3725642 .6030754

LR test vs. nbinomial regression: chibar2(01) = 98.28 Prob>chibar2 = 0.0000

The estimated effect of the healthcare reform now corresponds to the reduction in the number of doctor visits by 10%—twice as much compared with the Poisson model—and this effect is significant at the 5% level.

The estimate of the variance component σ^2_u drops down to 0.47 compared with mepoisson, which is not surprising given that now we have an additional parameter that controls the variability of the data.

Because the conditional overdispersion α is assumed to be greater than 0, it is parameterized on the log scale, and its log estimate is reported as /lnalpha in the output. In our model, $\hat{\alpha} = \exp(-0.80) = 0.45$. We can also compute the unconditional overdispersion in this model by using the corresponding formula in the Introduction above: $\exp(0.47) \times (1 + 0.45) - 1 = 1.32$.

The reported likelihood-ratio test shows that there is enough variability between women to favor a mixed-effects negative binomial regression over negative binomial regression without random effects.
We can also perform a likelihood-ratio test comparing the mixed-effects negative binomial model to the mixed-effects Poisson model. Because we are comparing two different estimators, we need to use the `force` option with `lrtest`. In general, there is no guarantee as to the validity or interpretability of the resulting likelihood-ratio test, but in our case we know the test is valid because the mixed-effects Poisson model is nested within the mixed-effects negative binomial model.

```
. lrtest mepoisson ., force
Likelihood-ratio test (Assumption: mepoisson nested in .) LR chi2(1) = 265.10
Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.
```

The reported likelihood-ratio test favors the mixed-effects negative binomial model. The reported test is conservative because the test of $H_0: \alpha = 0$ occurs on the boundary of the parameter space; see *Distribution theory for likelihood-ratio test* in [ME] me for details.

The above extends to models with more than two levels of nesting in the obvious manner, by adding more random-effects equations, each separated by `||`. The order of nesting goes from left to right as the groups go from biggest (highest level) to smallest (lowest level). To demonstrate a three-level model, we revisit example 2 from [ME] meqrpoisson.

Example 2


```
. use http://www.stata-press.com/data/r13/melanoma
(Skin cancer (melanoma) data)
. describe
Contains data from http://www.stata-press.com/data/r13/melanoma.dta
     obs:       354  Skin cancer (melanoma) data
     vars:        6  30 May 2013 17:10
     size:   4,956  (_dta has notes)
        variable name   type    format       label      variable label
         nation    byte   %11.0g      n         Nation ID
         region    byte   %9.0g       Region ID: EEC level-I areas
         county    int   %9.0g       County ID: EEC level-II/level-III areas
         deaths    int   %9.0g       No. deaths during 1971-1980
         expected  float   %9.0g    No. expected deaths
         uv         float   %9.0g    UV dose, mean-centered
```

Nine European nations (variable `nation`) are represented, and data were collected over geographical regions defined by EEC statistical services as level I areas (variable `region`), with deaths being recorded for each of 354 counties, which are level II or level III EEC-defined areas (variable `county`, which identifies the observations). Counties are nested within regions, and regions are nested within nations.
The variable `deaths` records the number of deaths for each county, and `expected` records the expected number of deaths (the exposure) on the basis of crude rates for the combined countries. The variable `uv` is a measure of exposure to ultraviolet (UV) radiation.

In example 2 of [ME] `meqrpoisson`, we noted that because counties also identified the observations, we could model overdispersion by using a four-level Poisson model with a random intercept at the county level. Here we fit a three-level negative binomial model with the default mean-dispersion parameterization.

```
.deaths uv, exposure(expected) || nation: || region:
```

Fitting fixed-effects model:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1361.855</td>
</tr>
<tr>
<td>1</td>
<td>-1230.0211</td>
</tr>
<tr>
<td>2</td>
<td>-1211.049</td>
</tr>
<tr>
<td>3</td>
<td>-1202.5641</td>
</tr>
<tr>
<td>4</td>
<td>-1202.5329</td>
</tr>
<tr>
<td>5</td>
<td>-1202.5329</td>
</tr>
</tbody>
</table>

Refining starting values:

<table>
<thead>
<tr>
<th>Grid node 0</th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1209.6951</td>
</tr>
</tbody>
</table>

Fitting full model:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Log likelihood</th>
<th>(not concave)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1209.6951</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-1086.3902</td>
<td></td>
</tr>
</tbody>
</table>

Mixed-effects negative binomial regression

Number of obs = 354

Overdispersion:

<table>
<thead>
<tr>
<th>Group Variable</th>
<th>No. of Observations per Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Groups Minimum Average Maximum</td>
</tr>
<tr>
<td>nation</td>
<td>9 3 39.3 95</td>
</tr>
<tr>
<td>region</td>
<td>78 1 4.5 13</td>
</tr>
</tbody>
</table>

Integration method: mvaghermite

Wald chi2(1) = 8.73

Log likelihood = -1086.3902

| deaths | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|---------|-----------|-------|------|-----------------------|
| uv | -.0335933 | .0113725 | -2.95 | 0.003 | -.055883 -.0113035 |
| ln(expected) | -.0790606 | .1295931 | -0.61 | 0.542 | -.3330583 .1749372 |
| /lnalpha | -4.182603 | .3415036 | -12.25| 0.000 | -4.851937 -3.513268 |

<table>
<thead>
<tr>
<th>nation</th>
<th>var(_cons)</th>
<th>.1283614</th>
<th>.0678971</th>
<th>.0455187</th>
<th>.3619758</th>
</tr>
</thead>
<tbody>
<tr>
<td>region</td>
<td>var(_cons)</td>
<td>.0401818</td>
<td>.0104855</td>
<td>.0240938</td>
<td>.067012</td>
</tr>
</tbody>
</table>

LR test vs. nbinomial regression: chi2(2) = 232.29 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
The estimates are very close to those of `meqrpoisson`. The conditional overdispersion in our model is \(\hat{\alpha} = \exp(-4.18) = 0.0153 \). It is in agreement with the estimate of the random intercept at the county level, 0.0146, in a four-level random-effects Poisson model reported by `meqrpoisson`. Because the negative binomial is a three-level model, we gained some computational efficiency over the four-level Poisson model.

Stored results

`menbreg` stores the following in `e()`:

Scalars

- `e(N)` number of observations
- `e(k)` number of parameters
- `e(k_eq)` number of dependent variables
- `e(k_eq_model)` number of equations in `e(b)`
- `e(k_r)` number of random-effects parameters
- `e(k_rc)` number of covariances
- `e(df_m)` model degrees of freedom
- `e(ll)` log likelihood
- `e(N_clust)` number of clusters
- `e(chi2)` \(\chi^2 \)
- `e(p)` significance
- `e(ll_c)` log likelihood, comparison model
- `e(chi2_c)` \(\chi^2 \), comparison model
- `e(df_c)` degrees of freedom, comparison model
- `e(p_c)` significance, comparison model
- `e(rank)` rank of `e(V)`
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise
Macros

- `e(cmd)` | menbreg
- `e(cmdline)` | command as typed
- `e(depvar)` | name of dependent variable
- `e(covariates)` | list of covariates
- `e(ivars)` | grouping variables
- `e(model)` | nbreg
- `e(title)` | title in estimation output
- `e(link)` | log
- `e(family)` | nbinomial
- `e(clustvar)` | name of cluster variable
- `e(dispersion)` | mean or constant
- `e(offset)` | offset
- `e(exposure)` | exposure variable
- `e(intmethod)` | integration method
- `e(n_quad)` | number of integration points
- `e(chi2type)` | Wald; type of model χ^2
- `e(vcetype)` | vcetype specified in vce()
- `e(opt)` | type of optimization
- `e(which)` | max or min; whether optimizer is to perform maximization or minimization
- `e(ml_method)` | type of ml method
- `e(user)` | name of likelihood-evaluator program
- `e(technique)` | maximization technique
- `e(datasignature)` | the checksum
- `e(datasignaturevars)` | variables used in calculation of checksum
- `e(properties)` | b V
- `e(estat_cmd)` | program used to implement estat
- `e(predict)` | program used to implement predict

Matrices

- `e(b)` | coefficient vector
- `e(Cns)` | constraints matrix
- `e(gradient)` | gradient vector
- `e(N_g)` | group counts
- `e(g_min)` | group-size minimums
- `e(g_avg)` | group-size averages
- `e(g_max)` | group-size maximums
- `e(V)` | variance–covariance matrix of the estimator
- `e(V_modelbased)` | model-based variance

Functions

- `e(sample)` | marks estimation sample

Methods and formulas

Without a loss of generality, consider a two-level negative binomial model. For cluster j, $j = 1, \ldots, M$, the conditional distribution of $y_j = (y_{j1}, \ldots, y_{jn_j})'$, given a set of cluster-level random effects u_j and the conditional overdispersion parameter α in a mean-overdispersion parameterization, is

$$
f(y_j | u_j, \alpha) = \prod_{i=1}^{n_j} \left\{ \frac{\Gamma(y_{ij} + r)}{\Gamma(y_{ij} + 1) \Gamma(r)} p_{ij}^{r}(1-p_{ij})^{y_{ij}} \right\}$$

$$= \exp \left[\sum_{i=1}^{n_j} \{ \log \Gamma(y_{ij} + r) - \log \Gamma(y_{ij} + 1) - \log \Gamma(r) + c(y_{ij}, \alpha) \} \right]$$
where \(c(y_{ij}, \alpha) \) is defined as
\[
-\frac{1}{\alpha} \log\{1 + \exp(\eta_{ij} + \log \alpha)\} - y_{ij} \log\{1 + \exp(-\eta_{ij} - \log \alpha)\}
\]
and \(r = 1/\alpha, p_{ij} = 1/(1 + \alpha \mu_{ij}), \) and \(\eta_{ij} = x_{ij} \beta + z_{ij} u_j. \)

For the constant-overdispersion parameterization with the conditional overdispersion parameter \(\delta, \) the conditional distribution of \(y_j \) is
\[
f(y_j | u_j, \delta) = \prod_{i=1}^{n_j} \left\{ \frac{\Gamma(y_{ij} + r_{ij})}{\Gamma(y_{ij} + 1) \Gamma(r_{ij})} p_{rij}^{\gamma_{ij}} \right\}
= \exp \left[\sum_{i=1}^{n_j} \{ \log \Gamma(y_{ij} + r_{ij}) - \log \Gamma(y_{ij} + 1) - \log \Gamma(r_{ij}) + c(y_{ij}, \delta) \} \right]
\]
where \(c(y_{ij}, \delta) \) is defined as
\[
- \left(\frac{\mu_{ij}}{\delta} + y_{ij} \right) \log(1 + \delta) + y_{ij} \log \delta
\]
and \(r_{ij} = \mu_{ij}/\delta \) and \(p = 1/(1 + \delta). \)

For conciseness, let \(\gamma \) denote either conditional overdispersion parameter. Because the prior distribution of \(u_j \) is multivariate normal with mean \(0 \) and \(q \times q \) variance matrix \(\Sigma, \) the likelihood contribution for the \(j \)th cluster is obtained by integrating \(u_j \) out of the joint density \(f(y_j, u_j, \gamma), \)
\[
L_j(\beta, \Sigma, \gamma) = (2\pi)^{-q/2} |\Sigma|^{-1/2} \int f(y_j | u_j, \gamma) \exp \left(-u_j^T \Sigma^{-1} u_j / 2 \right) du_j
= (2\pi)^{-q/2} |\Sigma|^{-1/2} \int \exp \{ h(\beta, \Sigma, u_j, \gamma) \} du_j \tag{4}
\]
where
\[
h(\beta, \Sigma, u_j, \gamma) = f(y_j | u_j, \gamma) - u_j^T \Sigma^{-1} u_j / 2
\]
and for convenience, in the arguments of \(h(\cdot) \) we suppress the dependence on the observable data \((y_j, X_j, Z_j).\)

The integration in (4) has no closed form and thus must be approximated. \texttt{menbreg} offers four approximation methods: mean–variance adaptive Gauss–Hermite quadrature (default unless a crossed random-effects model is fit), mode-curvature adaptive Gauss–Hermite quadrature, nonadaptive Gauss–Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of \(h(\beta, \Sigma, u_j, \gamma) \) about the value of \(u_j \) that maximizes it; see \textit{Methods and formulas} in \texttt{ME} \texttt{meglm} for details.

Gaussian quadrature relies on transforming the multivariate integral in (4) into a set of nested univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature; see \textit{Methods and formulas} in \texttt{ME} \texttt{meglm} for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the \(M \) individual clusters, namely, \(L(\beta, \Sigma, \gamma) = \sum_{j=1}^{M} L_j(\beta, \Sigma, \gamma). \)
Maximization of $\mathcal{L}(\beta, \Sigma, \gamma)$ is performed with respect to $(\beta, \ln \gamma, \sigma^2)$, where σ^2 is a vector comprising the unique elements of Σ. Parameter estimates are stored in $e(b)$ as $(\hat{\beta}, \ln \hat{\gamma}, \hat{\sigma}^2)$, with the corresponding variance–covariance matrix stored in $e(V)$.

References

Also see

[ME] **membreg postestimation** — Postestimation tools for membreg

[ME] **mepoisson** — Multilevel mixed-effects Poisson regression

[ME] **meqrpoisson** — Multilevel mixed-effects Poisson regression (QR decomposition)

[ME] **me** — Introduction to multilevel mixed-effects models

[SEM] **intro 5** — Tour of models (*Multilevel mixed-effects models*)

[XT] **xtnbreg** — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] **20 Estimation and postestimation commands**