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Syntax

meglm depvar fe equation
[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
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options Description

Model

family(family) distribution of depvar; default is family(gaussian)

link(link) link function; default varies per family
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated fixed-effects coefficients
irr report fixed-effects coefficients as incidence-rate ratios
or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform likelihood-ratio test comparing with reference model
display options control column formats, row spacing, line width, display of omitted

variables and base and empty cells, and factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
coeflegend display legend instead of statistics
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vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

family Description

gaussian Gaussian (normal); the default
bernoulli Bernoulli
binomial

[
# | varname

]
binomial; default number of binomial trials is 1

gamma gamma
nbinomial

[
mean | constant

]
negative binomial; default dispersion is mean

ordinal ordinal
poisson Poisson

link Description

identity identity
log log
logit logit
probit probit
cloglog complementary log-log

intmethod Description

mvaghermite mean-variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed; see [U] 11.1.10 Prefix commands.
startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Multilevel mixed-effects models > Generalized linear models (GLMs)

Description
meglm fits multilevel mixed-effects generalized linear models. meglm allows a variety of distributions

for the response conditional on normally distributed random effects.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all of the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

family(family) specifies the distribution of depvar; family(gaussian) is the default.

link(link) specifies the link function; the default is the canonical link for the family() specified
except for the gamma and negative binomial families.

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
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If you specify both family() and link(), not all combinations make sense. You may choose
from the following combinations:

identity log logit probit cloglog

Gaussian D x
Bernoulli D x x
binomial D x x
gamma D
negative binomial D
ordinal D x x
Poisson D
D denotes the default.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] estimation options.

eform reports exponentiated fixed-effects coefficients and corresponding standard errors and confidence
intervals. This option may be specified either at estimation or upon replay.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(β)
rather than β. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay. This option is allowed for count models only.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(β) rather than β.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified at estimation or upon replay. This
option is allowed for logistic models only.

nocnsreport; see [R] estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents meglm from fitting a reference linear regression model and using this model to
calculate a likelihood-ratio test comparing the mixed model with ordinary regression. This option
may also be specified upon replay to suppress this test from the output.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/rvce_option.pdf#rvce_option
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss–Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive
Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. Those that require
special mention for meglm are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meglm but are not shown in the dialog box:

startvalues(svmethod) specifies how starting values are to be computed. Starting values specified
in from() override the computed starting values.

startvalues(zero) specifies that starting values be set to 0.

startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model
to obtain estimates of the intercept and auxiliary parameters, and it substitutes 1 for the variances
of random effects.

startvalues(fixedonly) builds on startvalues(constantonly) by fitting a full fixed-
effects model to obtain estimates of coefficients along with intercept and auxiliary parameters, and
it continues to use 1 for the variances of random effects. This is the default behavior.

startvalues(iv) builds on startvalues(fixedonly) by using instrumental-variable methods
with generalized residuals to obtain variances of random effects.

startgrid
[
(gridspec)

]
performs a grid search on variance components of random effects to improve

starting values. No grid search is performed by default unless the starting values are found to be
not feasible, in which case meglm runs startgrid() to perform a “minimal” search involving
q3 likelihood evaluations, where q is the number of random effects. Sometimes this resolves the

http://www.stata.com/manuals13/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
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problem. Usually, however, there is no problem and startgrid() is not run by default. There
can be benefits from running startgrid() to get better starting values even when starting values
are feasible.

startgrid() is a brute-force approach that tries various values for variances and covariances
and chooses the ones that work best. You may already be using a default form of startgrid()
without knowing it. If you see meglm displaying Grid node 1, Grid node 2, . . . following Grid
node 0 in the iteration log, that is meglm doing a default search because the original starting values
were not feasible. The default form tries 0.1, 1, and 10 for all variances of all random effects.

startgrid(numlist) specifies values to try for variances of random effects.

startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. covspec is name[level] for variances and name1[level]*name2[level] for
covariances. For example, the variance of the random intercept at level id is specified as cons[id],
and the variance of the random slope on variable week at the same level is specified as week[id].
The residual variance for the linear mixed-effects model is specified as e.depvar, where depvar
is the name of the dependent variable. The covariance between the random slope and the random
intercept above is specified as cons[id]*week[id].

startgrid(numlist covspec) combines the two syntaxes. You may also specify startgrid()
multiple times so that you can search the different ranges for different variances and covariances.

noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as
modified by the above options if modifications were made), and they are to be shown using the
coeflegend style of output.

dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed
using numerical techniques instead of analytical formulas. By default, analytical formulas for com-
puting the gradient and Hessian are used for all integration methods except intmethod(laplace).

coeflegend; see [R] estimation options.

Remarks and examples stata.com

For a general introduction to me commands, see [ME] me. For additional examples of mixed-effects
models for binary and binomial outcomes, see [ME] melogit, [ME] meprobit, and [ME] mecloglog.
For additional examples of mixed-effects models for ordinal responses, see [ME] meologit and
[ME] meoprobit. For additional examples of mixed-effects models for multinomial outcomes, see
[SEM] example 41g. For additional examples of mixed-effects models for count outcomes, see
[ME] mepoisson and [ME] menbreg.

Remarks are presented under the following headings:

Introduction
Two-level models for continuous responses
Two-level models for nonlinear responses
Three-level models for nonlinear responses
Crossed-effects models
Obtaining better starting values

http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://stata.com
http://www.stata.com/manuals13/meme.pdf#meme
http://www.stata.com/manuals13/memelogit.pdf#memelogit
http://www.stata.com/manuals13/memeprobit.pdf#memeprobit
http://www.stata.com/manuals13/memecloglog.pdf#memecloglog
http://www.stata.com/manuals13/memeologit.pdf#memeologit
http://www.stata.com/manuals13/memeoprobit.pdf#memeoprobit
http://www.stata.com/manuals13/semexample41g.pdf#semexample41g
http://www.stata.com/manuals13/memepoisson.pdf#memepoisson
http://www.stata.com/manuals13/memenbreg.pdf#memenbreg
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Introduction

meglm fits multilevel mixed-effects generalized linear models of the form

g
{
E(y|X,u)

}
= Xβ+ Zu, y ∼ F (1)

where y is the n×1 vector of responses from the distributional family F , X is an n×p design/covariate
matrix for the fixed effects β, and Z is the n× q design/covariate matrix for the random effects u.
The Xβ + Zu part is called the linear predictor, and it is often denoted as η. The linear predictor
also contains the offset or exposure variable when offset() or exposure() is specified. g(·) is
called the link function and is assumed to be invertible such that

E(y|X,u) = g−1(Xβ+ Zu) = H(η) = µ

For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for g(·) and F results in a wide array of models. For instance,
if y is distributed as Gaussian (normal) and g(·) is the identity function, we have

E(y) = Xβ+ Zu, y ∼ normal

or mixed-effects linear regression. If g(·) is the logit function and y is distributed as Bernoulli, we
have

logit
{
E(y)

}
= Xβ+ Zu, y ∼ Bernoulli

or mixed-effects logistic regression. If g(·) is the natural log function and y is distributed as Poisson,
we have

ln
{
E(y)

}
= Xβ+ Zu, y ∼ Poisson

or mixed-effects Poisson regression. In fact, some combinations of families and links are so common
that we implemented them as separate commands in terms of meglm.

Command meglm equivalent

melogit family(bernoulli) link(logit)

meprobit family(bernoulli) link(probit)

mecloglog family(bernoulli) link(cloglog)

meologit family(ordinal) link(logit)

meoprobit family(ordinal) link(probit)

mepoisson family(poisson) link(log)

menbreg family(nbinomial) link(log)

When no family–link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, accepts
frequency and sampling weights and allows for modeling of the structure of the residual errors; see
[ME] mixed for details.

The random effects u are assumed to be distributed as multivariate normal with mean 0 and q× q
variance matrix Σ. The random effects are not directly estimated (although they may be predicted),
but instead are characterized by the variance components, the elements of G = Var(u).

http://www.stata.com/manuals13/memixed.pdf#memixed
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The general forms of the design matrices X and Z allow estimation for a broad class of generalized
mixed-effects models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical
designs, etc. They also allow a flexible method of modeling within-cluster correlation. Subjects within
the same cluster can be correlated as a result of a shared random intercept, or through a shared random
slope on a covariate, or both. The general specification of variance components also provides additional
flexibility—the random intercept and random slope could themselves be modeled as independent, or
correlated, or independent with equal variances, and so forth.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and
Skrondal (2012).

The key to fitting mixed models lies in estimating the variance components, and for that there
exist many methods; see, for example, Breslow and Clayton (1993); Lin and Breslow (1996); Bates
and Pinheiro (1998); and Ng et al. (2006). meglm uses maximum likelihood (ML) to estimate model
parameters. The ML estimates are based on the usual application of likelihood theory, given the
distributional assumptions of the model.

Returning to (1): in clustered-data situations, it is convenient not to consider all n observations at
once but instead to organize the mixed model as a series of M independent groups (or clusters)

g{E(yj)} = Xjβ+ Zjuj (2)

for j = 1, . . . ,M , with cluster j consisting of nj observations. The response yj comprises the rows
of y corresponding with the jth cluster, with Xj defined analogously. The random effects uj can
now be thought of as M realizations of a q × 1 vector that is normally distributed with mean 0
and q × q variance matrix Σ. The matrix Zi is the nj × q design matrix for the jth cluster random
effects. Relating this to (1), note that

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ

where IM is the M ×M identity matrix and ⊗ is the Kronecker product.

The mixed-model formula (2) is from Laird and Ware (1982) and offers two key advantages. First,
it makes specifications of random-effects terms easier. If the clusters are schools, you can simply
specify a random effect at the school level, as opposed to thinking of what a school-level random
effect would mean when all the data are considered as a whole (if it helps, think Kronecker products).
Second, representing a mixed-model with (2) generalizes easily to more than one set of random
effects. For example, if classes are nested within schools, then (2) can be generalized to allow random
effects at both the school and the class-within-school levels.

Two-level models for continuous responses

We begin with a simple application of (2).
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Example 1

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weightij = β0 + β1weekij + uj + εij

for i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs. The fixed portion of the model, β0 + β1weekij ,
simply states that we want one overall regression line representing the population average. The random
effect uj serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing

. use http://www.stata-press.com/data/r13/pig
(Longitudinal analysis of pig weights)

. meglm weight week || id:

Fitting fixed-effects model:

Iteration 0: log likelihood = -1251.2506
Iteration 1: log likelihood = -1251.2506

Refining starting values:

Grid node 0: log likelihood = -1150.6253

Fitting full model:

Iteration 0: log likelihood = -1150.6253 (not concave)
Iteration 1: log likelihood = -1036.1793
Iteration 2: log likelihood = -1017.912
Iteration 3: log likelihood = -1014.9537
Iteration 4: log likelihood = -1014.9268
Iteration 5: log likelihood = -1014.9268

Mixed-effects GLM Number of obs = 432
Family: Gaussian
Link: identity
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Integration method: mvaghermite Integration points = 7

Wald chi2(1) = 25337.48
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974047 32.40 0.000 18.18472 20.52651

id
var(_cons) 14.81745 3.124202 9.801687 22.39989

var(e.weight) 4.383264 .3163349 3.805112 5.049261

LR test vs. linear regression: chibar2(01) = 472.65 Prob>=chibar2 = 0.0000

At this point, a guided tour of the model specification and output is in order:
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1. By typing weight week, we specified the response, weight, and the fixed portion of the model
in the same way that we would if we were using regress or any other estimation command. Our
fixed effects are a coefficient on week and a constant term.

2. When we added || id:, we specified random effects at the level identified by the group variable
id, that is, the pig level (level two). Because we wanted only a random intercept, that is all we
had to type.

3. The estimation log displays a set of iterations from optimizing the log likelihood. By default, these
are Newton–Raphson iterations, but other methods are available by specifying the appropriate
maximize options; see [R] maximize.

4. The header describes the model, presents a summary of the random-effects group, reports the
integration method used to fit the model, and reports a Wald test against the null hypothesis that all
the coefficients on the independent variables in the mean equation are 0. Here the null hypothesis
is rejected at all conventional levels. You can suppress the group information with the nogroup
or the noheader option, which will suppress the rest of the header as well.

5. The estimation table reports the fixed effects, followed by the random effects, followed by the
overall error term.

a. For the fixed-effects part, we estimate β0 = 19.36 and β1 = 6.21.

b. The random-effects equation is labeled id, meaning that these are random effects at the id
(pig) level. We have only one random effect at this level, the random intercept. The variance
of the level-two errors, σ2

u, is estimated as 14.82 with standard error 3.12.

c. The row labeled var(e.weight) displays the estimated variance of the overall error term:
σ̂2
ε = 4.38. This is the variance of the level-one errors, that is, the residuals.

6. Finally, a likelihood-ratio test comparing the model with ordinary linear regression is provided and
is highly significant for these data. See Distribution theory for likelihood-ratio test in [ME] me for
a discussion of likelihood-ratio testing of variance components.

See Remarks and examples in [ME] mixed for further analysis of these data including a random-slope
model and a model with an unstructured covariance structure.

Two-level models for nonlinear responses

By specifying different family–link combinations, we can fit a variety of mixed-effects models for
nonlinear responses. Here we replicate the model from example 2 of meqrlogit.

Example 2

Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception. The women
sampled were from 60 districts, identified by the variable district. Each district contained either
urban or rural areas (variable urban) or both. The variable c use is the binary response, with a value
of 1 indicating contraceptive use. Other covariates include mean-centered age and three indicator
variables recording number of children.

We fit a standard logistic regression model, amended to have a random intercept for each district
and a random slope on the indicator variable urban. We fit the model by typing

http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
http://www.stata.com/manuals13/meme.pdf#meme
http://www.stata.com/manuals13/memixed.pdf#memixedRemarksandexamples
http://www.stata.com/manuals13/memixed.pdf#memixed
http://www.stata.com/manuals13/memeqrlogit.pdf#memeqrlogitRemarksandexamplesex2_meqrlogit
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. use http://www.stata-press.com/data/r13/bangladesh
(Bangladesh Fertility Survey, 1989)

. meglm c_use urban age child* || district: urban, family(bernoulli) link(logit)

Fitting fixed-effects model:

Iteration 0: log likelihood = -1229.5485
Iteration 1: log likelihood = -1228.5268
Iteration 2: log likelihood = -1228.5263
Iteration 3: log likelihood = -1228.5263

Refining starting values:

Grid node 0: log likelihood = -1215.8592

Fitting full model:

Iteration 0: log likelihood = -1215.8592 (not concave)
Iteration 1: log likelihood = -1209.6285
Iteration 2: log likelihood = -1205.7903
Iteration 3: log likelihood = -1205.1337
Iteration 4: log likelihood = -1205.0034
Iteration 5: log likelihood = -1205.0025
Iteration 6: log likelihood = -1205.0025

Mixed-effects GLM Number of obs = 1934
Family: Bernoulli
Link: logit
Group variable: district Number of groups = 60

Obs per group: min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration points = 7

Wald chi2(5) = 97.30
Log likelihood = -1205.0025 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z| [95% Conf. Interval]

urban .7143927 .1513595 4.72 0.000 .4177335 1.011052
age -.0262261 .0079656 -3.29 0.001 -.0418384 -.0106138

child1 1.128973 .1599347 7.06 0.000 .815507 1.442439
child2 1.363165 .1761804 7.74 0.000 1.017857 1.708472
child3 1.352238 .1815608 7.45 0.000 .9963853 1.708091
_cons -1.698137 .1505019 -11.28 0.000 -1.993115 -1.403159

district
var(urban) .2741013 .2131525 .059701 1.258463
var(_cons) .2390807 .0857012 .1184191 .4826891

LR test vs. logistic regression: chi2(2) = 47.05 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because we did not specify a covariance structure for the random effects (u1j , u0j)′, meglm used the
default independent structure:

Σ = Var
[
u1j
u0j

]
=

[
σ2
u1 0
0 σ2

u0

]
with σ̂2

u1 = 0.27 and σ̂2
u0 = 0.24. You can request a different covariance structure by specifying the

covariance() option. See Two-level models in [ME] meqrlogit for further analysis of these data,
and see [ME] me and [ME] mixed for further examples of covariance structures.

http://www.stata.com/manuals13/memeqrlogit.pdf#memeqrlogitRemarksandexamplesTwo-levelmodels
http://www.stata.com/manuals13/memeqrlogit.pdf#memeqrlogit
http://www.stata.com/manuals13/meme.pdf#meme
http://www.stata.com/manuals13/memixed.pdf#memixed
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Three-level models for nonlinear responses

Two-level models extend naturally to models with three or more levels with nested random effects.
Here we replicate the model from example 2 of [ME] meologit.

Example 3

We use the data from the Television, School, and Family Smoking Prevention and Cessation
Project (Flay et al. 1988; Rabe-Hesketh and Skrondal 2012, chap. 11), where schools were randomly
assigned into one of four groups defined by two treatment variables. Students within each school are
nested in classes, and classes are nested in schools. The dependent variable is the tobacco and health
knowledge (THK) scale score collapsed into four ordered categories. We regress the outcome on the
treatment variables, social resistance classroom curriculum and TV intervention, and their interaction
and control for the pretreatment score.

. use http://www.stata-press.com/data/r13/tvsfpors

. meglm thk prethk cc##tv || school: || class:, family(ordinal) link(logit)

Fitting fixed-effects model:

Iteration 0: log likelihood = -2212.775
Iteration 1: log likelihood = -2125.509
Iteration 2: log likelihood = -2125.1034
Iteration 3: log likelihood = -2125.1032

Refining starting values:

Grid node 0: log likelihood = -2152.1514

Fitting full model:

Iteration 0: log likelihood = -2152.1514 (not concave)
Iteration 1: log likelihood = -2125.9213 (not concave)
Iteration 2: log likelihood = -2120.1861
Iteration 3: log likelihood = -2115.6177
Iteration 4: log likelihood = -2114.5896
Iteration 5: log likelihood = -2114.5881
Iteration 6: log likelihood = -2114.5881

Mixed-effects GLM Number of obs = 1600
Family: ordinal
Link: logit

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

http://www.stata.com/manuals13/memeologit.pdf#memeologitRemarksandexamplesex2_meologit
http://www.stata.com/manuals13/memeologit.pdf#memeologit
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Integration method: mvaghermite Integration points = 7

Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coef. Std. Err. z P>|z| [95% Conf. Interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -0.57 0.570 -.4269815 .2350896
/cut2 1.177478 .1704946 6.91 0.000 .8433151 1.511642
/cut3 2.383672 .1786736 13.34 0.000 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit regression: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meglm
assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header, as well.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

We refer you to example 2 of [ME] meologit and example 1 of [ME] meologit postestimation for
a substantive interpretation of the results.

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by ||. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Crossed-effects models
Not all mixed models contain nested levels of random effects. In this section, we consider a

crossed-effects model, that is, a mixed-effects model in which the levels of random effects are not
nested; see [ME] me for more information on crossed-effects models.

http://www.stata.com/manuals13/memeologit.pdf#memeologitRemarksandexamplesex2_meologit
http://www.stata.com/manuals13/memeologit.pdf#memeologit
http://www.stata.com/manuals13/memeologitpostestimation.pdf#memeologitpostestimationRemarksandexamplesex1
http://www.stata.com/manuals13/memeologitpostestimation.pdf#memeologitpostestimation
http://www.stata.com/manuals13/meme.pdf#meme
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Example 4

We use the salamander cross-breeding data from Karim and Zeger (1992) as analyzed in Rabe-
Hesketh and Skrondal (2012, chap. 16.10). The salamanders come from two populations—whiteside
and roughbutt—and are labeled whiteside males (wsm), whiteside females (wsf), roughbutt males
(rbm), and roughbutt females (rbf). Male identifiers are recorded in the variable male, and female
identifiers are recorded in the variable female. The salamanders were divided into groups such that
each group contained 60 male–female pairs, with each salamander having three potential partners
from the same population and three potential partners from the other population. The outcome (y) is
coded 1 if there was a successful mating and is coded 0 otherwise; see the references for a detailed
description of the mating experiment.

We fit a crossed-effects logistic regression for successful mating, where each male has the same
value of his random intercept across all females, and each female has the same value of her random
intercept across all males.

To fit a crossed-effects model in Stata, we use the all: R.varname syntax. We treat the entire
dataset as one super cluster, denoted all, and we nest each gender within the super cluster by using
the R.varname notation. R.male requests a random intercept for each level of male and imposes an
identity covariance structure on the random effects; that is, the variances of the random intercepts
are restricted to be equal for all male salamanders. R.female accomplishes the same for the female
salamanders. In Stata, we type
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. use http://www.stata-press.com/data/r13/salamander

. meglm y wsm##wsf || _all: R.male || _all: R.female, family(bernoulli)
> link(logit) or
note: crossed random effects model specified; option intmethod(laplace)
implied

Fitting fixed-effects model:

Iteration 0: log likelihood = -223.13998
Iteration 1: log likelihood = -222.78752
Iteration 2: log likelihood = -222.78735
Iteration 3: log likelihood = -222.78735

Refining starting values:

Grid node 0: log likelihood = -211.58149

Fitting full model:

Iteration 0: log likelihood = -211.58149
Iteration 1: log likelihood = -209.32221
Iteration 2: log likelihood = -209.31084
Iteration 3: log likelihood = -209.27663
Iteration 4: log likelihood = -209.27659
Iteration 5: log likelihood = -209.27659 (backed up)

Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: logit
Group variable: _all Number of groups = 1

Obs per group: min = 360
avg = 360.0
max = 360

Integration method: laplace

Wald chi2(3) = 37.54
Log likelihood = -209.27659 Prob > chi2 = 0.0000

y Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.wsm .4956747 .2146564 -1.62 0.105 .2121174 1.15829
1.wsf .0548105 .0300131 -5.30 0.000 .0187397 .1603114

wsm#wsf
1 1 36.17082 22.77918 5.70 0.000 10.52689 124.2844

_cons 2.740043 .9768565 2.83 0.005 1.362368 5.510873

_all>male
var(_cons) 1.04091 .511001 .3976885 2.724476

_all>female
var(_cons) 1.174448 .5420751 .4752865 2.902098

LR test vs. logistic regression: chi2(2) = 27.02 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because we specified a crossed-effects model, meglm defaulted to the method of Laplacian approxi-
mation to calculate the likelihood; see Computation time and the Laplacian approximation in [ME] me
for a discussion of computational complexity of mixed-effects models, and see Methods and formulas
below for the formulas used by the Laplacian approximation method.

The estimates of the random intercepts suggest that the heterogeneity among the female salamanders,
1.17, is larger than the heterogeneity among the male salamanders, 1.04.

http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesComputationtimeandtheLaplacianapproximation
http://www.stata.com/manuals13/meme.pdf#meme
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Setting both random intercepts to 0, the odds of successful mating for a roughbutt male–female
pair are given by the estimate of cons, 2.74. Rabe-Hesketh and Skrondal (2012, chap. 16.10) show
how to calculate the odds ratios for the other three salamander pairings.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped)
indicator variables for use in a random-effects specification. When you specify R.varname, meglm
handles the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R.varname implies noconstant. You can include factor variables in
the fixed-effects specification by using standard methods; see [U] 11.4.3 Factor variables. However,
random-effects equations support only the R.varname factor specification. For more complex factor
specifications (such as interactions) in random-effects equations, use generate to form the variables
manually.

Technical note

We fit the salamander model by using

. meglm y wsm##wsf || _all: R.male || _all: R.female . . .

as a direct way to demonstrate the R. notation. However, we can technically treat female salamanders
as nested within the all group, yielding the equivalent way to fit the model:

. meglm y wsm##wsf || _all: R.male || female: . . .

We leave it to you to verify that both produce identical results. As we note in example 8 of [ME] me,
the latter specification, organized at the cluster (female) level with random-effects dimension one (a
random intercept) is, in general, much more computationally efficient.

Obtaining better starting values

Given the flexibility of mixed-effects models, you will find that some models “fail to converge”
when used with your data; see Diagnosing convergence problems in [ME] me for details. What we
say below applies regardless of how the convergence problem revealed itself. You might have seen
the error message “initial values not feasible” or some other error message, or you might have an
infinite iteration log.

meglm provides two options to help you obtain better starting values: startvalues() and
startgrid().

startvalues(svmethod) allows you to specify one of four starting-value calculation methods:
zero, constantonly, fixedonly, or iv. By default, meglm uses startvalues(fixedonly).
Evidently, that did not work for you. Try the other methods, starting with startvalues(iv):

. meglm ..., ... startvalues(iv)

If that does not solve the problem, proceed through the others.

By the way, if you have starting values for some parameters but not others—perhaps you fit a
simplified model to get them—you can combine the options startvalues() and from():

. meglm ..., ... // simplified model

. matrix b = e(b)

. meglm ..., ... from(b) startvalues(iv) // full model

http://www.stata.com/manuals13/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesex8
http://www.stata.com/manuals13/meme.pdf#meme
http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesDiagnosingconvergenceproblems
http://www.stata.com/manuals13/meme.pdf#meme
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The other special option meglm provides is startgrid(), which can be used with or without
startvalues(). startgrid() is a brute-force approach that tries various values for variances and
covariances and chooses the ones that work best.

1. You may already be using a default form of startgrid() without knowing it. If you see
meglm displaying Grid node 1, Grid node 2, . . . following Grid node 0 in the iteration log,
that is meglm doing a default search because the original starting values were not feasible.

The default form tries 0.1, 1, and 10 for all variances of all random effects and, if applicable,
for the residual variance.

2. startgrid(numlist) specifies values to try for variances of random effects.

3. startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. Variances and covariances are specified in the usual way.
startgrid( cons[id] x[id] cons[id]*x[id]) specifies that 0.1, 1, and 10 be tried
for each member of the list.

4. startgrid(numlist covspec) combines the two syntaxes. You can specify startgrid()
multiple times so that you can search the different ranges for different variances and
covariances.

Our advice to you is the following:

1. If you receive an iteration log and it does not contain Grid node 1, Grid node 2, . . . , then
specify startgrid(.1 1 10). Do that whether the iteration log was infinite or ended with
some other error. In this case, we know that meglm did not run startgrid() on its own
because it did not report Grid node 1, Grid node 2, etc. Your problem is poor starting values,
not infeasible ones.

A synonym for startgrid(.1 1 10) is just startgrid without parentheses.

Be careful, however, if you have many random effects. Specifying startgrid() could run
a long time because it runs all possible combinations. If you have 10 random effects, that
means 103 = 1,000 likelihood evaluations.

If you have many random effects, rerun your difficult meglm command including option
iterate(#) and look at the results. Identify the problematic variances and search across
them only. Do not just look for variances going to 0. Variances getting really big can be
a problem, too, and even reasonable values can be a problem. Use your knowledge and
intuition about the model.

Perhaps you will try to fit your model by specifying startgrid(.1 1 10 cons[id] x[id]
cons[id]*x[id]).

Values 0.1, 1, and 10 are the default. Equivalent to specifying
startgrid(.1 1 10 cons[id] x[id] cons[id]*x[id]) is
startgrid( cons[id] x[id] cons[id]*x[id]).

Look at covariances as well as variances. If you expect a covariance to be negative but it is
positive, then try negative starting values for the covariance by specifying startgrid(-.1
-1 -10 cons[id]*x[id]).

Remember that you can specify startgrid() multiple times. Thus you might specify both
startgrid( cons[id] x[id]) and startgrid(-.1 -1 -10 cons[id]*x[id]).
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2. If you receive the message “initial values not feasible”, you know that meglm already tried
the default startgrid().

The default startgrid() only tried the values 0.1, 1, and 10, and only tried them on the
variances of random effects. You may need to try different values or try the same values on
covariances or variances of errors of observed endogenous variables.

We suggest you first rerun the model causing difficulty and include the noestimate option.
If, looking at the results, you have an idea of which variance or covariance is a problem, or if
you have few variances and covariances, we would recommend running startgrid() first.
On the other hand, if you have no idea as to which variance or covariance is the problem
and you have many of them, you will be better off if you first simplify the model. After
doing that, if your simplified model does not include all the variances and covariances, you
can specify a combination of from() and startgrid().

Stored results
meglm stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k cat) number of categories (with ordinal outcomes)
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) significance, comparison model
e(N clust) number of clusters
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) meglm
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(ivars) grouping variables
e(model) name of marginal model
e(title) title in estimation output
e(link) link
e(family) family
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials (with binomial models)
e(dispersion) mean or constant (with negative binomial models)
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(cat) category values (with ordinal outcomes)
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimator
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Gauss–Hermite quadrature
Adaptive Gauss–Hermite quadrature
Laplacian approximation
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Introduction
Without a loss of generality, consider a two-level generalized mixed-effects model

E(yj |Xj ,uj) = g−1
(
Xjβ+ Zjuj

)
, y ∼ F

for j = 1, . . . ,M clusters, with the jth cluster consisting of nj observations, where, for the jth
cluster, yj is the nj × 1 response vector, Xj is the nj × p matrix of fixed predictors, Zj is the
nj × q matrix of random predictors, uj is the q× 1 vector of random effects, β is the p× 1 vector of
regression coefficients on the fixed predictors, and we use Σ to denote the unknown q × q variance
matrix of the random effects. For simplicity, we consider a model with no auxiliary parameters.

Let ηj be the linear predictor, ηj = Xjβ + Zjuj , that also includes the offset or the exposure
variable when offset() or exposure() is specified. Let yij and ηij be the ith individual elements
of yj and ηj , i = 1, . . . , nj . Let f(yij |ηij) be the conditional density function for the response at
observation i. Because the observations are assumed to be conditionally independent, we can overload
the definition of f(·) with vector inputs to mean

log f(yj |ηj) =
ni∑
j=1

log f(yij |ηij)

The random effects uj are assumed to be multivariate normal with mean 0 and variance Σ. The
likelihood function for cluster j is given by

Lj(β,Σ) = (2π)−q/2|Σ|−1/2
∫
<q

f(yj |ηj) exp
(
−1

2
u′jΣ

−1uj

)
duj

= (2π)−q/2|Σ|−1/2
∫
<q

exp

{
log f(yj |ηj)−

1

2
u′jΣ

−1uj

}
duj

(3)

where < denotes the set of values on the real line and <q is the analog in q-dimensional space.

The multivariate integral in (3) is generally not tractable, so we must use numerical methods to
approximate the integral. We can use a change-of-variables technique to transform this multivariate
integral into a set of nested univariate integrals. Each univariate integral can then be evaluated
using a form of Gaussian quadrature. meglm supports three types of Gauss–Hermite quadratures:
mean–variance adaptive Gauss–Hermite quadrature (MVAGH), mode-curvature adaptive Gauss–Hermite
quadrature (MCAGH), and nonadaptive Gauss–Hermite quadrature (GHQ). meglm also offers the
Laplacian-approximation method, which is used as a default method for crossed mixed-effects models.
Below we describe the four methods. The methods described below are based on Skrondal and
Rabe-Hesketh (2004, chap. 6.3).

Gauss–Hermite quadrature

Let uj = Lvj , where vj is a q × 1 random vector whose elements are independently standard
normal variables and L is the Cholesky decomposition of Σ, Σ = LL′. Then ηj = Xjβ+ ZjLvj ,
and the likelihood in (3) becomes

Lj(β,Σ) = (2π)−q/2
∫
<q

exp

{
log f(yj |ηj)−

1

2
v′jvj

}
dvj

= (2π)−q/2
∫ ∞
−∞

. . .

∫ ∞
−∞

exp

{
log f(yj |ηj)−

1

2

q∑
k=1

v2jk

}
dvj1, . . . , dvjq

(4)
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Consider a q-dimensional quadrature grid containing r quadrature points in each dimension. Let
ak = (ak1 , . . . , akq )

′ be a point on this grid, and let wk = (wk1 , . . . , wkq )
′ be the vector of

corresponding weights. The GHQ approximation to the likelihood is

LGHQ
j (β,Σ) =

r∑
k1=1

. . .

r∑
kq=1

[
exp

{
log f(yj |ηjk)

} q∏
p=1

wkp

]

=

r∑
k1=1

. . .

r∑
kq=1

[
exp

{
nj∑
i=1

log f(yij |ηijk)

}
q∏
p=1

wkp

]

where

ηjk = Xjβ+ ZjLak

and ηijk is the ith element of ηjk.

Adaptive Gauss–Hermite quadrature
This section sets the stage for MVAGH quadrature and MCAGH quadrature.

Let’s reconsider the likelihood in (4). We use φ(vj) to denote a multivariate standard normal with
mean 0 and variance Iq , and we use φ(vj |µj ,Λj) to denote a multivariate normal with mean µj
and variance Λj .

For fixed model parameters, the posterior density for vj is proportional to

φ(vj)f(yj |ηj)

where

ηj = Xjβ+ ZjLvj

It is reasonable to assume that this posterior density can be approximated by a multivariate normal
density with mean vector µj and variance matrix Λj . Instead of using the prior density of vj as the
weighting distribution in the integral, we can use our approximation for the posterior density,

Lj(β,Σ) =
∫
<q

f(yj |ηj)φ(vj)
φ(vj |µj ,Λj)

φ(vj |µj ,Λj) dvj

Then the MVAGH approximation to the likelihood is

LMVAGH
j (β,Σ) =

r∑
k1=1

. . .

r∑
kq=1

[
exp

{
log f(yj |ηjk)

} q∏
p=1

w∗jkp

]

where

ηjk = Xjβ+ ZjLa
∗
jk
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and a∗jk and w∗jkp are the abscissas and weights after an orthogonalizing transformation of ajk and
wjkp , respectively, which eliminates posterior covariances between the random effects.

Estimates of µj and Λj are computed using one of two different methods. The mean µj and
variance Λj are computed iteratively by updating the posterior moments with the MVAGH approximation,
starting with a 0 mean vector and identity variance matrix. For the MCAGH approximation, µj and Λj
are computed by optimizing the integrand with respect to vj , where µj is the optimal value and Λj
is the curvature at µj .

Laplacian approximation

Consider the likelihood in (3) and denote the argument in the exponential function by

h(β,Σ,uj) = log f(yj |Xjβ+ Zjuj)−
1

2
u′jΣ

−1uj

The Laplacian approximation is based on a second-order Taylor expansion of h(β,Σ,uj) about the
value of uj that maximizes it. The first and second partial derivatives with respect to uj are

h′(β,Σ,uj) =
∂h(β,Σ,uj)

∂uj
= Z′j

∂ log f(yj |ηj)
∂ηj

− Σ−1uj

h′′(β,Σ,uj) =
∂2h(β,Σ,uj)

∂uj∂u′j
= Z′j

∂2 log f(yj |ηj)
∂ηj∂η

′
j

Zj − Σ−1

The maximizer of h(β,Σ,uj) is ûj such that h′(β,Σ, ûj) = 0. The integral in (3) is proportional
to the posterior density of uj given the data, so ûj is also the posterior mode.

Let

p̂j = Xjβ+ Zjûj

S1 =
∂ log f(yj |p̂j)

∂p̂j

S2 =
∂S1

∂p̂′j
=
∂2 log f(yj |p̂j)

∂p̂j∂p̂′j

Hj = h′′(β,Σ, ûj) = Z′jS2Zj − Σ−1

then

0 = h′(β,Σ, ûj) = Z′jS1 − Σ−1ûj
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Given the above, the second-order Taylor approximation takes the form

h(β,Σ,uj) ≈ h(β,Σ, ûj) +
1

2
(uj − ûj)

′Hj(uj − ûj)

because the first-order derivative term is 0. The integral is approximated by∫
<q

exp{h(β,Σ,uj)} duj ≈ (2π)q/2 |−Hj |−1/2 exp{h(β,Σ, ûj)}

Thus the Laplacian approximated log likelihood is

logLLap
j (β,Σ) = −1

2
log |Σ| − 1

2
log |−Hj |+ h(β,Σ, ûj)

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, L(β,Σ) =

∑M
j=1 Lj(β,Σ).

Maximization of L(β,Σ) is performed with respect to (β,σ2), where σ2 is a vector comprising
the unique elements of Σ. Parameter estimates are stored in e(b) as (β̂, σ̂2), with the corresponding
variance–covariance matrix stored in e(V). In the presence of auxiliary parameters, their estimates
and standard errors are included in e(b) and e(V), respectively.

References
Andrews, M. J., T. Schank, and R. Upward. 2006. Practical fixed-effects estimation methods for the three-way

error-components model. Stata Journal 6: 461–481.

Bates, D. M., and J. C. Pinheiro. 1998. Computational methods for multilevel modelling. In Technical Memorandum
BL0112140-980226-01TM. Murray Hill, NJ: Bell Labs, Lucent Technologies.
http://stat.bell-labs.com/NLME/CompMulti.pdf.

Breslow, N. E., and D. G. Clayton. 1993. Approximate inference in generalized linear mixed models. Journal of the
American Statistical Association 88: 9–25.

Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics Using Stata. Rev. ed. College Station, TX: Stata Press.

Canette, I. 2011. Including covariates in crossed-effects models. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2010/12/22/including-covariates-in-crossed-effects-models/.

Demidenko, E. 2004. Mixed Models: Theory and Applications. Hoboken, NJ: Wiley.

Diggle, P. J., P. J. Heagerty, K.-Y. Liang, and S. L. Zeger. 2002. Analysis of Longitudinal Data. 2nd ed. Oxford:
Oxford University Press.

Flay, B. R., B. R. Brannon, C. A. Johnson, W. B. Hansen, A. L. Ulene, D. A. Whitney-Saltiel, L. R. Gleason,
S. Sussman, M. D. Gavin, K. M. Glowacz, D. F. Sobol, and D. C. Spiegel. 1988. The television, school, and family
smoking cessation and prevention project: I. Theoretical basis and program development. Preventive Medicine 17:
585–607.

Harville, D. A. 1977. Maximum likelihood approaches to variance component estimation and to related problems.
Journal of the American Statistical Association 72: 320–338.

Hedeker, D., and R. D. Gibbons. 2006. Longitudinal Data Analysis. Hoboken, NJ: Wiley.

Hocking, R. R. 1985. The Analysis of Linear Models. Monterey, CA: Brooks/Cole.

Horton, N. J. 2011. Stata tip 95: Estimation of error covariances in a linear model. Stata Journal 11: 145–148.

Huq, N. M., and J. Cleland. 1990. Bangladesh Fertility Survey 1989 (Main Report). National Institute of Population
Research and Training.

http://www.stata-journal.com/sjpdf.html?articlenum=st0112
http://www.stata-journal.com/sjpdf.html?articlenum=st0112
http://stat.bell-labs.com/NLME/CompMulti.pdf
http://stat.bell-labs.com/NLME/CompMulti.pdf
http://www.stata-press.com/books/musr.html
http://blog.stata.com/2010/12/22/including-covariates-in-crossed-effects-models/
http://blog.stata.com/2010/12/22/including-covariates-in-crossed-effects-models/
http://www.stata-journal.com/article.html?article=st0222


meglm — Multilevel mixed-effects generalized linear model 25

Karim, M. R., and S. L. Zeger. 1992. Generalized linear models with random effects; salamander mating revisited.
Biometrics 48: 631–644.

Laird, N. M., and J. H. Ware. 1982. Random-effects models for longitudinal data. Biometrics 38: 963–974.

LaMotte, L. R. 1973. Quadratic estimation of variance components. Biometrics 29: 311–330.

Lin, X., and N. E. Breslow. 1996. Bias correction in generalized linear mixed models with multiple components of
dispersion. Journal of the American Statistical Association 91: 1007–1016.

Marchenko, Y. V. 2006. Estimating variance components in Stata. Stata Journal 6: 1–21.

McCulloch, C. E., S. R. Searle, and J. M. Neuhaus. 2008. Generalized, Linear, and Mixed Models. 2nd ed. Hoboken,
NJ: Wiley.

Ng, E. S.-W., J. R. Carpenter, H. Goldstein, and J. Rasbash. 2006. Estimation in generalised linear mixed models
with binary outcomes by simulated maximum likelihood. Statistical Modelling 6: 23–42.

Nichols, A. 2007. Causal inference with observational data. Stata Journal 7: 507–541.

Pantazis, N., and G. Touloumi. 2010. Analyzing longitudinal data in the presence of informative drop-out: The jmre1
command. Stata Journal 10: 226–251.

Rabe-Hesketh, S., and A. Skrondal. 2012. Multilevel and Longitudinal Modeling Using Stata. 3rd ed. College Station,
TX: Stata Press.

Raudenbush, S. W., and A. S. Bryk. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods.
2nd ed. Thousand Oaks, CA: Sage.

Ruppert, D., M. P. Wand, and R. J. Carroll. 2003. Semiparametric Regression. Cambridge: Cambridge University
Press.

Searle, S. R. 1989. Obituary: Charles Roy Henderson 1911–1989. Biometrics 45: 1333–1335.

Searle, S. R., G. Casella, and C. E. McCulloch. 1992. Variance Components. New York: Wiley.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and
Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Verbeke, G., and G. Molenberghs. 2000. Linear Mixed Models for Longitudinal Data. New York: Springer.

Also see
[ME] meglm postestimation — Postestimation tools for meglm

[ME] mixed — Multilevel mixed-effects linear regression

[ME] me — Introduction to multilevel mixed-effects models

[R] glm — Generalized linear models

[SEM] intro 5 — Tour of models (Multilevel mixed-effects models)

[U] 20 Estimation and postestimation commands

http://www.stata-journal.com/sjpdf.html?articlenum=st0095
http://www.stata-journal.com/sjpdf.html?articlenum=st0136
http://www.stata-journal.com/sjpdf.html?articlenum=st0190
http://www.stata-journal.com/sjpdf.html?articlenum=st0190
http://www.stata-press.com/books/mlmus3.html
http://www.stata.com/bookstore/glvm.html
http://www.stata.com/bookstore/glvm.html
http://www.stata.com/manuals13/memeglmpostestimation.pdf#memeglmpostestimation
http://www.stata.com/manuals13/memixed.pdf#memixed
http://www.stata.com/manuals13/meme.pdf#meme
http://www.stata.com/manuals13/rglm.pdf#rglm
http://www.stata.com/manuals13/semintro5.pdf#semintro5
http://www.stata.com/manuals13/semintro5.pdf#semintro5RemarksandexamplesMultilevelmixed-effectsmodels
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands

