Syntax

\texttt{mecloglog} \texttt{depvar \textit{fe_equation} \[|| \textit{re_equation} \] \[|| \textit{re_equation} \ldots \] [, \textit{options}]}

where the syntax of \textit{fe_equation} is

\[\textit{indepvars} \] [\textit{if}] [\textit{in}] [, \textit{fe_options}]

and the syntax of \textit{re_equation} is one of the following:

for random coefficients and intercepts

\textit{levelvar}: \textit{varlist} [, \textit{re_options}]

for random effects among the values of a factor variable

\textit{levelvar}: \texttt{R.\textit{varname}}

\textit{levelvar} is a variable identifying the group structure for the random effects at that level or is _all representing one group comprising all observations.

\textit{fe_options} \hspace{1cm} Description

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{noconstant}</td>
<td>suppress constant term from the fixed-effects equation</td>
</tr>
<tr>
<td>\texttt{offset(\textit{varname})}</td>
<td>include \textit{varname} in model with coefficient constrained to 1</td>
</tr>
<tr>
<td>\texttt{asis}</td>
<td>retain perfect predictor variables</td>
</tr>
</tbody>
</table>

\textit{re_options} \hspace{1cm} Description

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{covariance(\textit{vartype})}</td>
<td>variance–covariance structure of the random effects</td>
</tr>
<tr>
<td>\texttt{noconstant}</td>
<td>suppress constant term from the random-effects equation</td>
</tr>
</tbody>
</table>
mecloglog — Multilevel mixed-effects complementary log-log regression

options

<table>
<thead>
<tr>
<th>Model Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`binomial(varname</td>
<td>#)`</td>
</tr>
<tr>
<td><code>constraints(constraints)</code></td>
<td>apply specified linear constraints</td>
</tr>
<tr>
<td><code>collinear</code></td>
<td>keep collinear variables</td>
</tr>
</tbody>
</table>

SE/Robust

<table>
<thead>
<tr>
<th>VCE Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vce(vcetype)</code></td>
<td>vcetype may be <code>oim</code>, <code>robust</code>, or <code>cluster clustvar</code></td>
</tr>
</tbody>
</table>

Reporting

<table>
<thead>
<tr>
<th>Reporting Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>level(#)</code></td>
<td>set confidence level; default is <code>level(95)</code></td>
</tr>
<tr>
<td><code>eform</code></td>
<td>report exponentiated coefficients</td>
</tr>
<tr>
<td><code>noconsreport</code></td>
<td>do not display constraints</td>
</tr>
<tr>
<td><code>notable</code></td>
<td>suppress coefficient table</td>
</tr>
<tr>
<td><code>noheader</code></td>
<td>suppress output header</td>
</tr>
<tr>
<td><code>nogroup</code></td>
<td>suppress table summarizing groups</td>
</tr>
<tr>
<td><code>nolrtest</code></td>
<td>do not perform likelihood-ratio test comparing with complementary log-log regression</td>
</tr>
</tbody>
</table>

display_options

<table>
<thead>
<tr>
<th>Reporting Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>display_options</code></td>
<td>control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling</td>
</tr>
</tbody>
</table>

Integration

<table>
<thead>
<tr>
<th>Integration Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>intmethod(intmethod)</code></td>
<td>integration method</td>
</tr>
<tr>
<td><code>intpoints(#)</code></td>
<td>set the number of integration (quadrature) points for all levels; default is <code>intpoints(7)</code></td>
</tr>
</tbody>
</table>

Maximization

<table>
<thead>
<tr>
<th>Maximization Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>maximize_options</code></td>
<td>control the maximization process; seldom used</td>
</tr>
<tr>
<td><code>startvalues(svmethod)</code></td>
<td>method for obtaining starting values</td>
</tr>
<tr>
<td><code>startgrid[(gridspec)]</code></td>
<td>perform a grid search to improve starting values</td>
</tr>
<tr>
<td><code>noestimate</code></td>
<td>do not fit the model; show starting values instead</td>
</tr>
<tr>
<td><code>dnumerical</code></td>
<td>use numerical derivative techniques</td>
</tr>
<tr>
<td><code>coeflegend</code></td>
<td>display legend instead of statistics</td>
</tr>
</tbody>
</table>

vartype

<table>
<thead>
<tr>
<th>Vartype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>independent</code></td>
<td>one unique variance parameter per random effect, all covariances 0; the default unless the R. notation is used</td>
</tr>
<tr>
<td><code>exchangeable</code></td>
<td>equal variances for random effects, and one common pairwise covariance</td>
</tr>
<tr>
<td><code>identity</code></td>
<td>equal variances for random effects, all covariances 0; the default if the R. notation is used</td>
</tr>
<tr>
<td><code>unstructured</code></td>
<td>all variances and covariances to be distinctly estimated</td>
</tr>
<tr>
<td><code>fixed(matname)</code></td>
<td>user-selected variances and covariances constrained to specified values; the remaining variances and covariances unrestricted</td>
</tr>
<tr>
<td><code>pattern(matname)</code></td>
<td>user-selected variances and covariances constrained to be equal; the remaining variances and covariances unrestricted</td>
</tr>
</tbody>
</table>
intmethod

mvaghermite mean-variance adaptive Gauss–Hermite quadrature; the default unless a crossed random-effects model is fit
mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed; see [U] 11.1.10 Prefix commands.
startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multilevel mixed-effects models > Complementary log-log regression

Description

mecloglog fits mixed-effects models for binary or binomial responses. The conditional distribution of the response given the random effects is assumed to be Bernoulli, with probability of success determined by the inverse complementary log-log function.

Options

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation and for any or all of the random-effects equations.
offset(varname) specifies that varname be included in the fixed-effects portion of the model with the coefficient constrained to be 1.
asis forces retention of perfect predictor variables and their associated, perfectly predicted observations and may produce instabilities in maximization; see [R] probit.
covariance(vartype) specifies the structure of the covariance matrix for the random effects and may be specified for each random-effects equation. vartype is one of the following: independent, exchangeable, identity, unstructured, fixed(matname), or pattern(matname).
covariance(independent) covariance structure allows for a distinct variance for each random effect within a random-effects equation and assumes that all covariances are 0. The default is covariance(independent) unless a crossed random-effects model is fit, in which case the default is covariance(identity).
covariance(exchangeable) structure specifies one common variance for all random effects and one common pairwise covariance.
covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all covariances are 0.
covariance(unstructured) allows for all variances and covariances to be distinct. If an equation consists of \(p \) random-effects terms, the unstructured covariance matrix will have \(p(p+1)/2 \) unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures provide a convenient way to impose constraints on variances and covariances of random effects. Each specification requires a matname that defines the restrictions placed on variances and covariances. Only elements in the lower triangle of matname are used, and row and column names of matname are ignored. A missing value in matname means that a given element is unrestricted. In a fixed(matname) covariance structure, (co)variance \((i,j)\) is constrained to equal the value specified in the \(i,j\)th entry of matname. In a pattern(matname) covariance structure, (co)variances \((i,j)\) and \((k,l)\) are constrained to be equal if \(matname[i,j] = matname[k,l]\).

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number of successes from a series of binomial trials. This number of trials is given either as varname, which allows this number to vary over the observations, or as the constant #. If binomial() is not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values indicating positive responses.

constraints(constraints), collinear; see [R] estimation options.

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce(robust) is specified, robust variances are clustered at the highest level in the multilevel model.

level(#)\); see [R] estimation options.

eform reports exponentiated coefficients and corresponding standard errors and confidence intervals. This option may be specified either at estimation or upon replay.

nocnsreport; see [R] estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size, minimum, and maximum) from the output header.

nolrtest prevents mecloglog from performing a likelihood-ratio test that compares the mixed-effects complementary log-log model with standard (marginal) complementary log-log regression. This option may also be specified upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nolabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

intmethod(intmethod) specifies the integration method to be used for the random-effects model. mvaghermite performs mean and variance adaptive Gauss–Hermite quadrature; mcaghermite performs mode and curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode curvature adaptive Gaussian quadrature with one integration point.
The default integration method is `mvaghermite` unless a crossed random-effects model is fit, in which case the default integration method is `laplace`. The Laplacian approximation has been known to produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be prohibitively intensive even for a small number of levels. For this reason, the integration method defaults to the Laplacian approximation. You may override this behavior by specifying a different integration method.

`intpoints(#)` sets the number of integration points for quadrature. The default is `intpoints(7)`, which means that seven quadrature points are used for each level of random effects. This option is not allowed with `intmethod(laplace)`.

The more integration points, the more accurate the approximation to the log likelihood. However, computation time increases as a function of the number of quadrature points raised to a power equaling the dimension of the random-effects specification. In crossed random-effects models and in models with many levels or many random coefficients, this increase can be substantial.

Maximization

`maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require special mention for mecloglog are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values. A list of values is not allowed.

The following options are available with mecloglog but are not shown in the dialog box:

- `startvalues(svmethod)`, `startgrid[(gridspec)]`, `noestimate`, and `dnumerical`; see [ME] meglm.
- `coeflegend`; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

mecloglog is a convenience command for meglm with a cloglog link and a bernoulli or binomial family; see [ME] meglm.

Remarks are presented under the following headings:

- **Introduction**
- **Two-level models**
- **Three-level models**

Introduction

Mixed-effects complementary log-log regression is complementary log-log regression containing both fixed effects and random effects. In longitudinal data and panel data, random effects are useful for modeling intracluster correlation; that is, observations in the same cluster are correlated because they share common cluster-level random effects.
Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and McCulloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004); Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2012). Guo and Zhao (2000) and Rabe-Hesketh and Skrondal (2012, chap. 10) are good introductory readings on applied multilevel modeling of binary data.

mecloglog allows for not just one, but many levels of nested clusters of random effects. For example, in a three-level model you can specify random effects for schools and then random effects for classes nested within schools. In this model, the observations (presumably, the students) comprise the first level, the classes comprise the second level, and the schools comprise the third.

However, for simplicity, we here consider the two-level model, where for a series of M independent clusters, and conditional on a set of fixed effects x_{ij} and a set of random effects u_j,

$$\Pr(y_{ij} = 1|x_{ij}, u_j) = H(x_{ij}\beta + z_{ij}u_j) \quad (1)$$

for $j = 1, \ldots, M$ clusters, with cluster j consisting of $i = 1, \ldots, n_j$ observations. The responses are the binary-valued y_{ij}, and we follow the standard Stata convention of treating $y_{ij} = 1$ if $depvar_{ij} \neq 0$ and treating $y_{ij} = 0$ otherwise. The $1 \times p$ row vector x_{ij} are the covariates for the fixed effects, analogous to the covariates you would find in a standard cloglog regression model, with regression coefficients (fixed effects) β. For notational convenience here and throughout this manual entry, we suppress the dependence of y_{ij} on x_{ij}.

The $1 \times q$ vector z_{ij} are the covariates corresponding to the random effects and can be used to represent both random intercepts and random coefficients. For example, in a random-intercept model, z_{ij} is simply the scalar 1. The random effects u_j are M realizations from a multivariate normal distribution with mean 0 and $q \times q$ variance matrix Σ. The random effects are not directly estimated as model parameters but are instead summarized according to the unique elements of Σ, known as variance components. One special case of (1) places $z_{ij} = x_{ij}$, so that all covariate effects are essentially random and distributed as multivariate normal with mean β and variance Σ.

Finally, because this is cloglog regression, $H(\cdot)$ is the inverse of the complementary log-log function that maps the linear predictor to the probability of a success ($y_{ij} = 1$) with $H(v) = 1 - \exp\{-\exp(v)\}$.

Model (1) may also be stated in terms of a latent linear response, where only $y_{ij} = I(y_{ij}^* > 0)$ is observed for the latent

$$y_{ij}^* = x_{ij}\beta + z_{ij}u_j + \epsilon_{ij}$$

The errors ϵ_{ij} are independent and identically extreme-value (Gumbel) distributed with the mean equal to Euler’s constant and variance $\sigma^2 = \pi^2/6$, independently of u_j. This nonsymmetric error distribution is an alternative to the symmetric error distribution underlying logistic and probit analysis and is usually used when the positive (or negative) outcome is rare.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there is insight to be gained through examination of the linear mixed model. This is especially true for Stata users because the terminology, syntax, options, and output for fitting these types of models are nearly identical. See [ME] mixed and the references therein, particularly in Introduction, for more information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out the random effects. One widely used modern method is to directly estimate the integral required to calculate the log likelihood by Gauss–Hermite quadrature or some variation thereof. Because the log likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate, thus minimizing bias.
mecloglog supports three types of Gauss–Hermite quadrature and the Laplacian approximation method; see Methods and formulas of [ME] meglm for details. The simplest random-effects model you can fit using mecloglog is the two-level model with a random intercept,

\[\Pr(y_{ij} = 1|u_j) = H(x_{ij}\beta + u_j) \]

This model can also be fit using xtcloglog with the re option; see [XT] xtcloglog.

Below we present two short examples of mixed-effects cloglog regression; refer to [ME] melogit for additional examples including crossed-effects models and to [ME] me and [ME] meglm for examples of other random-effects models.

Two-level models

We begin with a simple application of (1) as a two-level model, because a one-level model, in our terminology, is just standard cloglog regression; see [R] cloglog.

Example 1

In example 1 of [XT] xtcloglog, we analyze unionization of women in the United States over the period 1970–1988. The women are identified by the variable idcode. Here we refit that model with mecloglog. Because the original example used 12 integration points by default, we request 12 integration points as well.
. use http://www.stata-press.com/data/r13/union
(NLS Women 14-24 in 1968)
. mecloglog union age grade not_smsa south##c.year || idcode:, intpoints(12)
Fitting fixed-effects model:
Iteration 0: log likelihood = -14237.139
Iteration 1: log likelihood = -13546.159
Iteration 2: log likelihood = -13540.611
Iteration 3: log likelihood = -13540.607
Iteration 4: log likelihood = -13540.607
Refining starting values:
Grid node 0: log likelihood = -11104.448
Fitting full model:
Iteration 0: log likelihood = -11104.448
Iteration 1: log likelihood = -10617.891
Iteration 2: log likelihood = -10537.919
Iteration 3: log likelihood = -10535.946
Iteration 4: log likelihood = -10535.941
Iteration 5: log likelihood = -10535.941
Mixed-effects cloglog regression
Number of obs = 26200
Group variable: idcode
Number of groups = 4434
Obs per group: min = 1
 avg = 5.9 max = 12
Integration method: mvaghermite
Integration points = 12
Wald chi2(6) = 248.12
Log likelihood = -10535.941
Prob > chi2 = 0.0000

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-----------|-------|-------|------------------------|
| union | | | | |
| age | .0128542 | .0119441 | 1.08 | 0.282 | -.0105559 -.0362642 |
| grade | .0699965 | .0138551 | 5.05 | 0.000 | .0428409 .097152 |
| not_smsa | -.1982009 | .0649258 | -3.05| 0.002 | -.3254531 -.0709488|
| 1.south | 2.049901 | .4892644 | 4.19 | 0.000 | -1.090961 |
| year | -.0006158 | .0123999 | -0.05| 0.960 | -.0249191 .0236875|
| south#c.year | .0164457 | .0060685 | 2.71 | 0.007 | .0045516 .0283399 |
| 1 | | | | |
| _cons | -3.277375 | .6610552 | -4.96| 0.000 | -4.57302 -1.981731|
| idcode | | | | |
| var(_cons) | 3.489803 | .1630921 | 3.184351 | .3.824555 |

The estimates are practically the same. xtcloglog reports the estimated variance component as a standard deviation, $\hat{\sigma}_u = 1.86$. mecloglog reports $\hat{\sigma}^2_u = 3.49$, the square root of which is 1.87. We find that age and education each have a positive effect on union membership, although the former is not statistically significant. Women who live outside of metropolitan areas are less likely to unionize.

The estimated variance of the random intercept at the individual level, σ^2, is 3.49 with standard error 0.16. The reported likelihood-ratio test shows that there is enough variability between women to favor a mixed-effects cloglog regression over an ordinary cloglog regression; see Distribution theory for likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of variance components.
Three-level models

Two-level models extend naturally to models with three or more levels with nested random effects. Below we analyze the data from example 2 of [ME] melogit with mecloglog.

Example 2

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the cognitive ability of patients with schizophrenia compared with their relatives and control subjects. Cognitive ability was measured as the successful completion of the “Tower of London”, a computerized task, measured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements (one for each difficulty level). Because patients’ relatives were also tested, a family identifier, family, was also recorded.

We fit a cloglog model with response dtlm, the indicator of cognitive function, and with covariates difficulty and a set of indicator variables for group, with the controls (group==1) being the base category. We also allow for random effects due to families and due to subjects within families.
. use http://www.stata-press.com/data/r13/towerlondon
(Tower of London data)
. mecloglog dtlm difficulty i.group || family: || subject:

Fitting fixed-effects model:
Iteration 0: log likelihood = -337.21921
Iteration 1: log likelihood = -313.79023
Iteration 2: log likelihood = -313.56906
Iteration 3: log likelihood = -313.56888
Iteration 4: log likelihood = -313.56888

Refining starting values:
Grid node 0: log likelihood = -314.57061

Fitting full model:
Iteration 0: log likelihood = -314.57061 (not concave)
Iteration 1: log likelihood = -308.82101
Iteration 2: log likelihood = -305.71841
Iteration 3: log likelihood = -305.26804
Iteration 4: log likelihood = -305.26516
Iteration 5: log likelihood = -305.26516

Mixed-effects cloglog regression

<table>
<thead>
<tr>
<th>Group Variable</th>
<th>No. of Groups</th>
<th>Observations per Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Average</td>
</tr>
<tr>
<td>family</td>
<td>118</td>
<td>2</td>
</tr>
<tr>
<td>subject</td>
<td>226</td>
<td>2</td>
</tr>
</tbody>
</table>

Integration method: mvaghermite

| dtlm | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|--------|-----------|-------|------|---------------------|
| difficulty | -1.342844 | .1501508 | -8.94 | 0.000 | -1.637135 -1.048554 |
| group | | | | | |
| 2 | -.1331007 | .269389 | -0.49 | 0.621 | -.6610935 .3948922 |
| 3 | -.7714314 | .3097099 | -2.49 | 0.013 | -1.378452 -.164411 |
| _cons | -1.6718 | .2290325 | -7.30 | 0.000 | -2.120695 -1.222905 |

| family | var(_cons) | .2353453 | .2924064 | .0206122 | 2.687117 |
|family> | var(_cons) | .7737687 | .4260653 | .2629714 | 2.276742 |

LR test vs. cloglog regression: chi2(2) = 16.61 Prob > chi2 = 0.0002
Note: LR test is conservative and provided only for reference.

Notes:
1. This is a three-level model with two random-effects equations, separated by ||. The first is a random intercept (constant only) at the family level, and the second is a random intercept at the subject level. The order in which these are specified (from left to right) is significant—mecloglog assumes that subject is nested within family.
2. The information on groups is now displayed as a table, with one row for each upper level. Among other things, we see that we have 226 subjects from 118 families. You can suppress this table with the nogroup or the noheader option, which will suppress the rest of the header as well.

After adjusting for the random-effects structure, the probability of successful completion of the Tower of London decreases dramatically as the level of difficulty increases. Also, schizophrenics (group==3) tended not to perform as well as the control subjects.

The above extends to models with more than two levels of nesting in the obvious manner, by adding more random-effects equations, each separated by ||. The order of nesting goes from left to right as the groups go from biggest (highest level) to smallest (lowest level).

Stored results

```
mecloglog stores the following in e():

Scalars
   e(N)         number of observations
   e(k)         number of parameters
   e(k_dv)      number of dependent variables
   e(k_eq)      number of equations in e(b)
   e(k_eq_model) number of equations in overall model test
   e(k_f)       number of fixed-effects parameters
   e(k_r)       number of random-effects parameters
   e(k_rs)      number of variances
   e(k_rc)      number of covariances
   e(df_m)      model degrees of freedom
   e(ll)        log likelihood
   e(N_clust)   number of clusters
   e(chi2)      \chi^2
   e(p)         significance
   e(chi2_c)    \chi^2, comparison model
   e(df_c)      degrees of freedom, comparison model
   e(p_c)       significance, comparison model
   e(rank)      rank of e(V)
   e(ic)        number of iterations
   e(rc)        return code
   e(converged) 1 if converged, 0 otherwise
```
Methods and formulas

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also supported by mecloglog (option binomial()), the methods presented below are in terms of the more general binomial mixed-effects model.

For a two-level binomial model, consider the response y_{ij} as the number of successes from a series of r_{ij} Bernoulli trials (replications). For cluster j, $j = 1, \ldots, M$, the conditional distribution of $y_j = (y_{j1}, \ldots, y_{jn_j})'$, given a set of cluster-level random effects u_j, is
where

\[
f(y_j | u_j) = \prod_{i=1}^{n_j} \left[\left(\frac{r_{ij}}{y_{ij}} \right)^{H(\eta_{ij})} \{1 - H(\eta_{ij})\}^{r_{ij} - y_{ij}} \right]
\]

\[
= \exp \left(\sum_{i=1}^{n_j} \left[y_{ij} \log \{H(\eta_{ij})\} - (r_{ij} - y_{ij}) \exp(\eta_{ij}) + \log(r_{ij}) \right] \right)
\]

for \(\eta_{ij} = x_{ij} \beta + z_{ij} u_j + \text{offset}_{ij} \) and \(H(v) = 1 - \exp\{-\exp(v)\} \).

Defining \(r_j = (r_{j1}, \ldots, r_{jn_j})' \) and

\[
c(y_j, r_j) = \sum_{i=1}^{n_j} \log \left(\frac{r_{ij}}{y_{ij}} \right)
\]

where \(c(y_j, r_j) \) does not depend on the model parameters, we can express the above compactly in matrix notation,

\[
f(y_j | u_j) = \exp \left[y_j' \log \{H(\eta_j)\} - (r_j - y_j)' \exp(\eta_j) + c(y_j, r_j) \right]
\]

where \(\eta_j \) is formed by stacking the row vectors \(\eta_{ij} \). We extend the definitions of the functions \(H(\cdot) \), \(\log(\cdot) \), and \(\exp(\cdot) \) to be vector functions where necessary.

Because the prior distribution of \(u_j \) is multivariate normal with mean \(\mathbf{0} \) and \(q \times q \) variance matrix \(\Sigma \), the likelihood contribution for the \(j \)th cluster is obtained by integrating \(u_j \) out of the joint density \(f(y_j, u_j) \).

\[
L_j(\beta, \Sigma) = (2\pi)^{-q/2} |\Sigma|^{-1/2} \int f(y_j | u_j) \exp \left(-u_j' \Sigma^{-1} u_j / 2 \right) du_j
\]

\[
= \exp \left\{ c(y_j, r_j) \right\} (2\pi)^{-q/2} |\Sigma|^{-1/2} \int \exp \left\{ h(\beta, \Sigma, u_j) \right\} du_j
\]

where

\[
h(\beta, \Sigma, u_j) = y_j' \log \{H(\eta_j)\} - (r_j - y_j)' \exp(\eta_j) - u_j' \Sigma^{-1} u_j / 2
\]

and for convenience, in the arguments of \(h(\cdot) \) we suppress the dependence on the observable data \((y_j, r_j, X_j, Z_j)\).

The integration in (2) has no closed form and thus must be approximated. \texttt{mecloglog} offers four approximation methods: mean–variance adaptive Gauss–Hermite quadrature (default), mode-curvature adaptive Gauss–Hermite quadrature, nonadaptive Gauss–Hermite quadrature, and Laplacian approximation.

The Laplacian approximation is based on a second-order Taylor expansion of \(h(\beta, \Sigma, u_j) \) about the value of \(u_j \) that maximizes it; see \textit{Methods and formulas} in \texttt{[ME] meglm} for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature; see \textit{Methods and formulas} in \texttt{[ME] meglm} for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the \(M \) individual clusters, namely, \(L(\beta, \Sigma) = \sum_{j=1}^{M} L_j(\beta, \Sigma) \).

Maximization of \(L(\beta, \Sigma) \) is performed with respect to \((\beta, \sigma^2) \), where \(\sigma^2 \) is a vector comprising the unique elements of \(\Sigma \). Parameter estimates are stored in \(e(b) \) as \((\hat{\beta}, \hat{\sigma}^2) \), with the corresponding variance–covariance matrix stored in \(e(V) \).
References

Also see

[ME] mecloglog postestimation — Postestimation tools for mecloglog

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] me — Introduction to multilevel mixed-effects models

[SEM] intro 5 — Tour of models (*Multilevel mixed-effects models*)

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands