
Title stata.com

optimize() — Function optimization

Syntax Description Remarks and examples Conformability
Diagnostics References Also see

Syntax

S = optimize init()

(varies) optimize init which(S
[
, { "max" | "min" }

]
)

(varies) optimize init evaluator(S
[
, &function()

]
)

(varies) optimize init evaluatortype(S
[
, evaluatortype

]
)

(varies) optimize init negH(S, { "off" | "on" })

(varies) optimize init params(S
[
, real rowvector initialvalues

]
)

(varies) optimize init nmsimplexdeltas(S
[
, real rowvector delta

]
)

(varies) optimize init argument(S, real scalar k
[
, X

]
)

(varies) optimize init narguments(S
[
, real scalar K

]
)

(varies) optimize init cluster(S, c)

(varies) optimize init colstripe(S
[
, stripe

]
)

(varies) optimize init technique(S
[
, technique

]
)

(varies) optimize init singularHmethod(S
[
, singularHmethod

]
)

(varies) optimize init conv maxiter(S
[
, real scalar maxiter

]
)

(varies) optimize init conv warning(S, { "on" | "off" })

(varies) optimize init conv ptol(S
[
, real scalar ptol

]
)

(varies) optimize init conv vtol(S
[
, real scalar vtol

]
)

(varies) optimize init conv nrtol(S
[
, real scalar nrtol

]
)

(varies) optimize init conv ignorenrtol(S, { "off" | "on" })

(varies) optimize init iterid(S
[
, string scalar id

]
)

(varies) optimize init valueid(S
[
, string scalar id

]
)

(varies) optimize init tracelevel(S
[
, tracelevel

]
)

1

http://stata.com

2 optimize() — Function optimization

(varies) optimize init trace dots(S, { "off" | "on" })
(varies) optimize init trace value(S, { "on" | "off" })
(varies) optimize init trace tol(S, { "off" | "on" })
(varies) optimize init trace step(S, { "off" | "on" })
(varies) optimize init trace paramdiffs(S, { "off" | "on" })
(varies) optimize init trace params(S, { "off" | "on" })
(varies) optimize init trace gradient(S, { "off" | "on" })
(varies) optimize init trace Hessian(S, { "off" | "on" })
(varies) optimize init evaluations(S, { "off" | "on" })

(varies) optimize init constraints(S
[
, real matrix Cc

]
)

(varies) optimize init verbose(S
[
, real scalar verbose

]
)

real rowvector optimize(S)

real scalar optimize(S)

void optimize evaluate(S)

real scalar optimize evaluate(S)

real rowvector optimize result params(S)

real scalar optimize result value(S)

real scalar optimize result value0(S)

real rowvector optimize result gradient(S)

real matrix optimize result scores(S)

real matrix optimize result Hessian(S)

real matrix optimize result V(S)

string scalar optimize result Vtype(S)

real matrix optimize result V oim(S)

real matrix optimize result V opg(S)

real matrix optimize result V robust(S)

real scalar optimize result iterations(S)

real scalar optimize result converged(S)

real colvector optimize result iterationlog(S)

real rowvector optimize result evaluations(S)

real scalar optimize result errorcode(S)

string scalar optimize result errortext(S)

real scalar optimize result returncode(S)

optimize() — Function optimization 3

void optimize query(S)

where S, if it is declared, should be declared

transmorphic S

and where evaluatortype optionally specified in optimize init evaluatortype() is

evaluatortype Description

"d0" function() returns scalar value
"d1" same as "d0" and returns gradient rowvector
"d2" same as "d1" and returns Hessian matrix

"d1debug" same as "d1" but checks gradient
"d2debug" same as "d2" but checks gradient and Hessian

"gf0" function() returns colvector value
"gf1" same as "gf0" and returns score matrix
"gf2" same as "gf1" and returns Hessian matrix

"gf1debug" same as "gf1" but checks gradient
"gf2debug" same as "gf2" but checks gradient and Hessian

The default is "d0" if not set.

and where technique optionally specified in optimize init technique() is

technique Description

"nr" modified Newton–Raphson
"dfp" Davidon–Fletcher–Powell
"bfgs" Broyden–Fletcher–Goldfarb–Shanno
"bhhh" Berndt–Hall–Hall–Hausman
"nm" Nelder–Mead

The default is "nr".

and where singularHmethod optionally specified in optimize init singularHmethod() is

singularHmethod Description

"m-marquardt" modified Marquardt algorithm
"hybrid" mixture of steepest descent and Newton

The default is "m-marquardt" if not set;
"hybrid" is equivalent to ml’s difficult option; see [R] ml.

http://www.stata.com/manuals13/rml.pdf#rml

4 optimize() — Function optimization

and where tracelevel optionally specified in optimize init tracelevel() is

tracelevel To be displayed each iteration

"none" nothing
"value" function value
"tolerance" previous + convergence values
"step" previous + stepping information
"paramdiffs" previous + parameter relative differences
"params" previous + parameter values
"gradient" previous + gradient vector
"hessian" previous + Hessian matrix

The default is "value" if not set.

Description

These functions find parameter vector or scalar p such that function f (p) is a maximum or a minimum.

optimize init() begins the definition of a problem and returns S, a problem-description handle
set to contain default values.

The optimize init *(S, . . .) functions then allow you to modify those defaults. You use these
functions to describe your particular problem: to set whether you wish maximization or minimization,
to set the identity of function f (), to set initial values, and the like.

optimize(S) then performs the optimization. optimize() returns real rowvector p containing the
values of the parameters that produce a maximum or minimum.

The optimize result *(S) functions can then be used to access other values associated with the
solution.

Usually you would stop there. In other cases, you could restart optimization by using the resulting
parameter vector as new initial values, change the optimization technique, and restart the optimization:

optimize_init_params(S, optimize_result_params(S))
optimize_init_technique(S, "dfp")
optimize(S)

Aside: The optimize init *(S, . . .) functions have two modes of operation. Each has an optional
argument that you specify to set the value and that you omit to query the value. For instance, the
full syntax of optimize init params() is

void optimize_init_params(S, real rowvector initialvalues)
real rowvector optimize_init_params(S)

The first syntax sets the initial values and returns nothing. The second syntax returns the previously
set (or default, if not set) initial values.

All the optimize init *(S, . . .) functions work the same way.

optimize() — Function optimization 5

Remarks and examples stata.com

Remarks are presented under the following headings:

First example
Notation
Type d evaluators
Example of d0, d1, and d2
d1debug and d2debug
Type gf evaluators
Example of gf0, gf1, and gf2
Functions

optimize init()
optimize init which()
optimize init evaluator() and optimize init evaluatortype()
optimize init negH()
optimize init params()
optimize init nmsimplexdeltas()
optimize init argument() and optimize init narguments()
optimize init cluster()
optimize init colstripe()
optimize init technique()
optimize init singularHmethod()
optimize init conv maxiter()
optimize init conv warning()
optimize init conv ptol(), . . . vtol(), . . . nrtol()
optimize init conv ignorenrtol()
optimize init iterid()
optimize init valueid()
optimize init tracelevel()
optimize init trace dots(), . . . value(), . . . tol(), . . . step(), . . . paramdiffs(),

. . . params(), . . . gradient(), . . . Hessian()
optimize init evaluations()
optimize init constraints()
optimize init verbose()
optimize()

optimize()
optimize evaluate()

optimize evaluate()
optimize result params()
optimize result value() and optimize result value0()
optimize result gradient()
optimize result scores()
optimize result Hessian()
optimize result V() and optimize result Vtype()
optimize result V oim(), . . . opg(), . . . robust()
optimize result iterations()
optimize result converged()
optimize result iterationlog()
optimize result evaluations()
optimize result errorcode(), . . . errortext(), and . . . returncode()
optimize query()

First example

The optimization functions may be used interactively.

http://stata.com

6 optimize() — Function optimization

Below we use the functions to find the value of x that maximizes y = exp(−x2 + x− 3):

: void myeval(todo, x, y, g, H)
> {
> y = exp(-x^2 + x - 3)
> }
note: argument todo unused
note: argument g unused
note: argument H unused

: S = optimize_init()

: optimize_init_evaluator(S, &myeval())

: optimize_init_params(S, 0)

: x = optimize(S)
Iteration 0: f(p) = .04978707
Iteration 1: f(p) = .04978708
Iteration 2: f(p) = .06381186
Iteration 3: f(p) = .06392786
Iteration 4: f(p) = .06392786

: x
.5

Notation

We wrote the above in the way that mathematicians think, that is, optimizing y = f (x). Statisticians,
on the other hand, think of optimizing s = f (b). To avoid favoritism, we will write v = f (p) and
write the general problem with the following notation:

Maximize or minimize v = f (p),

v: a scalar

p: 1× np

subject to the constraint Cp′ = c,

C: nc× np (nc = 0 if no constraints)
c: nc× 1

where g, the gradient vector, is g = f ′(p) = df/dp,

g: 1× np

and H, the Hessian matrix, is H = f ′′(p) = d2f/dpdp′

H: np× np

Type d evaluators

You must write an evaluator function to calculate f () before you can use the optimization functions.
The example we showed above was of what is called a type d evaluator. Let’s stay with that.

optimize() — Function optimization 7

The evaluator function we wrote was

void myeval(todo, x, y, g, H)
{

y = exp(-x^2 + x - 3)
}

All type d evaluators open the same way,

void evaluator(todo, x, y, g, H)

although what you name the arguments is up to you. We named the arguments the way that
mathematicians think, although we could just as well have named them the way that statisticians
think:

void evaluator(todo, b, s, g, H)

To avoid favoritism, we will write them as

void evaluator(todo, p, v, g, H)

that is, we will think in terms of optimizing v = f (p).

Here is the full definition of a type d evaluator:

void evaluator(real scalar todo, real rowvector p, v, g, H)

where v, g, and H are values to be returned:

v: real scalar
g: real rowvector
H: real matrix

evaluator() is to fill in v given the values in p and optionally to fill in g and H, depending on
the value of todo:

todo Required action by evaluator()

0 calculate v = f (p) and store in v

1 calculate v = f (p) and g = f ′(p) and store in v and g

2 calculate v = f (p), g = f ′(p), and H = f ′′(p) and store in v, g, and H

evaluator() may return v=. if f () cannot be evaluated at p. Then g and H need not be filled in
even if requested.

An evaluator does not have to be able to do all of this. In the first example, myeval() could handle
only todo = 0. There are three types of type d evaluators:

d type Capabilities expected of evaluator()

d0 can calculate v = f (p)

d1 can calculate v = f (p) and g = f ′(p)

d2 can calculate v = f (p) and g = f ′(p) and H = f ′′(p)

8 optimize() — Function optimization

myeval() is a type d0 evaluator. Type d0 evaluators are never asked to calculate g or H. Type d0
is the default type but, if we were worried that it was not, we could set the evaluator type before
invoking optimize() by coding

optimize init evaluatortype(S, "d0")

Here are the code outlines of the three types of evaluators:

void d0_evaluator(todo, p, v, g, H)
{

v = . . .
}

void d1_evaluator(todo, p, v, g, H)
{

v = . . .
if (todo>=1) {

g = . . .
}

}

void d2_evaluator(todo, p, v, g, H)
{

v = . . .
if (todo>=1) {

g = . . .
if (todo==2) {

H = . . .
}

}
}

Here is the code outline where there are three additional user arguments to the evaluator:

void d0_user3_eval(todo, p, u1, u2, u3, v, g, H)
{

v = . . .
}

Example of d0, d1, and d2

We wish to find the p1 and p2 corresponding to the maximum of

v = exp(−p21 − p22 − p1p2 + p1 − p2 − 3)

optimize() — Function optimization 9

A d0 solution to the problem would be

: void eval0(todo, p, v, g, H)
> {
> v = exp(-p[1]^2 - p[2]^2 - p[1]*p[2] + p[1] - p[2] - 3)
> }
note: argument todo unused
note: argument g unused
note: argument h unused

: S = optimize_init()

: optimize_init_evaluator(S, &eval0())

: optimize_init_params(S, (0,0))

: p = optimize(S)
Iteration 0: f(p) = .04978707 (not concave)
Iteration 1: f(p) = .12513024
Iteration 2: f(p) = .13495886
Iteration 3: f(p) = .13533527
Iteration 4: f(p) = .13533528

: p
1 2

1 1 -1

A d1 solution to the problem would be

: void eval1(todo, p, v, g, H)
> {
> v = exp(-p[1]^2 - p[2]^2 - p[1]*p[2] + p[1] - p[2] - 3)
> if (todo==1) {
> g[1] = (-2*p[1] - p[2] + 1)*v
> g[2] = (-2*p[2] - p[1] - 1)*v
> }
> }
note: argument H unused

: S = optimize_init()

: optimize_init_evaluator(S, &eval1())

: optimize_init_evaluatortype(S, "d1") ← important
: optimize_init_params(S, (0,0))

: p = optimize(S)
Iteration 0: f(p) = .04978707 (not concave)
Iteration 1: f(p) = .12513026
Iteration 2: f(p) = .13496887
Iteration 3: f(p) = .13533527
Iteration 4: f(p) = .13533528

: p
1 2

1 1 -1

The d1 solution is better than the d0 solution because it runs faster and usually is more accurate. Type
d1 evaluators require more code, however, and deriving analytic derivatives is not always possible.

10 optimize() — Function optimization

A d2 solution to the problem would be

: void eval2(todo, p, v, g, H)
> {
> v = exp(-p[1]^2 - p[2]^2 - p[1]*p[2] + p[1] - p[2] - 3)
> if (todo>=1) {
> g[1] = (-2*p[1] - p[2] + 1)*v
> g[2] = (-2*p[2] - p[1] - 1)*v
> if (todo==2) {
> H[1,1] = -2*v + (-2*p[1]-p[2]+1)*g[1]
> H[2,1] = -1*v + (-2*p[2]-p[1]-1)*g[1]
> H[2,2] = -2*v + (-2*p[2]-p[1]-1)*g[2]
> _makesymmetric(H)
> }
> }
> }

: S = optimize_init()

: optimize_init_evaluator(S, &eval2())

: optimize_init_evaluatortype(S, "d2") ← important
: optimize_init_params(S, (0,0))

: p = optimize(S)
Iteration 0: f(p) = .04978707 (not concave)
Iteration 1: f(p) = .12513026
Iteration 2: f(p) = .13496887
Iteration 3: f(p) = .13533527
Iteration 4: f(p) = .13533528

: p
1 2

1 1 -1

A d2 solution is best because it runs fastest and usually is the most accurate. Type d2 evaluators
require the most code, and deriving analytic derivatives is not always possible.

In the d2 evaluator eval2(), note our use of makesymmetric(). Type d2 evaluators are required
to return H as a symmetric matrix; filling in just the lower or upper triangle is not sufficient. The
easiest way to do that is to fill in the lower triangle and then use makesymmetric() to reflect the
lower off-diagonal elements; see [M-5] makesymmetric().

d1debug and d2debug

In addition to evaluator types "d0", "d1", and "d2" that are specified in
optimize init evaluatortype(S, evaluatortype), there are two more: "d1debug" and
”d2debug”. They assist in coding d1 and d2 evaluators.

In Example of d0, d1, and d2 above, we admit that we did not correctly code the functions eval1()
and eval2() at the outset, before you saw them. In both cases, that was because we had taken
the derivatives incorrectly. The problem was not with our code but with our math. d1debug and
d2debug helped us find the problem.

d1debug is an alternative to d1. When you code
optimize init evaluatortype(S, "d1debug"), the derivatives you calculate are not taken
seriously. Instead, optimize() calculates its own numerical derivatives and uses those. Each time
optimize() does that, however, it compares your derivatives to the ones it calculated and gives you
a report on how they differ. If you have coded correctly, they should not differ by much.

http://www.stata.com/manuals13/m-5makesymmetric.pdf#m-5makesymmetric()

optimize() — Function optimization 11

d2debug does the same thing, but for d2 evaluators. When you code
optimize init evaluatortype(S, "d2debug"), optimize() uses numerical derivatives but,
each time, optimize() gives you a report on how much your results for the gradient and for the
Hessian differ from the numerical calculations.

For each comparison, optimize() reports just one number: the mreldif() (see [M-5] reldif())
between your results and the numerical ones. When you have done things right, gradient vectors will
differ by approximately 1e–12 or less and Hessians will differ by 1e–7 or less.

When differences are large, you will want to see not only the summary comparison but also the
full vectors and matrices so that you can compare your results element by element with those
calculated numerically. Sometimes the error is in one element and not the others. To do this, set the
trace level with optimize init tracelevel(S, tracelevel) before issuing optimize(). Code
optimize init tracelevel(S, "gradient") to get a full report on the gradient comparison, or
set optimize init tracelevel(S, "hessian") to get a full report on the gradient comparison
and the Hessian comparison.

Type gf evaluators

In some statistical applications, you will find gf0, gf1, and gf2 more convenient to code than d0,
d1, and d2. The gf stands for general form.

In statistical applications, one tends to think of a dataset of values arranged in matrix X, the rows of
which are observations. A function h(p, X[i,.]) can be calculated for each row separately, and it is
the sum of those resulting values that forms the function f(p) that is to be maximized or minimized.

The gf0, gf1, and gf2 methods are for such cases.

In a type d0 evaluator, you return scalar v = f (p).

In a type gf0 evaluator, you return a column vector v such that colsum(v) = f (p).

In a type d1 evaluator, you return v = f (p) and you return a row vector g = f ′(p).

In a type gf1 evaluator, you return v such that colsum(v) = f (p) and you return matrix g such that
colsum(g) = f ′(p).

In a type d2 evaluator, you return v = f (p), g = f ′(p), and you return H = f ′′(p).

In a type gf2 evaluator, you return v such that colsum(v) = f (p), g such that colsum(g) = f ′(p),
and you return H = f ′′(p). This is the same H returned for d2.

The code outline for type gf evaluators is the same as those for d evaluators. For instance, the outline
for a gf2 evaluator is

void gf2_evaluator(todo, p, v, g, H)
{

v = . . .
if (todo>=1) {

g = . . .
if (todo==2) {

H = . . .
}

}
}

http://www.stata.com/manuals13/m-5reldif.pdf#m-5reldif()

12 optimize() — Function optimization

The above is the same as the outline for d2 evaluators. All that differs is that v and g, which were
real scalar and real rowvector in the d2 case, are now real colvector and real matrix in the gf2
case. The same applies to gf1 and gf0.

The type gf evaluators arise in statistical applications and, in such applications, there are data; that
is, just knowing p is not sufficient to calculate v, g, and H. Actually, that same problem can arise
when coding type d evaluators as well.

You can pass extra arguments to evaluators, whether they be d0, d1, or d2 or gf0, gf1, or gf2. The
first line of all evaluators, regardless of style, is

void evaluator(todo, p, v, g, H)

If you code

optimize_init_argument(S, 1, X)

the first line becomes

void evaluator(todo, p, X, v, g, H)

If you code

optimize_init_argument(S, 1, X)
optimize_init_argument(S, 2, Y)

the first line becomes

void evaluator(todo, p, X, Y, v, g, H)

and so on, up to nine extra arguments. That is, you can specify extra arguments to be passed to your
function. These extra arguments should be placed right after the parameter vector.

Example of gf0, gf1, and gf2

You have the following data:
: x

1

1 .35
2 .29
3 .3
4 .3
5 .65
6 .56
7 .37
8 .16
9 .26

10 .19

You believe that the data are the result of a beta distribution process with fixed parameters alpha and
beta and you wish to obtain the maximum likelihood estimates of alpha and beta (a and b in what
follows). The formula for the density of the beta distribution is

density(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1 (1− x)b−1

optimize() — Function optimization 13

The gf0 solution to this problem is

: void lnbetaden0(todo, p, x, lnf, S, H)
> {
> a = p[1]
> b = p[2]
> lnf = lngamma(a+b) :- lngamma(a) :- lngamma(b) :+
> (a-1)*log(x) :+ (b-1)*log(1:-x)
> }
note: argument todo unused
note: argument S unused
note: argument H unused

: S = optimize_init()

: optimize_init_evaluator(S, &lnbetaden0())

: optimize_init_evaluatortype(S, "gf0")

: optimize_init_params(S, (1,1))

: optimize_init_argument(S, 1, x) ← important
: p = optimize(S)
Iteration 0: f(p) = 0
Iteration 1: f(p) = 5.7294728
Iteration 2: f(p) = 5.7646641
Iteration 3: f(p) = 5.7647122
Iteration 4: f(p) = 5.7647122

: p
1 2

1 3.714209592 7.014926315

Note the following:

1. Rather than calling the returned value v, we called it lnf. You can name the arguments as
you please.

2. We arranged for an extra argument to be passed by coding optimize init argument(S,
1, x). The extra argument is the vector x, which we listed previously for you. In our
function, we received the argument as x, but we could have used a different name, just as
we used lnf rather than v.

3. We set the evaluator type to "gf0".

This being a statistical problem, we should be interested not only in the estimates p but also in their
variance. We can get this from the inverse of the negative Hessian, which is the observed information
matrix:

: optimize_result_V_oim(S)
[symmetric]

1 2

1 2.556301184
2 4.498194785 9.716647065

14 optimize() — Function optimization

The gf1 solution to this problem is

: void lnbetaden1(todo, p, x, lnf, S, H)
> {
> a = p[1]
> b = p[2]
> lnf = lngamma(a+b) :- lngamma(a) :- lngamma(b) :+
> (a-1)*log(x) :+ (b-1)*log(1:-x)
> if (todo >= 1) {
> S = J(rows(x), 2, .)
> S[.,1] = log(x) :+ digamma(a+b) :- digamma(a)
> S[.,2] = log(1:-x) :+ digamma(a+b) :- digamma(b)
> }
> }
note: argument H unused

: S = optimize_init()

: optimize_init_evaluator(S, &lnbetaden1())

: optimize_init_evaluatortype(S, "gf1")

: optimize_init_params(S, (1,1))

: optimize_init_argument(S, 1, x)

: p = optimize(S)
Iteration 0: f(p) = 0
Iteration 1: f(p) = 5.7297061
Iteration 2: f(p) = 5.7641349
Iteration 3: f(p) = 5.7647121
Iteration 4: f(p) = 5.7647122

: p
1 2

1 3.714209343 7.014925751

: optimize_result_V_oim(S)
[symmetric]

1 2

1 2.556299425
2 4.49819212 9.716643068

Note the following:

1. We called the next-to-last argument of lnbetaden1() S rather than g in accordance with
standard statistical jargon. What is being returned is in fact the observation-level scores,
which sum to the gradient vector.

2. We called the next-to-last argument S even though that name conflicted with S outside the
program, where S is the problem handle. Perhaps we should have renamed the outside S,
but there is no confusion on Mata’s part.

3. In our program, we allocated S for ourselves: S = J(rows(x), 2, .). It is worth comparing
this with the example of d1 in Example of d0, d1, and d2, where we did not need to allocate
g. In d1, optimize() preallocates g for us. In gf1, optimize() cannot do this because
it has no idea how many “observations” we have.

optimize() — Function optimization 15

The gf2 solution to this problem is
: void lnbetaden2(todo, p, x, lnf, S, H)
> {
> a = p[1]
> b = p[2]
> lnf = lngamma(a+b) :- lngamma(a) :- lngamma(b) :+
> (a-1)*log(x) :+ (b-1)*log(1:-x)
> if (todo >= 1) {
> S = J(rows(x), 2, .)
> S[.,1] = log(x) :+ digamma(a+b) :- digamma(a)
> S[.,2] = log(1:-x) :+ digamma(a+b) :- digamma(b)
> if (todo==2) {
> n = rows(x)
> H[1,1] = n*(trigamma(a+b) - trigamma(a))
> H[2,1] = n*(trigamma(a+b))
> H[2,2] = n*(trigamma(a+b) - trigamma(b))
> _makesymmetric(H)
> }
> }
> }

: S = optimize_init()

: optimize_init_evaluator(S, &lnbetaden2())

: optimize_init_evaluatortype(S, "gf2")

: optimize_init_params(S, (1,1))

: optimize_init_argument(S, 1, x)

: p = optimize(S)
Iteration 0: f(p) = 0
Iteration 1: f(p) = 5.7297061
Iteration 2: f(p) = 5.7641349
Iteration 3: f(p) = 5.7647121
Iteration 4: f(p) = 5.7647122

: p
1 2

1 3.714209343 7.014925751

: optimize_result_V_oim(S)
[symmetric]

1 2

1 2.556299574
2 4.498192412 9.716643651

Functions

optimize init()

transmorphic optimize init()

optimize init() is used to begin an optimization problem. Store the returned result in a variable
name of your choosing; we have used S in this documentation. You pass S as the first argument to
the other optimize*() functions.

optimize init() sets all optimize init *() values to their defaults. You may use the query form
of the optimize init *() to determine an individual default, or you can use optimize query()
to see them all.

16 optimize() — Function optimization

The query form of optimize init *() can be used before or after optimization performed by
optimize().

optimize init which()

void optimize init which(S, {"max" | "min"})
string scalar optimize init which(S)

optimize init which(S, which) specifies whether optimize() is to perform maximization or
minimization. The default is maximization if you do not invoke this function.

optimize init which(S) returns "max" or "min" according to which is currently set.

optimize init evaluator() and optimize init evaluatortype()

void optimize init evaluator(S, pointer(real function) scalar fptr)

void optimize init evaluatortype(S, evaluatortype)

pointer(real function) scalar optimize init evaluator(S)

string scalar optimize init evaluatortype(S)

optimize init evaluator(S, fptr) specifies the function to be called to evaluate f (p). Use of this
function is required. If your function is named myfcn(), you code optimize init evaluator(S,
&myfcn()).

optimize init evaluatortype(S, evaluatortype) specifies the capabilities of the function that
has been set using optimize init evaluator(). Alternatives for evaluatortype are "d0", "d1",
"d2", "d1debug", "d2debug", "gf0", "gf1", "gf2", "gf1debug", and "gf2debug". The default
is "d0" if you do not invoke this function.

optimize init evaluator(S) returns a pointer to the function that has been set.

optimize init evaluatortype(S) returns the evaluatortype currently set.

optimize init negH()

optimize init negH(S, { "off" | "on" }) sets whether the evaluator you have written returns H
or −H, the Hessian or the negative of the Hessian, if it returns a Hessian at all. This is for backward
compatibility with prior versions of Stata’s ml command (see [R] ml). Modern evaluators return H.
The default is "off".

optimize init params()

void optimize init params(S, real rowvector initialvalues)

real rowvector optimize init params(S)

optimize init params(S, initialvalues) sets the values of p to be used at the start of the first
iteration. Use of this function is required.

optimize init params(S) returns the initial values that will be (or were) used.

http://www.stata.com/manuals13/rml.pdf#rml

optimize() — Function optimization 17

optimize init nmsimplexdeltas()

void optimize init nmsimplexdeltas(S, real rowvector delta)

real rowvector optimize init nmsimplexdeltas(S)

optimize init nmsimplexdeltas(S, delta) sets the values of delta to be used, along with
the initial parameters, to build the simplex required by technique "nm" (Nelder–Mead). Use of
this function is required only in the Nelder–Mead case. The values in delta must be at least 10
times larger than ptol, which is set by optimize init conv ptol(). The initial simplex will be
{ p, p + (d1, 0), . . . , 0, p + (0, d2, 0, . . . , 0), . . . , p + (0, 0, . . . , 0, dk) }.

optimize init nmsimplexdeltas(S) returns the deltas that will be (or were) used.

optimize init argument() and optimize init narguments()

void optimize init argument(S, real scalar k, X)

void optimize init narguments(S, real scalar K)

pointer scalar optimize init argument(S, real scalar k)

real scalar optimize init narguments(S)

optimize init argument(S, k, X) sets the kth extra argument of the evaluator function to be
X, where k can only 1, 2, 3, . . . , 9. X can be anything, including a view matrix or even a pointer to
a function. No copy of X is made; it is a pointer to X that is stored, so any changes you make to X
between setting it and X being used will be reflected in what is passed to the evaluator function.

optimize init narguments(S, K) sets the number of extra arguments to be passed to the
evaluator function. This function is useless and included only for completeness. The number of extra
arguments is automatically set as you use optimize init argument().

optimize init argument(S) returns a pointer to the object that was previously set.

optimize init narguments(S) returns the number of extra arguments that are passed to the
evaluator function.

optimize init cluster()

optimize init cluster(S, c) specifies a cluster variable. c may be a string scalar containing
a Stata variable name, or c may be real colvector directly containing the cluster values. The default
is "", meaning no clustering. If clustering is specified, the default vcetype becomes "robust".

optimize init colstripe()

optimize init colstripe(S
[
, stripe

]
) sets the string matrix to be associated with the

parameter vector. See matrix colnames in [P] matrix rownames.

http://www.stata.com/manuals13/pmatrixrownames.pdf#pmatrixrownames

18 optimize() — Function optimization

optimize init technique()

void optimize init technique(S, string scalar technique)

string scalar optimize init technique(S)

optimize init technique(S, technique) sets the optimization technique to be used. Current
choices are

technique Description

"nr" modified Newton–Raphson
"dfp" Davidon–Fletcher–Powell
"bfgs" Broyden–Fletcher–Goldfarb–Shanno
"bhhh" Berndt–Hall–Hall–Hausman
"nm" Nelder–Mead

The default is "nr".

optimize init technique(S) returns the technique currently set.

Aside: All techniques require optimize init params() be set. Technique "nm" also requires that
optimize init nmsimplexdeltas() be set. Parameters (and delta) can be set before or after the
technique is set.

You can switch between "nr", "dfp", "bfgs", and "bhhh" by specifying two or more of them
in a space-separated list. By default, optimize() will use an algorithm for five iterations before
switching to the next algorithm. To specify a different number of iterations, include the number after
the technique. For example, specifying optimize init technique(M, "bhhh 10 nr 1000")
requests that optimize() perform 10 iterations using the Berndt–Hall–Hall–Hausman algorithm,
followed by 1,000 iterations using the modified Newton–Raphson algorithm, and then switch back
to Berndt–Hall–Hall–Hausman for 10 iterations, and so on. The process continues until convergence
or until maxiter is exceeded.

optimize init singularHmethod()

void optimize init singularHmethod(S, string scalar singularHmethod)

string scalar optimize init singularHmethod(S)

optimize init singularHmethod(S, singularHmethod) specifies what the optimizer should do
when, at an iteration step, it finds that H is singular. Current choices are

singularHmethod Description

"m-marquardt" modified Marquardt algorithm
"hybrid" mixture of steepest descent and Newton

The default is "m-marquardt" if not set;
"hybrid" is equivalent to ml’s difficult option; see [R] ml.

optimize init technique(S) returns the singularHmethod currently set.

http://www.stata.com/manuals13/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
http://www.stata.com/manuals13/rml.pdf#rml

optimize() — Function optimization 19

optimize init conv maxiter()

void optimize init conv maxiter(S, real scalar maxiter)

real scalar optimize init conv maxiter(S)

optimize init conv maxiter(S, maxiter) sets the maximum number of iterations to be per-
formed before optimization() is stopped; results are posted to optimize result *() just as if
convergence were achieved, but optimize result converged() is set to 0. The default maxiter
if not set is c(maxiter), which is probably 16,000; type creturn list in Stata to determine the
current default value.

optimize init conv maxiter(S) returns the maxiter currently set.

optimize init conv warning()

optimize init conv warning(S, { "on" | "off" }) specifies whether the warning message
“convergence not achieved” is to be displayed when this stopping rule is invoked. The default is
"on".

optimize init conv ptol(), . . . vtol(), . . . nrtol()

void optimize init conv ptol(S, real scalar ptol)

void optimize init conv vtol(S, real scalar vtol)

void optimize init conv nrtol(S, real scalar nrtol)

real scalar optimize init conv ptol(S)

real scalar optimize init conv vtol(S)

real scalar optimize init conv nrtol(S)

The two-argument form of these functions set the tolerances that control optimize()’s convergence
criterion. optimize() performs iterations until the convergence criterion is met or until the number
of iterations exceeds optimize init conv maxiter(). When the convergence criterion is met,
optimize result converged() is set to 1. The default values of ptol, vtol, and nrtol are 1e–6,
1e–7, and 1e–5, respectively.

The single-argument form of these functions return the current values of ptol, vtol, and nrtol.

Optimization criterion: In all cases except optimize init technique(S)=="nm", that is, in all
cases except Nelder–Mead, that is, in all cases of derivative-based maximization, the optimization
criterion is defined as follows:

Define
C ptol: mreldif(p, p prior) < ptol
C vtol: reldif(v, v prior) < vtol
C nrtol: g ∗ invsym(− H) ∗ g′ < nrtol
C concave: −H is positive semidefinite

The above definitions apply for maximization. For minimization, think of it as maximization of −f (p).
optimize() declares convergence when

http://www.stata.com/manuals13/pcreturn.pdf#pcreturn

20 optimize() — Function optimization

(C ptol |C vtol) & C concave & C nrtol

For optimize init technique(S)=="nm" (Nelder–Mead), the criterion is defined as follows:

Let R be the minimum and maximum values on the simplex and define

C ptol: mreldif(vertices of R) < ptol
C vtol: reldif(R) < vtol

optimize() declares successful convergence when

C ptol |C vtol

optimize init conv ignorenrtol()

optimize init conv ignorenrtol(S, { "off" | "on" }) sets whether C nrtol should simply
be treated as true in all cases, which in effects removes the nrtol criterion from the convergence rule.
The default is "off".

optimize init iterid()

void optimize init iterid(S, string scalar id)

string scalar optimize init iterid(S)

By default, optimize() shows an iteration log, a line of which looks like

Iteration 1: f(p) = 5.7641349

See optimize init tracelevel() below.

optimize init iterid(S, id) sets the string used to label the iteration in the iteration log. The
default is "Iteration".

optimize init iterid(S) returns the id currently in use.

optimize init valueid()

void optimize init valueid(S, string scalar id)

string scalar optimize init valueid(S)

By default, optimize() shows an iteration log, a line of which looks like

Iteration 1: f(p) = 5.7641349

See optimize init tracelevel() below.

optimize init valueid(S, id) sets the string used to identify the value. The default is "f(p)".

optimize init valueid(S) returns the id currently in use.

optimize init tracelevel()

void optimize init tracelevel(S, string scalar tracelevel)

string scalar optimize init tracelevel(S)

optimize() — Function optimization 21

optimize init tracelevel(S, tracelevel) sets what is displayed in the iteration log. Allowed
values of tracelevel are

tracelevel To be displayed each iteration

"none" nothing (suppress the log)
"value" function value
"tolerance" previous + convergence values
"step" previous + stepping information
"paramdiffs" previous + parameter relative differences
"params" previous + parameter values
"gradient" previous + gradient vector
"hessian" previous + Hessian matrix

The default is "value" if not reset.

optimize init tracelevel(S) returns the value of tracelevel currently set.

optimize init trace dots(), . . . value(), . . . tol(), . . . step(), . . . paramdiffs(),
. . . params(), . . . gradient(), . . . Hessian()

optimize init trace dots(S, { "off" | "on" }) displays a dot each time your evaluator is
called. The default is "off".

optimize init trace value(S, { "on" | "off" }) displays the function value at the start of
each iteration. The default is "on".

optimize init trace tol(S, { "off" | "on" }) displays the value of the calculated result that
is compared to the effective convergence criterion at the end of each iteration. The default is "off".

optimize init trace step(S, { "off" | "on" }) displays the steps within iteration. Listed are
the value of objective function along with the word forward or backward. The default is "off".

optimize init trace paramdiffs(S, { "off" | "on" }) displays the parameter relative differ-
ences from the previous iteration that are greater than the parameter tolerance ptol. The default is
"off".

optimize init trace params(S, { "off" | "on" }) displays the parameters at the start of each
iteration. The default is "off".

optimize init trace gradient(S, { "off" | "on" }) displays the gradient vector at the start
of each iteration. The default is "off".

optimize init trace Hessian(S, { "off" | "on" }) displays the Hessian matrix at the start
of each iteration. The default is "off".

optimize init evaluations()

optimize init evaluations(S, { "off" | "on" }) specifies whether the system is to count the
number of times the evaluator is called. The default is "off".

http://www.stata.com/manuals13/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
http://www.stata.com/manuals13/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators

22 optimize() — Function optimization

optimize init constraints()

void optimize init constraints(S, real matrix Cc)

real matrix optimize init constraints(S)

nc linear constraints may be imposed on the np parameters in p according to Cp′ = c, C: nc × np
and c: nc× 1. For instance, if there are four parameters and you wish to impose the single constraint
p1 = p2, then C = (1,−1, 0, 0) and c = (0). If you wish to add the constraint p4 = 2, then
C = (1,−1, 0, 0\0, 0, 0, 1) and c = (0\2).

optimize init constraints(S, Cc) allows you to impose such constraints where Cc = (C, c).
Use of this function is optional. If no constraints have been set, then Cc is 0× (np + 1).

optimize init constraints(S) returns the current Cc matrix.

optimize init verbose()

void optimize init verbose(S, real scalar verbose)

real scalar optimize init verbose(S)

optimize init verbose(S, verbose) sets whether error messages that arise during the execution
of optimize() or optimize() are to be displayed. verbose=1 means that they are; 0 means that
they are not. The default is 1. Setting verbose to 0 is of interest only to users of optimize(). If
you wish to suppress all output, code

optimize_init_verbose(S, 0)
optimize_init_tracelevel(S, "none")

optimize init verbose(S) returns the current value of verbose.

optimize()

real rowvector optimize(S)

optimize(S) invokes the optimization process and returns the resulting parameter vector. If something
goes wrong, optimize() aborts with error.

Before you can invoke optimize(), you must have defined your evaluator function evaluator() and
you must have set initial values:

S = optimize_init()
optimize_init_evaluator(S, &evaluator())
optimize_init_params(S, (. . .))

The above assumes that your evaluator function is d0. Often you will also have coded

optimize init evaluatortype(S, ". . . "))

and you may have coded other optimize init *() functions as well.

optimize() — Function optimization 23

Once optimize() completes, you may use the optimize result *() functions. You may also
continue to use the optimize init *() functions to access initial settings, and you may use them
to change settings and restart optimization (that is, invoke optimize() again) if you wish. If you do
that, you will usually want to use the resulting parameter values from the first round of optimization
as initial values for the second. If so, do not forget to code

optimize init params(S, optimize result params(S))

optimize()

real scalar optimize(S)

optimize(S) performs the same actions as optimize(S) except that, rather than returning the
resulting parameter vector, optimize() returns a real scalar and, rather than aborting if numerical
issues arise, optimize() returns a nonzero value. optimize() returns 0 if all went well. The
returned value is called an error code.

optimize() returns the resulting parameter vector p. It can work that way because optimization
must have gone well. Had it not, optimize() would have aborted execution.

optimize() returns an error code. If it is 0, optimization went well and you can obtain the
parameter vector by using optimize result params(). If optimization did not go well, you can
use the error code to diagnose what went wrong and take the appropriate action.

Thus optimize(S) is an alternative to optimize(S). Both functions do the same thing. The
difference is what happens when there are numerical difficulties.

optimize() and optimize() work around most numerical difficulties. For instance, the evaluator
function you write is allowed to return v equal to missing if it cannot calculate the f () at the current
values of p. If that happens during optimization, optimize() and optimize() will back up to
the last value that worked and choose a different direction. optimize(), however, cannot tolerate
that happening with the initial values of the parameters because optimize() has no value to back
up to. optimize() issues an error message and aborts, meaning that execution is stopped. There
can be advantages in that. The calling program need not include complicated code for such instances,
figuring that stopping is good enough because a human will know to address the problem.

optimize(), however, does not stop execution. Rather than aborting, optimize() returns a
nonzero value to the caller, identifying what went wrong.

Programmers implementing advanced systems will want to use optimize() instead of optimize().
Everybody else should use optimize().

Programmers using optimize() will also be interested in the functions

optimize_init_verbose()
optimize_result_errorcode()
optimize_result_errortext()
optimize_result_returncode()

If you perform optimization by using optimize(), the behavior of all optimize result *()
functions is altered. The usual behavior is that, if calculation is required and numerical problems
arise, the functions abort with error. After optimize(), however, a properly dimensioned missing
result is returned and optimize result errorcode() and optimize result errortext()
are set appropriately.

24 optimize() — Function optimization

The error codes returned by optimize() are listed under the heading optimize result errorcode()
below.

optimize evaluate()

void optimize evaluate(S)

optimize evaluate(S) evaluates f () at optimize init params() and posts results to
optimize result *() just as if optimization had been performed, meaning that all opti-
mize result *() functions are available for use. optimize result converged() is set to
1.

The setup for running this function is the same as for running optimize():

S = optimize_init()
optimize_init_evaluator(S, &evaluator())
optimize_init_params(S, (. . .))

Usually, you will have also coded

optimize init evaluatortype(S, . . .))

The other optimize init *() settings do not matter.

optimize evaluate()

real scalar optimize evaluate(S)

The relationship between optimize evaluate() and optimize evaluate() is the same as
that between optimize() and optimize(); see optimize().

optimize evaluate() returns an error code.

optimize result params()

real rowvector optimize result params(S)

optimize result params(S) returns the resulting parameter values. These are the same values
that were returned by optimize() itself. There is no computational cost to accessing the results, so
rather than coding

p = optimize(S)

if you find it more convenient to code

(void) optimize(S)
. . .
p = optimize_result_params(S)

then do so.

optimize() — Function optimization 25

optimize result value() and optimize result value0()

real scalar optimize result value(S)

real scalar optimize result value0(S)

optimize result value(S) returns the value of f () evaluated at p equal to
optimize result params().

optimize result value0(S) returns the value of f () evaluated at p equal to
optimize init params().

These functions may be called regardless of the evaluator or technique used.

optimize result gradient()

real rowvector optimize result gradient(S)

optimize result gradient(S) returns the value of the gradient vector evaluated at p equal to
optimize result params(). This function may be called regardless of the evaluator or technique
used.

optimize result scores()

real matrix optimize result scores(S)

optimize result scores(S) returns the value of the scores evaluated at p equal to
optimize result params(). This function may be called only if a type gf evaluator is used, but
regardless of the technique used.

optimize result Hessian()

real matrix optimize result Hessian(S)

optimize result Hessian(S) returns the value of the Hessian matrix evaluated at p equal to
optimize result params(). This function may be called regardless of the evaluator or technique
used.

optimize result V() and optimize result Vtype()

real matrix optimize result V(S)

string scalar optimize result Vtype(S)

optimize result V(S) returns optimize result V oim(S)
or optimize result V opg(S), depending on which is the natural conjugate for the optimization
technique used. If there is no natural conjugate, optimize result V oim(S) is returned.

optimize result Vtype(S) returns "oim" or "opg".

26 optimize() — Function optimization

optimize result V oim(), . . . opg(), . . . robust()

real matrix optimize result V oim(S)

real matrix optimize result V opg(S)

real matrix optimize result V robust(S)

These functions return the variance matrix of p evaluated at p equal to optimize result params().
These functions are relevant only for maximization of log-likelihood functions but may be called in
any context, including minimization.

optimize result V oim(S) returns invsym(−H), which is the variance matrix obtained from
the observed information matrix. For minimization, returned is invsym(H).

optimize result V opg(S) returns invsym(S′S), where S is the N × np matrix of scores.
This is known as the variance matrix obtained from the outer product of the gradients.
optimize result V opg() is available only when the evaluator function is type gf, but re-
gardless of the technique used.

optimize result V robust(S) returns H ∗ invsym(S′S) ∗ H, which is the robust estimate of
variance, also known as the sandwich estimator of variance. optimize result V robust() is
available only when the evaluator function is type gf, but regardless of the technique used.

optimize result iterations()

real scalar optimize result iterations(S)

optimize result iterations(S) returns the number of iterations used in obtaining results.

optimize result converged()

real scalar optimize result converged(S)

optimize result converged(S) returns 1 if results converged and 0 otherwise.
See optimize init conv ptol() for the definition of convergence.

optimize result iterationlog()

real colvector optimize result iterationlog(S)

optimize result iterationlog(S) returns a column vector of the values of f () at the start of
the final 20 iterations, or, if there were fewer, however many iterations there were. Returned vector
is min(optimize result iterations(), 20)× 1.

optimize result evaluations()

optimize result evaluations(S) returns a 1×3 real rowvector containing the number of times
the evaluator was called, assuming optimize init evaluations() was set on. Contents are the
number of times called for the purposes of 1) calculating the objective function, 2) calculating the
objective function and its first derivative, and 3) calculating the objective function and its first and
second derivatives. If optimize init evaluations() was set to off, returned is (0, 0, 0).

http://www.stata.com/manuals13/m-5invsym.pdf#m-5invsym()
http://www.stata.com/manuals13/m-5invsym.pdf#m-5invsym()
http://www.stata.com/manuals13/m-5invsym.pdf#m-5invsym()
http://www.stata.com/manuals13/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators

optimize() — Function optimization 27

optimize result errorcode(), . . . errortext(), and . . . returncode()

real scalar optimize result errorcode(S)

string scalar optimize result errortext(S)

real scalar optimize result returncode(S)

These functions are for use after optimize().

optimize result errorcode(S) returns the error code of optimize(),
optimize evaluate(), or the last optimize result *() run after either of the first two

functions. The value will be zero if there were no errors. The error codes are listed directly below.

optimize result errortext(S) returns a string containing the error message corresponding to
the error code. If the error code is zero, the string will be "".

optimize result returncode(S) returns the Stata return code corresponding to the error code.
The mapping is listed directly below.

In advanced code, these functions might be used as

(void) _optimize(S)
. . .
if (ec = optimize_result_code(S)) {

errprintf("{p}\n")
errprintf("%s\n", optimize_result_errortext(S))
errprintf("{p_end}\n")
exit(optimize_result_returncode(S))
/*NOTREACHED*/

}

28 optimize() — Function optimization

The error codes and their corresponding Stata return codes are

Error Return
code code Error text

1 1400 initial values not feasible
2 412 redundant or inconsistent constraints
3 430 missing values returned by evaluator
4 430 Hessian is not positive semidefinite

or
Hessian is not negative semidefinite

5 430 could not calculate numerical derivatives—discontinuous region with missing
values encountered

6 430 could not calculate numerical derivatives—flat or discontinuous region
encountered

7 430 could not calculate improvement—discontinuous region encountered
8 430 could not calculate improvement—flat region encountered
9 430 Hessian could not be updated—Hessian is unstable
10 111 technique unknown
11 111 incompatible combination of techniques
12 111 singular H method unknown
13 198 matrix stripe invalid for parameter vector
14 198 negative convergence tolerance values are not allowed
15 503 invalid starting values
16 111 optimize() subroutine not found
17 111 simplex delta required
18 3499 simplex delta not conformable with parameter vector
19 198 simplex delta value too small (must be greater than 10× ptol in absolute value)
20 198 evaluator type requires the nr technique
21 198 evaluator type not allowed with specified technique
22 111 optimize() subroutine not found
23 198 evaluator type not allowed with bhhh technique
24 111 evaluator functions required
25 198 starting values for parameters required
26 198 missing parameter values not allowed
27 198 invalid evaluator type

NOTES: (1) Error 1 can occur only when evaluating f () at initial parameters.
(2) Error 2 can occur only if constraints are specified.
(3) Error 3 can occur only if the technique is "nm".
(4) Error 9 can occur only if technique is "bfgs" or "dfp".

optimize() — Function optimization 29

optimize query()

void optimize query(S)

optimize query(S) displays a report on all optimize init *() and optimize result*()
values. optimize query() may be used before or after optimize() and is useful when using
optimize() interactively or when debugging a program that calls optimize() or optimize().

Conformability

All functions have 1× 1 inputs and have 1× 1 or void outputs except the following:

optimize init params(S, initialvalues):
S: transmorphic

initialvalues: 1 × np
result: void

optimize init params(S):
S: transmorphic

result: 1 × np

optimize init argument(S, k, X):
S: transmorphic
k: 1 × 1
X: anything

result: void

optimize init nmsimplexdeltas(S, delta):
S: transmorphic

delta: 1 × np
result: void

optimize init nmsimplexdeltas(S):
S: transmorphic

result: 1 × np

optimize init constraints(S, Cc):
S: transmorphic

Cc: nc × (np + 1)
result: void

optimize init constraints(S):
S: transmorphic

result: nc × (np + 1)

optimize(S):
S: transmorphic

result: 1 × np

optimize result params(S):
S: transmorphic

result: 1 × np

30 optimize() — Function optimization

optimize result gradient(S), optimize result evaluations(S):
S: transmorphic

result: 1 × np

optimize result scores(S):
S: transmorphic

result: N × np

optimize result Hessian(S):
S: transmorphic

result: np × np

optimize result V(S), optimize result V oim(S), optimize result V opg(S),
optimize result V robust(S):

S: transmorphic
result: np × np

optimize result iterationlog(S):
S: transmorphic

result: L × 1, L ≤ 20

For optimize init cluster(S, c) and optimize init colstripe(S), see Syntax above.

Diagnostics

All functions abort with error when used incorrectly.

optimize() aborts with error if it runs into numerical difficulties. optimize() does not; it instead
returns a nonzero error code.

optimize evaluate() aborts with error if it runs into numerical difficulties.
optimize evaluate() does not; it instead returns a nonzero error code.

The optimize result *() functions abort with error if they run into numerical difficulties
when called after optimize() or optimize evaluate(). They do not abort when run after
optimize() or optimize evaluate(). They instead return a properly dimensioned missing

result and set optimize result errorcode() and optimize result errortext().

optimize() — Function optimization 31� �
The formula xi+1 = xi − f(xi)/f

′(xi) and its generalizations for solving f(x) = 0 (and its
generalizations) are known variously as Newton’s method or the Newton–Raphson method. The
real history is more complicated than these names imply and has roots in the earlier work of
Arabic algebraists and François Viète.

Newton’s first formulation dating from about 1669 refers only to solution of polynomial equations
and does not use calculus. In his Philosophiae Naturalis Principia Mathematica, first published
in 1687, the method is used, but not obviously, to solve a nonpolynomial equation. Raphson’s
work, first published in 1690, also concerns polynomial equations, and proceeds algebraically
without using calculus, but lays more stress on iterative calculation and so is closer to present
ideas. It was not until 1740 that Thomas Simpson published a more general version explicitly
formulated in calculus terms that was applied to both polynomial and nonpolynomial equations
and to both single equations and systems of equations. Simpson’s work was in turn overlooked in
influential later accounts by Lagrange and Fourier, but his contribution also deserves recognition.

Isaac Newton (1643–1727) was an English mathematician, astronomer, physicist, natural philoso-
pher, alchemist, theologian, biblical scholar, historian, politician and civil servant. He was born
in Lincolnshire and later studied there and at the University of Cambridge, where he was a fellow
of Trinity College and elected Lucasian Professor in 1669. Newton demonstrated the generalized
binomial theorem, did major work on power series, and deserves credit with Gottfried Leibniz
for the development of calculus. They entered a longstanding priority dispute in 1711, which
lasted until Leibniz died in 1716.

Newton described universal gravitation and the laws of motion central to classical mechanics
and showed that the motions of objects on Earth and beyond are subject to the same laws.
Newton invented the reflecting telescope and developed a theory of color that was based on
the fact that a prism splits white light into a visible spectrum. He also studied cooling and the
speed of sound and proposed a theory of the origin of stars. Much of his later life was spent
in London, including brief spells as member of Parliament and longer periods as master of the
Mint and president of the Royal Society. He was knighted in 1705. Although undoubtedly one
of the greatest mathematical and scientific geniuses of all time, Newton was also outstandingly
contradictory, secretive, and quarrelsome.

Joseph Raphson (1648–1715) was an English or possibly Irish mathematician. No exact dates
are known for his birth or death years. He appears to have been largely self-taught and was
awarded a degree by the University of Cambridge after the publication of his most notable work,
Analysis Aequationum Universalis (1690), and his election as a fellow of the Royal Society.

Thomas Simpson (1710–1761) was born in Market Bosworth, Leicestershire, England. Although
he lacked formal education, he managed to teach himself mathematics. Simpson moved to London
and worked as a teacher in London coffee houses (as did De Moivre) and then at the Royal
Military Academy at Woolwich. He published texts on calculus, astronomy, and probability. His
legacy includes work on interpolation and numerical methods of integration; namely Simpson’s
Rule, which Simpson learned from Newton. Simpson was also a fellow of the Royal Society.� �

References
Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman. 1974. Estimation and inference in nonlinear structural

models. Annals of Economic and Social Measurement 3/4: 653–665.

Davidon, W. C. 1959. Variable metric method for minimization. Technical Report ANL-5990, Argonne National
Laboratory, U.S. Department of Energy, Argonne, IL.

32 optimize() — Function optimization

Fletcher, R. 1970. A new approach to variable metric algorithms. Computer Journal 13: 317–322.

. 1987. Practical Methods of Optimization. 2nd ed. New York: Wiley.

Fletcher, R., and M. J. D. Powell. 1963. A rapidly convergent descent method for minimization. Computer Journal
6: 163–168.

Gleick, J. 2003. Isaac Newton. New York: Pantheon.

Goldfarb, D. 1970. A family of variable-metric methods derived by variational means. Mathematics of Computation
24: 23–26.

Marquardt, D. W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for
Industrial and Applied Mathematics 11: 431–441.

Nelder, J. A., and R. Mead. 1965. A simplex method for function minimization. Computer Journal 7: 308–313.

Newton, I. 1671. De methodis fluxionum et serierum infinitorum. Translated by john colson as the method of fluxions
and infinite series ed. London: Henry Wood Fall, 1736.

Raphson, J. 1690. Analysis Aequationum Universalis. Londioni: Prostant venales apud Abelem Swalle.

Shanno, D. F. 1970. Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation
24: 647–656.

Westfall, R. S. 1980. Never at Rest: A Biography of Isaac Newton. Cambridge: Cambridge University Press.

Ypma, T. J. 1995. Historical development of the Newton–Raphson method. SIAM Review 37: 531–551.

Also see
[M-5] moptimize() — Model optimization

[M-4] mathematical — Important mathematical functions

[M-4] statistical — Statistical functions

http://www.stata.com/manuals13/m-5moptimize.pdf#m-5moptimize()
http://www.stata.com/manuals13/m-4mathematical.pdf#m-4mathematical
http://www.stata.com/manuals13/m-4statistical.pdf#m-4statistical

