
Title stata.com

asarray() — Associative arrays

Syntax Description Remarks and examples Conformability
Diagnostics Also see

Syntax

A = asarray create(
[

keytype declare A[
, keydim[
, minsize[
, minratio[
, maxratio

]]]]]
)

asarray(A, key, a) A[key] = a

a = asarray(A, key) a = A[key] or a = notfound

asarray remove(A, key) delete A[key] if it exists

bool = asarray contains(A, key) A[key] exists?

N = asarray elements(A) # of elements in A

keys = asarray keys(A) all keys in A

loc = asarray first(A) location of first element
or NULL

loc = asarray next(A, loc) location of next element
or NULL

key = asarray key(A, loc) key at loc

a = asarray contents(A, loc) contents a at loc

asarray notfound(A, notfound) set notfound value

notfound = asarray notfound(A) query notfound value

1

http://stata.com

2 asarray() — Associative arrays

where
A: Associative array A[key]. Created by asarray create() and passed to the other

functions. If A is declared, it is declared transmorphic.

keytype: Element type of keys; "string", "real", "complex", or "pointer".
Optional; default "string".

keydim: Dimension of key; 1 ≤ keydim ≤ 50. Optional; default 1.

minsize: Initial size of hash table used to speed locating keys in A; real scalar;
5 ≤ minsize ≤ 1,431,655,764. Optional; default 100.

minratio: Fraction filled at which hash table is automatically downsized; real scalar;
0 ≤ minratio ≤ 1. Optional; default 0.5.

maxratio: Fraction filled at which hash table is automatically upsized; real scalar;
1 < maxratio ≤ . (meaning infinity). Optional; default 1.5.

key: Key under which an element is stored in A; string scalar by default; type and
dimension are declared using asarray create().

a: Element of A; transmorphic; may be anything of any size; different A[key] elements
may have different types of contents.

bool: Boolean logic value; real scalar; equal to 1 or 0 meaning true or false.

N: Number of elements stored in A; real scalar; 0 ≤ N ≤ 2,147,483,647.

keys: List of all keys that exist in A. Each row is a key. Thus keys is a string colvector
if keys are string scalars, a string matrix if keys are string vectors, a real colvector
if keys are real scalars, etc. Note that rows(keys) = N.

loc: A location in A; transmorphic. The first location is returned by asarray first(),
subsequent locations by asarray next(). loc==NULL when there are no more
elements.

notfound: Value returned by asarray(A, key) when key does not exist in A.
notfound = J(0,0,.) by default.

Description

asarray() provides one- and multi-dimensional associative arrays, also known as containers, maps,
dictionaries, indices, and hash tables. In associative arrays, rather than being dense integers, the
indices can be anything, even strings. So you might have A[“Frank Smith”] equal to something
and A[“Mary Jones”] equal to something else. In Mata, you write that as asarray(A, "Frank
Smith", something) and asarray(A, "Mary Jones", somethingelse) to define the elements and
asarray(A, "Frank Smith") and asarray(A, "Mary Jones") to obtain their values.

A = asarray create() declares (creates) an associative array. The function allows arguments, but
they are optional. Without arguments, asarray create() declares an associative array with string
scalar keys, corresponding to the A[“Frank Smith”] and A[“Mary Jones”] example above.

A = asarray create(keytype, keydim) declares an associative array with keytype keys each of di-
mension 1×keydim. asarray create("string", 1) is equivalent to asarray create() without
arguments. asarray create("string", 2) declares the keys to be string, as before, but now they

asarray() — Associative arrays 3

are 1×2 rather than 1×1, so array elements would be of the form A[“Frank Smith”, “Mary Jones”].
A[“Mary Jones”, “Frank Smith”] would be a different element. asarray create("real", 2)
declares the keys to be real 1×2, which would somewhat correspond to our ordinary idea of a matrix,
namely A[i,j]. The difference would be that to store, say, A[100,980], it would not be necessary to
store the interior elements, and in addition to storing A[100,980], we could store A[3.14159,2.71828].

asarray create() has three more optional arguments: minsize, minratio, and maxratio. We rec-
ommend that you do not specify them. They are discussed in Setting the efficiency parameters under
Remarks and examples below.

asarray(A, key, a) sets or resets element A[key] = a. Note that if you declare key to be 1×2, you
must use the parentheses vector notation to specify key literals, such as asarray(A, (100,980),
2.15). Alternatively, if k = (100,980), then you can omit the parentheses in asarray(A, k,
2.15).

asarray(A, key) returns element A[key] or it returns notfound if the element does not exist.
By default, notfound is J(0,0,.), but you can change that using asarray notfound(). If you
redefined notfound to be 0 and defined keys to be real 1× 2, you would be on your way to recording
sparse matrices efficiently.

asarray remove(A, key) removes A[key], or it does nothing if A[key] is already undefined.

asarray contains(A, key) returns 1 if A[key] is defined, and it returns 0 otherwise.

asarray elements(A) returns the number of elements stored in A.

asarray keys(A) returns a vector or matrix containing all the keys, one to a row. The keys are
not in alphabetical or numerical order. If you want them that way, code sort(asarray keys(A),
1) if your keys are scalar, or in general, code sort(asarray keys(A), idx); see [M-5] sort().

asarray first(A) and asarray next(A, loc) provide a way of obtaining the names one at a
time. Code

for (loc=asarray_first(A); loc!=NULL; loc=asarray_next(A, loc)) {
. . .

}

asarray key(A, loc) and asarray contents(A, loc) return the key and contents at loc, so the
loop becomes

for (loc=asarray_first(A); loc!=NULL; loc=asarray_next(A, loc)) {
. . .
. . . asarray_key(A, loc) . . .
. . .
. . . asarray_contents(A, loc) . . .
. . .

}

asarray notfound(A, notfound) defines what asarray(A, key) returns when the element does
not exist. By default, notfound is J(0,0,.), which is to say, a 0 × 0 real matrix. You can reset
notfound at any time. asarray notfound(A) returns the current value of notfound.

http://www.stata.com/manuals13/m-5sort.pdf#m-5sort()

4 asarray() — Associative arrays

Remarks and examples stata.com

Before writing a program using asarray(), you should try it interactively. Remarks are presented
under the following headings:

Example 1: Scalar keys and scalar contents
Example 2: Scalar keys and matrix contents
Example 3: Vector keys and scalar contents; sparse matrix
Setting the efficiency parameters

Example 1: Scalar keys and scalar contents

: A = asarray_create()

: asarray(A, "bill", 1.25)

: asarray(A, "mary", 2.75)

: asarray(A, "dan", 1.50)

: asarray(A, "bill")
1.25

: asarray(A, "mary")
2.75

: asarray(A, "mary", 3.25)

: asarray(A, "mary")
3.25

: sum = 0

: for (loc=asarray_first(A); loc!=NULL; loc=asarray_next(A, loc)) {
> sum = sum + asarray_contents(A, loc)
> }

: sum
6

: sum/asarray_elements(A)
2

Example 2: Scalar keys and matrix contents

: A = asarray_create()

: asarray(A, "Count", (1,2\3,4))

: asarray(A, "Hilbert", Hilbert(3))

: asarray(A, "Count")
1 2

1 1 2
2 3 4

: asarray(A, "Hilbert")
[symmetric]

1 2 3

1 1
2 .5 .3333333333
3 .3333333333 .25 .2

http://stata.com

asarray() — Associative arrays 5

Example 3: Vector keys and scalar contents; sparse matrix

: A = asarray_create("real", 2)

: asarray_notfound(A, 0)

: asarray(A, (1, 1), 1)

: asarray(A, (1000, 999), .5)

: asarray(A, (1000, 1000), 1)

: asarray(A, (1000, 1001), .5)

: asarray(A, (1,1))
1

: asarray(A, (2,2))
0

: // one way to get the trace:
: trace = 0

: for (i=1; i<=1000; i++) trace = trace + asarray(A, (i,i))

: trace
2

: // another way to get the trace
: trace = 0

: for (loc=asarray_first(A); loc!=NULL; loc=asarray_next(A, loc)) {
> index = asarray_key(A, loc)
> if (index[1]==index[2]) {
> trace = trace + asarray_contents(A, loc)
> }
> }

: trace
2

Setting the efficiency parameters

The syntax asarray create() is

A = asarray create(keytype, keydim, minsize, minratio, maxratio)

All arguments are optional. The first two specify the characteristics of the key and their use has already
been illustrated. The last three are efficiency parameters. In most circumstances, we recommend you
do not specify them. The default values have been chosen to produce reasonable execution times with
reasonable memory consumption.

asarray() works via hash tables. Say we wish to record n entries. The idea is to allocate a hash
table of N rows, where N can be less than, equal to, or greater than n. When one needs to find the
element corresponding to a key, one calculates a function of the key, called a hash function, that
returns an integer h from 1 to N. One first looks in row h. If row h is already in use and the keys
are different, we have a collision. In that case, we have to allocate a duplicates list for the hth row
and put the duplicate keys and contents into that list. Collisions are bad because, when they occur,
asarray() has to allocate a duplicates list, requiring both time and memory, though it does not
require much. When fetching results, if row h has a duplicates list, asarray() has to search the
list, which it does sequentially, and that takes extra time, too. Hash tables work best when collisions
happen rarely.

Obviously, collisions are certain to occur if N < n. Note, however, that although performance suffers,
the method does not break. A hash table of N can hold any number of entries, even if N < n.

6 asarray() — Associative arrays

Performance depends on details of implementation. We have examined the behavior of asarray()
and discovered that collisions rarely occur when n/N ≤ 0.75. When n/N = 1.5, performance suffers,
but not by as much as you might expect. Around n/N = 2, performance degrades considerably.

When you add or remove an element, asarray() examines n/N and considers rebuilding the table
with a larger or smaller N; it rebuilds the table when n/N is large to preserve efficiency. It rebuilds the
table when n/N is small to conserve memory. Rebuilding the table is a computer-intensive operation,
and so should not be performed too often.

In making these decisions, asarray() uses three parameters:

maxratio: When n/N ≥ maxratio, the table is upsized to N = 1.5n.

minratio: When n/N ≤ minratio/1.5, the table is downsized to N = 1.5n. (For an exception,
see minsize.)

minsize: If the new N < 1.5minsize, the table is downsized to N = 1.5minsize if it is not
already that size.

The default values of the three parameters are 1.5, 0.5, and 100. You can reset them, though you are
unlikely to improve on the default values of minratio and maxratio.

You can improve on minsize when you know the number of elements that will be in the table and that
number is greater than 100. For instance, if you know the table will contain at least 1,000 elements,
starting minsize at 1,000, which implies N = 1,500, will prevent two rescalings, namely, from 150
to 451, and from 451 to 1,354. This saves a little time.

You can also turn off the resizing features. Setting minratio to 0 turns off downsizing. Setting maxratio
to . (missing) turns off upsizing. You might want to turn off both downsizing and upsizing if you
set minsize sufficiently large for your problem.

We would never recommend turning off upsizing alone, and we seldom would recommend turning
off downsizing alone. In a program where it is known that the array will exist for only a short time,
however, turning off downsizing can be efficient. In a program where the array might exist for a
considerable time, turning off downsizing is dangerous because then the array could only grow (and
probably will).

asarray() — Associative arrays 7

Conformability

asarray create(keytype, keydim, minsize, minratio, maxratio):
keytype: 1 × 1 (optional)
keydim: 1 × 1 (optional)
minsize: 1 × 1 (optional)

minratio: 1 × 1 (optional)
maxratio: 1 × 1 (optional)

result: transmorphic

asarray(A, key, a):
A: transmorphic

key: 1 × keydim
a: rkey × ckey

result: void

asarray(A, key):
A: transmorphic

key: 1 × keydim
result: rkey × ckey

asarray remove(A, key):
A: transmorphic

key: 1 × keydim
result: void

asarray contains(A, key), asarray elements(A, key):
A: transmorphic

key: 1 × keydim
result: 1 × 1

asarray keys(A, key):
A: transmorphic

key: 1 × keydim
result: n × keydim

asarray first(A):
A: transmorphic

result: transmorphic

asarray first(A, loc):
A: transmorphic

loc: transmorphic
result: transmorphic

asarray key(A, loc):
A: transmorphic

loc: transmorphic
result: 1 × keydim

8 asarray() — Associative arrays

asarray contents(A, loc):
A: transmorphic

loc: transmorphic
result: rkey × ckey

asarray notfound(A, notfound):
A: transmorphic

notfound: r × c
result: void

asarray notfound(A):
A: transmorphic

result: r × c

Diagnostics

None.

Also see

[M-5] hash1() — Jenkins’ one-at-a-time hash function

[M-4] manipulation — Matrix manipulation

[M-4] programming — Programming functions

http://www.stata.com/manuals13/m-5hash1.pdf#m-5hash1()
http://www.stata.com/manuals13/m-4manipulation.pdf#m-4manipulation
http://www.stata.com/manuals13/m-4programming.pdf#m-4programming

