subscripts — Use of subscripts

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
<th>Remarks and examples</th>
<th>Conformability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics</td>
<td>Reference</td>
<td>Also see</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

\[x[\text{real vector } r, \text{real vector } c] \]

\[x[\mid \text{real matrix sub}\mid] \]

Subscripts may be used on the left or right of the equal-assignment operator.

Description

Subscripts come in two styles.

In \[\text{subscript}\] syntax—called list subscripts—an element or a matrix is specified:

\[x[1,2] \] the 1,2 element of \(x \); a scalar
\[x[(1\,3\,2), (4,5)] \] the \(3 \times 2 \) matrix composed of rows 1, 3, and 2 and columns 4 and 5 of \(x \):

\[
\begin{bmatrix}
 x_{14} & x_{15} \\
 x_{34} & x_{35} \\
 x_{24} & x_{25}
\end{bmatrix}
\]

In \[\mid \text{subscript}\mid \] syntax—called range subscripts—an element or a contiguous submatrix is specified:

\[x[1,2] \] same as \(x[1,2] \); a scalar
\[x[2,3 \, 4,7] \] \(3 \times 4 \) submatrix of \(x \):

\[
\begin{bmatrix}
 x_{23} & x_{24} & x_{25} & x_{26} & x_{27} \\
 x_{33} & x_{34} & x_{35} & x_{36} & x_{37} \\
 x_{43} & x_{44} & x_{45} & x_{46} & x_{47}
\end{bmatrix}
\]

Both style subscripts may be used in expressions and may be used on the left-hand side of the equal-assignment operator.

Remarks and examples

Remarks are presented under the following headings:

- List subscripts
- Range subscripts
- When to use list subscripts and when to use range subscripts
- A fine distinction

1
List subscripts

List subscripts—also known simply as subscripts—are obtained when you enclose the subscripts in square brackets, [and]. List subscripts come in two basic forms:

- \(x[ivec, jvec] \) — matrix composed of rows \(ivec \) and columns \(jvec \) of matrix \(x \)
- \(v[kvec] \) — vector composed of elements \(kvec \) of vector \(v \)

where \(ivec, jvec, kvec \) may be a vector or a scalar, so the two basic forms include:

- \(x[i, j] \) — scalar \(i,j \) element
- \(x[i, jvec] \) — row vector of row \(i \), elements \(jvec \)
- \(x[ivec, j] \) — column vector of column \(j \), elements \(ivec \)
- \(v[k] \) — scalar \(k \)th element of vector \(v \)

Also missing value may be specified to mean all the rows or all the columns:

- \(x[i, .] \) — row vector of row \(i \) of \(x \)
- \(x[. , j] \) — column vector of column \(j \) of \(x \)
- \(x[ivec, .] \) — matrix of rows \(ivec \), all columns
- \(x[. , jvec] \) — matrix of columns \(jvec \), all rows
- \(x[. , .] \) — the entire matrix

Finally, Mata assumes missing value when you omit the argument entirely:

- \(x[i,] \) — same as \(x[i, .] \)
- \(x[ivec,] \) — same as \(x[ivec, .] \)
- \(x[. , j] \) — same as \(x[. , j] \)
- \(x[. , jvec] \) — same as \(x[. , jvec] \)
- \(x[. , .] \) — same as \(x[. , .] \)

Good style is to specify \(ivec \) as a column vector and \(jvec \) as a row vector, but that is not required:

- \(x[(1\2\3), (1,2,3)] \) — good style
- \(x[(1,2,3), (1,2,3)] \) — same as \(x[(1\2\3), (1,2,3)] \)
- \(x[(1\2\3), (1\2\3)] \) — same as \(x[(1\2\3), (1,2,3)] \)
- \(x[(1,2,3), (1\2\3)] \) — same as \(x[(1\2\3), (1,2,3)] \)

Similarly, good style is to specify \(kvec \) as a column when \(v \) is a column vector and to specify \(kvec \) as a row when \(v \) is a row vector, but that is not required and what is returned is a column vector if \(v \) is a column and a row vector if \(v \) is a row:

- \(rowv[(1,2,3)] \) — good style for specifying row vector
- \(rowv[(1\2\3)] \) — same as \(rowv[(1,2,3)] \)
- \(colv[(1\2\3)] \) — good style for specifying column vector
- \(colv[(1,2,3)] \) — same as \(colv[(1\2\3)] \)
Subscripts may be used in expressions following a variable name:

```r
first = list[1]
multiplier = x[3,4]
result = colsum(x[,j])
```

Subscripts may be used following an expression to extract a submatrix from a result:

```r
allneeded = invsym(x)[(1::4), .] * multiplier
```

Subscripts may be used on the left-hand side of the equal-assignment operator:

```r
x[1,1] = 1
x[1,.] = y[3,]
x[(1::4), (1..4)] = I(4)
```

Range subscripts

Range subscripts appear inside the difficult to type `[` and `]` brackets. Range subscripts come in four basic forms:

- `x[|i,j|]`
 - `i,j` element; same result as `x[i,j]`

- `v[|k|]`
 - `k`th element of vector; same result as `v[k]`

- `x[|i,j \ k,l|]`
 - submatrix, vector, or scalar formed using `(i,j)` as top-left corner and `(k,l)` as bottom-right corner

- `v[|i \ k|]`
 - subvector or scalar of elements `i` through `k`; result is row vector if `v` is row vector, column vector if `v` is column vector

Missing value may be specified for a row or column to mean all rows or all columns when a `1 × 2` or `1 × 1` subscript is specified:

- `x[|i,.|]`
 - row `i` of `x`; same as `x[i,]`

- `x[|.,j|]`
 - column `j` of `x`; same as `x[,j]`

- `x[|.,.|]`
 - entire matrix; same as `x[,,]`

- `v[.|.]`
 - entire vector; same as `v[.]`

Also missing may be specified to mean the number of rows or the number of columns of the matrix being subscripted when a `2 × 2` subscript is specified:

- `x[|1,2 \ 4,.|]`
 - equivalent to `x[|1,2 \ 4,cols(x)|]`

- `x[|1,2 \ ..,3|]`
 - equivalent to `x[|1,2 \ rows(x),3|]`

- `x[|1,2 \ ..,.|]`
 - equivalent to `x[|1,2 \ rows(x),cols(x)|]`

With range subscripts, what appears inside the square brackets is in all cases interpreted as a matrix expression, so in

```r
sub = (1,2)
... x[|sub|] ...
```
subscripts — Use of subscripts

x[sub] refers to x[1,2].

Range subscripts may be used in all the same contexts as list subscripts; they may be used in expressions following a variable name

```
submat = result[[1,1 \ 3,3]]
```

they may be used to extract a submatrix from a calculated result

```
allneeded = invsym(x)[[1,1 \ 4,4]]
```

and they may be used on the left-hand side of the equal-assignment operator:

```
x[[1,1 \ 4,4]] = I(4)
```

When to use list subscripts and when to use range subscripts

Everything a range subscript can do, a list subscript can also do. The one seemingly unique feature of a range subscript,

```
x[[i1, j1 \ i2, j2]]
```

is perfectly mimicked by

```
x[(i1::i2), (j1..j2)]
```

The range-subscript construction, however, executes more quickly, and so that is the purpose of range subscripts: to provide a fast way to extract contiguous submatrices. In all other cases, use list subscripts because they are faster.

Use list subscripts to refer to scalar values:

```
result = x[1,3]
x[1,3] = 2
```

Use list subscripts to extract entire rows or columns:

```
obsv = x[., 3]
var = x[4, .]
```

Use list subscripts to permute the rows and columns of matrices:

```
x = (1,2,3,4 \ 5,6,7,8 \ 9,10,11,12)
y = x[(1\3\2), .]
y
```

```
1 1 2 3 4
2 9 10 11 12
3 5 6 7 8
```

```
y = x[., (1,3,2,4)]
y
```

```
1 2 3 4
1 1 3 2 4
2 5 7 6 8
3 9 11 10 12
```

```
y=x[(1\3\2), (1,3,2,4)]
```
Use list subscripts to duplicate rows or columns:

```
: x = (1,2,3,4 \ 5,6,7,8 \ 9,10,11,12)
: y = x[(1\2\3\1), .]
: y
1 2 3 4
1 1 2 3 4
2 5 6 7 8
3 9 10 11 12
4 1 2 3 4
```

```
: y = x[., (1,2,3,4,2)]
: y
1 2 3 4 5
1 1 2 3 4 2
2 5 6 7 8 6
3 9 10 11 12 10
```

```
: y = x[(1\2\3\1), (1,2,3,4,2)]
: y
1 2 3 4 5
1 1 2 3 4 2
2 5 6 7 8 6
3 9 10 11 12 10
4 1 2 3 4 2
```

A fine distinction

There is a fine distinction between \(x[i, j] \) and \(x[][i, j] \). In \(x[i, j] \), there are two arguments, \(i \) and \(j \). The comma separates the arguments. In \(x[][i, j] \), there is one argument: \(i, j \). The comma is the column-join operator.

In Mata, comma means mostly the column-join operator:

```
newvec = oldvec, addedvalues
qsum = (x,1)'(x,1)
```

There are, in fact, only two exceptions. When you type the arguments for a function, the comma separates one argument from the next:

```
result = f(a,b,c)
```

In the above example, \(f() \) receives three arguments: \(a, b, \) and \(c \). If we wanted \(f() \) to receive one argument, \((a,b,c) \), we would have to enclose the calculation in parentheses:

```
result = f((a,b,c))
```
That is the first exception. When you type the arguments inside a function, comma means argument separation. You get back to the usual meaning of comma—the column-join operator—by opening another set of parentheses.

The second exception is in list subscripting:

\[x[i, j] \]

Inside the list-subscript brackets, comma means argument separation. That is why you have seen us type vectors inside parentheses:

\[x[(1,2,3),(1,2,3)] \]

These are the two exceptions. Range subscripting is not an exception. Thus in

\[x[i, j] \]

there is one argument, \(i, j \). With range subscripts, you may program constructs such as

\[
\begin{align*}
IJ & = (i, j) \\
\text{RANGE} & = (1,2 \ \ 4,4) \\
\ldots \\
\ldots \ x[|IJ|] \ldots \ x[|\text{RANGE}|] \ldots
\end{align*}
\]

You may not code in this way with list subscripts. In particular, \(x[|IJ|] \) would be interpreted as a request to extract elements \(i \) and \(j \) from vector \(x \), and would be an error otherwise. \(x[|\text{RANGE}|] \) would always be an error.

We said earlier that list subscripts \(x[i, j] \) are a little faster than range subscripts \(x[\{i, j\}] \). That is true, but if \(IJ=(i, j) \) already, \(x[|IJ|] \) is faster than \(x[i, j] \). You would, however, have to execute many millions of references to \(x[|IJ|] \) before you could measure the difference.

Conformability

\[x[i, j] : \]

\[
\begin{align*}
x & : \ r \times c \\
i & : \ m \times 1 \quad \text{or} \quad 1 \times m \quad \text{(does not matter which)} \\
j & : \ 1 \times n \quad \text{or} \quad n \times 1 \quad \text{(does not matter which)} \\
result & : \ m \times n
\end{align*}
\]

\[x[i, .] : \]

\[
\begin{align*}
x & : \ r \times c \\
i & : \ m \times 1 \quad \text{or} \quad 1 \times m \quad \text{(does not matter which)} \\
result & : \ m \times c
\end{align*}
\]

\[x[., j] : \]

\[
\begin{align*}
x & : \ r \times c \\
j & : \ 1 \times n \quad \text{or} \quad n \times 1 \quad \text{(does not matter which)} \\
result & : \ r \times n
\end{align*}
\]

\[x[., .] : \]

\[
\begin{align*}
x & : \ r \times c \\
result & : \ r \times c
\end{align*}
\]
$x[i]$:

\[
\begin{array}{c}
x:
\begin{array}{c}
\times 1 \\
\times n
\end{array} \\
i:
\begin{array}{c}
m \times 1 \\
or \\
1 \times m
\end{array} \\
\text{or} \\
1 \times m \\
or \\
m \times 1
\end{array}
\]

\text{result:}
\begin{array}{c}
m \times 1 \\
1 \times m
\end{array}

$x[.]$:

\[
\begin{array}{c}
x:
\begin{array}{c}
\times 1 \\
\times n
\end{array}
\end{array}
\]

\text{result:}
\begin{array}{c}
1 \times n \\
1 \times n
\end{array}

$x[|k|]$:

\[
\begin{array}{c}
x:
\begin{array}{c}
r \times c
\end{array}
\end{array}
\]

\text{result:}
\begin{array}{c}
1 \times 1 \quad \text{if } k[1]<. \text{ and } k[2]<. \\
r \times 1 \quad \text{if } k[1]>=. \text{ and } k[2]<.
\end{array}
\]

\[
\begin{array}{c}
1 \times c \quad \text{if } k[1]<. \text{ and } k[2]>=. \\
r \times c \quad \text{if } k[1]>=. \text{ and } k[2]>=.
\end{array}
\]

$x[|k|]$:

\[
\begin{array}{c}
x:
\begin{array}{c}
r \times c
\end{array}
\end{array}
\]

\text{result:}
\begin{array}{c}
k[2,1]-k[1,1]+1 \times k[2,2]-k[1,2]+1
\end{array}
\]

\text{(in the above formula, if } k[2,1]>=., \text{ treat as if } k[2,1]=r, \\
\text{and similarly, if } k[2,2]>=., \text{ treat as if } k[2,2]=c)\}

$x[|k|]$:

\[
\begin{array}{c}
x:
\begin{array}{c}
r \times 1
\end{array}
\end{array}
\]

\text{result:}
\begin{array}{c}
k[2]-k[1]+1 \times 1 \quad \text{if } k[2]>=.
\end{array}
\]

\text{(if } k[2]>=., \text{ treat as if } k[2]=r) \\
\text{if } k[2]=c)\}

\[
\begin{array}{c}
k[2]-k[1]+1 \times 1 \quad \text{if } k[2]=.
\end{array}
\]

\text{result:}
\begin{array}{c}
1 \times k[2]-k[1]+1
\end{array}
\]

\text{(if } k[2]>=., \text{ treat as if } k[2]=r) \\
\text{if } k[2]=c)\}

\text{Diagnostics}

Both styles of subscripts abort with error if the subscript is out of range, if a reference is made to a nonexisting row or column.

\text{Reference}

\text{Also see}

[M-2] intro — Language definition