Title stata.com
merge — Merge datasets
Syntax Menu Description Options
Remarks and examples References Also see
Syntax
One-to-one merge on specified key variables
merge 1:1 varlist using filename [ , ()pti()ns]
Many-to-one merge on specified key variables
merge m:1 varlist using filename [, options]
One-to-many merge on specified key variables
merge 1:m varlist using filename [, options]
Many-to-many merge on specified key variables
merge m:m varlist using filename [, ()pti()ns]
One-to-one merge by observation
merge 1:1 _n using filename [ , options]
options Description
Options
keepusing(varlist) variables to keep from using data; default is all
generate(newvar) name of new variable to mark merge results; default is _merge
nogenerate do not create _merge variable
nolabel do not copy value-label definitions from using
nonotes do not copy notes from using
update update missing values of same-named variables in master with values
from using
replace replace all values of same-named variables in master with nonmissing
values from using (requires update)
noreport do not display match result summary table
force allow string/numeric variable type mismatch without error
Results
assert (results) specify required match results
keep (results) specify which match results to keep
sorted do not sort; dataset already sorted

sorted does not appear in the dialog box.


http://stata.com
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

2 merge — Merge datasets

Menu

Data > Combine datasets > Merge two datasets

Description

merge joins corresponding observations from the dataset currently in memory (called the master
dataset) with those from filename.dta (called the using dataset), matching on one or more key
variables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-to-
many), which are often called joins by database people. merge can also perform sequential merges,
which have no equivalent in the relational database world.

merge is for adding new variables from a second dataset to existing observations. You use
merge, for instance, when combining hospital patient and discharge datasets. If you wish to add new
observations to existing variables, then see [D] append. You use append, for instance, when adding
current discharges to past discharges.

By default, merge creates a new variable, _merge, containing numeric codes concerning the source
and the contents of each observation in the merged dataset. These codes are explained below in the
match results table.

Key variables cannot be strLs.

If filename is specified without an extension, then .dta is assumed.

Options

keepusing (varlist) specifies the variables from the using dataset that are kept in the merged dataset.

By default, all variables are kept. For example, if your using dataset contains 2,000 demographic
characteristics but you want only sex and age, then type merge ..., keepusing(sex age) ....

generate (newvar) specifies that the variable containing match results information should be named
newvar rather than _merge.

nogenerate specifies that _merge not be created. This would be useful if you also specified
keep(match), because keep (match) ensures that all values of _merge would be 3.

nolabel specifies that value-label definitions from the using file be ignored. This option should be
rare, because definitions from the master are already used.

nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.

update and replace both perform an update merge rather than a standard merge. In a standard
merge, the data in the master are the authority and inviolable. For example, if the master and
using datasets both contain a variable age, then matched observations will contain values from the
master dataset, while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset
with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset,
unless the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of
overlapping variables for details.


http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/dappend.pdf#dappend
http://www.stata.com/manuals13/ddatatypes.pdf#ddatatypes
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/dnotes.pdf#dnotes

merge — Merge datasets 3

noreport specifies that merge not present its summary table of match results.

force allows string/numeric variable type mismatches, resulting in missing values from the using
dataset. If omitted, merge issues an error; if specified, merge issues a warning.

[ Fesutis)

assert (results) specifies the required match results. The possible results are

Numeric Equivalent
code word (results) Description
1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both
4 match_update observation appeared in both, missing values updated
5 match_conflict observation appeared in both, conflicting nonmissing

values

Codes 4 and 5 can arise only if the update option is specified. If codes of both
4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert() or keep() options.

The following synonyms are allowed: masters for master, usings for using, matches
and matched for match, match_updates for match_update, and match_conflicts for
match_conflict.

Using assert (match master) specifies that the merged file is required to include only matched
master or using observations and unmatched master observations, and may not include unmatched
using observations. Specifying assert() results in merge issuing an error if there are match
results among those observations you allowed.

The order of the words or codes is not important, so all the following assert () specifications
would be the same:

assert(match master)
assert(master matches)
assert (1 3)

When the match results contain codes other than those allowed, return code 9 is returned, and the
merged dataset with the unanticipated results is left in memory to allow you to investigate.

keep (results) specifies which observations are to be kept from the merged dataset. Using keep (match
master) specifies keeping only matched observations and unmatched master observations after
merging.

keep () differs from assert () because it selects observations from the merged dataset rather than
enforcing requirements. keep() is used to pare the merged dataset to a given set of observations
when you do not care if there are other observations in the merged dataset. assert () is used to
verify that only a given set of observations is in the merged dataset.

You can specify both assert () and keep(). If you require matched observations and unmatched
master observations but you want only the matched observations, then you could specify as-
sert (match master) keep(match).



4 merge — Merge datasets

assert() and keep() are convenience options whose functionality can be duplicated using
_merge directly.

. merge ..., assert(match master) keep(match)
is identical to
. merge ...
assert _merge==1 | _merge==

keep if _merge==

The following option is available with merge but is not shown in the dialog box:

sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are
already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this
option is of interest only where speed is of the utmost importance.

Remarks and examples stata.com

Remarks are presented under the following headings:

Overview

Basic description

1:1 merges

m:1 merges

I:m merges

m:m merges

Sequential merges

Treatment of overlapping variables

Sort order
Troubleshooting m:m merges
Examples
Overview
merge 1:1 varlist ... specifies a one-to-one match merge. varlist specifies variables common to

both datasets that together uniquely identify single observations in both datasets. For instance, suppose
you have a dataset of customer information, called customer.dta, and have a second dataset of other
information about roughly the same customers, called other.dta. Suppose further that both datasets
identify individuals by using the pid variable, and there is only one observation per individual in
each dataset. You would merge the two datasets by typing

. use customer
. merge 1:1 pid using other

Reversing the roles of the two files would be fine. Choosing which dataset is the master and which
is the using matters only if there are overlapping variable names. 1:1 merges are less common than
1:m and m:1 merges.

merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively.
To illustrate the two choices, suppose you have a dataset containing information about individual
hospitals, called hospitals.dta. In this dataset, each observation contains information about one
hospital, which is uniquely identified by the hospitalid variable. You have a second dataset called
discharges.dta, which contains information on individual hospital stays by many different patients.
discharges.dta also identifies hospitals by using the hospitalid variable. You would like to join
all the information in both datasets. There are two ways you could do this.


http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://stata.com

merge — Merge datasets 5

merge 1:m varlist ... specifies a one-to-many match merge.

. use hospitals
. merge 1:m hospitalid using discharges

would join the discharge data to the hospital data. This is a 1:m merge because hospitalid uniquely
identifies individual observations in the dataset in memory (hospitals), but could correspond to
many observations in the using dataset.

merge m:1 varlist ... specifies a many-to-one match merge.

. use discharges
. merge m:1 hospitalid using hospitals

would join the hospital data to the discharge data. This is an m:1 merge because hospitalid can
correspond to many observations in the master dataset, but uniquely identifies individual observations
in the using dataset.

merge m:m varlist ... specifies a many-to-many match merge. This is allowed for completeness,
but it is difficult to imagine an example of when it would be useful. For an m:m merge, varlist does not
uniquely identify the observations in either dataset. Matching is performed by combining observations
with equal values of varlist; within matching values, the first observation in the master dataset is
matched with the first matching observation in the using dataset; the second, with the second; and
so on. If there is an unequal number of observations within a group, then the last observation of the
shorter group is used repeatedly to match with subsequent observations of the longer group. Use of
merge m:m is not encouraged.

merge 1:1 _n performs a sequential merge. _n is not a variable name; it is Stata syntax for
observation number. A sequential merge performs a one-to-one merge on observation number. The
first observation of the master dataset is matched with the first observation of the using dataset; the
second, with the second; and so on. If there is an unequal number of observations, the remaining
observations are unmatched. Sequential merges are dangerous, because they require you to rely on
sort order to know that observations belong together. Use this merge at your own risk.

Basic description

Think of merge as being master + using = merged result.

Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way
we have general names that are not dependent on individual datasets.

Suppose we have two datasets,

master in memory on disk in file filename
id age id wgt
1 22 1 130
2 56 2 180
5 17 4 110

We would like to join together the age and weight information. We notice that the id variable
identifies unique observations in both datasets: if you tell me the id number, then I can tell you the
one observation that contains information about that id. This is true for both the master and the using
datasets.

Because id uniquely identifies observations in both datasets, this is a 1:1 merge. We can bring
in the dataset from disk by typing



6 merge — Merge datasets

. merge 1:1 id using filename

in memory in filename.dta
master + using = merged result
id age id  wgt id age wgt
1 22 1 130 1 22 130 (matched)
2 56 2 180 2 56 180 (matched)
5 17 4 110 5 17 . (master only)
4 . 110| (using only)

The original data in memory are called the master data. The data in filename.dta are called
the using data. After merge, the merged result is left in memory. The id variable is called the key
variable. Stata jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in
the merged result. The same occurred for id==2. For id==5 and id==4, however, no matches were
found and thus each became a separate observation in the merged result. Thus each observation in
the merged result came from one of three possible sources:

Numeric Equivalent
code word Description
1 master originally appeared in master only
2 using originally appeared in using only
3 match originally appeared in both

merge encodes this information into new variable _merge, which merge adds to the merged result:

in memory in filename.dta
master + using = merged result
id age id wgt id age wgt _merge
1 22 1 130 1 22 130 3
2 56 2 180 2 56 180 3
5 17 4 110 5 17 . 1
4 110 2

Note: Above we show the master and using data sorted by id before merging; this was for
illustrative purposes. The dataset resulting from a 1:1 merge will have the same data, regardless of
the sort order of the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the
master. Find the corresponding observation in the using data, if there is one. Record the matched or
unmatched result. Proceed to the next observation in the master dataset. When you finish working
through the master dataset, work through unused observations from the using data. By default,
unmatched observations are kept in the merged data, whether they come from the master dataset or
the using dataset.

Remember this formal definition. It will serve you well.



merge — Merge datasets 7

1:1 merges
The example shown above is called a 1:1 merge, because the key variable uniquely identified
each observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s)
corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained
by observing patients at specific points in time so that variables pid and time, taken together, identify
the observations. Below we have two such datasets and run a 1:1 merge on pid and time,

. merge 1:1 pid time using filename

master + using = merged result

pid time x1 pid time x2 pid time x1 x2 _merge
14 1 0 14 1 7 14 1 0 7 3
14 2 0 14 2 9 14 2 0 9 3
14 4 0 16 1 2 14 4 0 . 1
16 1 1 16 2 3 16 1 1 2 3
16 2 1 17 1 5 16 2 1 3 3
17 1 0 17 2 2 17 1 0 b5 3
17 2 2 2

This is a 1:1 merge because the combination of the values of pid and time uniquely identifies
observations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations
match. Above five observations matched, one observation was only in the master (subject 14 at time
4), and another was only in the using (subject 17 at time 2).

m:1 merges

In an m: 1 merge, the key variable or variables uniquely identify the observations in the using data,
but not necessarily in the master data. Suppose you had person-level data within regions and you
wished to bring in regional data. Here is an example:

. merge m:1 region using filename

master + using = merged result

id region a region x id region a x _merge
1 2 26 1 15 1 2 26 13 3
2 1 29 2 13 2 1 29 15 3
3 2 22 3 12 3 2 22 13 3
4 3 21 4 11 4 3 21 12 3
5 1 24 5 1 24 15 3
6 5 20 6 5 20 . 1
4 11 2

To bring in the regional information, we need to merge on region. The values of region identify
individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged
dataset was constructed. For each observation in the master data, merge finds the corresponding
observation in the using data. merge combines the values of the variables in the using dataset to the
observations in the master dataset.



8 merge — Merge datasets

1:m merges

1:m merges are similar to m: 1, except that now the key variables identify unique observations in
the master dataset. Any datasets that can be merged using an m:1 merge may be merged using a
1:m merge by reversing the roles of the master and using datasets. Here is the same example as used
previously, with the master and using datasets reversed:

. merge 1:m region using filename

master + using = merged result
region x id region a region x id a _merge
1 15 1 2 26 1 15 2 29 3
2 13 2 1 29 1 15 5 24 3
3 12 3 2 22 2 13 1 26 3
4 11 4 3 21 2 13 3 22 3
5 1 24 3 12 4 21 3
6 5 20 4 11 . . 1
5 6 20 2

This merged result is identical to the merged result in the previous section, except for the sort
order and the contents of _merge. This time, we show the merged result sorted by region rather
than id. Reversing the roles of the files causes a reversal in the 1s and 2s for _merge: where _merge
was previously 1, it is now 2, and vice versa. These exchanged _merge values reflect the reversed
roles of the master and using data.

For each observation in the master data, merge found the corresponding observation(s) in the
using data and then wrote down the matched or unmatched result. Once the master observations were
exhausted, merge wrote down any observations from the using data that were never used.

m:m merges

m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched
within equal values of the key variable(s), with the first observation being matched to the first; the
second, to the second; and so on. If the master and using have an unequal number of observations
within the group, then the last observation of the shorter group is used repeatedly to match with
subsequent observations of the longer group. Thus m:m merges are dependent on the current sort
order—something which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think
that you need an m:m merge, then you probably need to work with your data so that you can use a
1:m or m:1 merge. Tips for this are given in Troubleshooting m:m merges below.

Sequential merges

In a sequential merge, there are no key variables. Observations are matched solely on their
observation number:



merge — Merge datasets 9

. merge 1:1 _n using filename

master  + using = merged result
x2 x1 x2 _merge
10 7 10 7 3
30 2 30 2 3
20 1 20 1 3
5 9 5 9 3
3 3 2

In the example above, the using data are longer than the master, but that could be reversed. In
most cases where sequential merges are appropriate, the datasets are expected to be of equal length,
and you should type

. merge 1:1 _n using filename, assert(match) nogenerate

Sequential merges, like m:m merges, are dangerous. Both depend on the current sort order of the
data.

Treatment of overlapping variables

When performing merges of any type, the master and using datasets may have variables in common
other than the key variables. We will call such variables overlapping variables. For instance, if the
variables in the master and using datasets are

master: id, region, sex, age, race

using: id, sex, bp, race

and id is the key variable, then the overlapping variables are sex and race.

By default, merge treats values from the master as inviolable. When observations match, it is the
master’s values of the overlapping variables that are recorded in the merged result.

If you specify the update option, however, then all missing values of overlapping variables in
matched observations are replaced with values from the using data. Because of this new behavior,
the merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes
3,4, and 5. Codes 3, 4, and 5 are filtered according to the following rules; the first applicable rule
is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting
nonmissing values.

4 corresponds to matched observations where at least one missing value was updated, but there
were no conflicting nonmissing values.

3 means observations matched, and there were neither updated missing values nor conflicting
nonmissing values.

If you specify both the update and replace options, then the _merge==5 cases are updated with
values from the using data.



10 merge — Merge datasets

Sort order

As we have mentioned, in the 1:1, 1:m, and m: 1 match merges, the sort orders of the master and
using datasets do not affect the data in the merged dataset. This is not the case of m:m, which we
recommend you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most
quickly when the master and using datasets are already sorted by the key variable(s) before merging.
You are not required to have the dataset sorted before using merge, however, because merge will
sort behind the scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made
and sorted to ensure that the current sort order on disk is not affected.

All this is to reassure you that 1) your datasets on disk will not be modified by merge and 2)
despite the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the
scenes.

It hardly makes any difference in run times, but if you know that the master and using data are
already sorted by the key variable(s), then you can specify the sorted option. All that will be saved
is the time merge would spend discovering that fact for itself.

The merged result produced by merge orders the variables and observations in a special and
sometimes useful way. If you think of datasets as tables, then the columns for the new variables
appear to the right of what was the master. If the master data originally had k variables, then the new
variables will be the (k + 1)st, (k + 2)nd, and so on. The new observations are similarly ordered so
that they all appear at the end of what was the master. If the master originally had N observations,
then the new observations, if any, are the (/V + 1)st, (N 4 2)nd, and so on. Thus the original master
data can be found from the merged result by extracting the first k& variables and first N observations.
If merge with the update option was specified, however, then be aware that the extracted master
may have some updated values.

The merged result is unsorted except for a 1:1 merge, where there are only matched observations.
Here the dataset is sorted by the key variables.

Troubleshooting m:m merges

First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you
would like to match every observation in the master to every observation in the using with the same
values of the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that
could be used to identify observations within groups. Perhaps you have panel data with 4 observations
on each subject, and you are thinking that what you need to do is

. merge m:m subjectid using filename

Ask yourself if you have a variable that identifies observation within panel, such as a sequence
number or a time. If you have, say, a time variable, then you probably should try something like

. merge 1:m subjectid time using filename

(You might need a 1:1 or m:1 merge; 1:m was arbitrarily chosen for the example.)

If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching
the first observations within subject, the second observations within subject, and so on. If so, then
there is a concept of sequence within subject.


http://www.stata.com/manuals13/djoinby.pdf#djoinby

merge — Merge datasets 11

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering
of the observations. Here you are in a dangerous situation because any kind of sorting would lose
the identity of the first, second, and nth observation within subject. Your first goal should be to fix
this problem by creating an explicit sequence variable from the current ordering—your merge can
come later.

Start with your master data. Type
. sort subjectid, stable
. by subjectid: gen seqnum = _n
Do not omit sort’s stable option. That is what will keep the observations in the same order
within subject. Save the data. Perform these same three steps on your using data.
After fixing the datasets, you can now type
. merge 1:m subjectid seqnum using filename
If you do not think there is a meaning to being the first, second, and nth observation within subject,
then you need to ask yourself what it means to match the first observations within subjectid, the
second observations within subjectid, and so on. Would it make equal sense to match the first with
the third, the second with the fourth, or any other haphazard matching? If so, then there is no real

ordering, so there is no real meaning to merging. You are about to obtain a haphazard result; you
need to rethink your merge.

Examples

> Example 1: A 1:1 merge
We have two datasets, one of which has information about the size of old automobiles, and the
other of which has information about their expense:

. use http://www.stata-press.com/data/r13/autosize
(1978 Automobile Data)

. list

make weight length
1. Toyota Celica 2,410 174
2. BMW 320i 2,650 177
3. Cad. Seville 4,290 204
4. Pont. Grand Prix 3,210 201
5. Datsun 210 2,020 165
6. Plym. Arrow 3,260 170

. use http://www.stata-press.com/data/r13/autoexpense
(1978 Automobile Data)

. list
make price mpg
1. Toyota Celica 5,899 18
2. BMW 320i 9,735 25
3. Cad. Seville 15,906 21
4. Pont. Grand Prix 5,222 19
5. Datsun 210 4,589 35




12 merge — Merge datasets

We can see that these datasets contain different information about nearly the same cars—the autosize

file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We
need only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each
of the two datasets, also identifies individual observations within the datasets. What this means is
that if you tell me the make of car, I can tell you the one observation that corresponds to that car.

Because this is true for both datasets, we should use a 1:1 merge.

We will start with a clean slate to show the full process:

. use http://www.stata-press.com/data/r13/autosize

(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press

.com/data/r13/autoexpense

Result # of obs.
not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)
matched 5 (_merge==3)
. list
make weight length price mpg _merge
1. | BMW 320i 2,650 177 9,735 25 matched (3)
2. | Cad. Seville 4,290 204 15,906 21 matched (3)
3. | Datsun 210 2,020 165 4,589 35 matched (3)
4. | Plym. Arrow 3,260 170 . master only (1)
5. Pont. Grand Prix 3,210 201 5,222 19 matched (3)
6. Toyota Celica 2,410 174 5,899 18 matched (3)

The merge is successful—all the data are present in the combined dataset, even that from the one car
that has only size information. If we wanted only those makes for which all information is present,
it would be up to us to drop the observations for which _merge < 3.

> Example 2: Requiring matches

4

Suppose we had the same setup as in the previous example, but we erroneously think that we have
all the information on all the cars. We could tell merge that we expect only matches by using the

assert option.

. use http://www.stata-press.com/data/r13/autosize, clear

(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/ri3/autoexpense,

> assert(match)

merge: after merge, not all observations matched
(merged result left in memory)

r(9);

merge tells us that there is a problem with our assumption. To see how many mismatches there

were, we can tabulate _merge:


http://www.stata.com/manuals13/perror.pdf#perrorRemarksandexamplesr(9)

merge — Merge datasets 13

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 1 16.67 16.67

matched (3) 5 83.33 100.00
Total 6 100.00

If we would like to list the problem observation, we can type

. list if _merge < 3

make weight length price mpg _merge

4. | Plym. Arrow 3,260 170 . . master only (1)

If we were convinced that all data should be complete in the two datasets, we would have to
rectify the mismatch in the original datasets.

N

> Example 3: Keeping just the matches

Once again, suppose that we had the same datasets as before, but this time we want the final
dataset to have only those observations for which there is a match. We do not care if there are
mismatches—all that is important are the complete observations. By using the keep (match) option,
we will guarantee that this happens. Because we are keeping only those observations for which the
key variable matches, there is no need to generate the _merge variable. We could do the following:

. use http://www.stata-press.com/data/r13/autosize, clear
(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r13/autoexpense,
> keep(match) nogenerate

Result # of obs.

not matched 0

matched 5

. list

make weight length price mpg
1. BMW 320i 2,650 177 9,735 25
2. Cad. Seville 4,290 204 15,906 21
3. Datsun 210 2,020 165 4,589 35
4. Pont. Grand Prix 3,210 201 5,222 19
5. Toyota Celica 2,410 174 5,899 18

> Example 4: Many-to-one matches

We have two datasets: one has salespeople in regions and the other has regional data about sales.
We would like to put all the information into one dataset. Here are the datasets:



14 merge — Merge datasets

. use http://www.stata-press.com/data/r13/sforce, clear

(Sales Force)

. list
region name
1. N Cntrl Krantz
2. N Cntrl Phipps
3. N Cntrl Willis
4. NE Ecklund
5. NE Franks
6. South Anderson
7. South Dubnoff
8. South Lee
9. South McNeil
10. West Charles
11. West Cobb
12. West Grant

. use http://www.stata-press.com/data/r13/dollars
(Regional Sales & Costs)

. list
region sales cost
1. N Cntrl 419,472 227,677
2. NE 360,523 138,097
3. South 532,399 330,499
4. West 310,565 165,348

We can see that the region would be used to match observations in the two datasets, and this time
we see that region identifies individual observations in the dollars dataset but not in the sforce
dataset. This means we will have to use either anm: 1 or a 1:m merge. Here we will open the sforce
dataset and then merge the dollars dataset. This will be an m:1 merge, because region does not
identify individual observations in the dataset in memory but does identify them in the using dataset.

Here is the command and its result:

. use http://www.stata-press.com/data/r13/sforce

(Sales Force)

. merge m:1 region using http://www.stata-press.com/data/r13/dollars

(label region already defined)

Result # of obs.
not matched 0
matched 12

(_merge==3)



merge — Merge datasets 15

. list
region name sales cost _merge
1. N Cntrl Krantz 419,472 227,677 matched (3)
2. | N Cntrl Phipps 419,472 227,677 matched (3)
3. N Cntrl Willis 419,472 227,677 matched (3)
4. NE Ecklund 360,523 138,097 matched (3)
5. NE Franks 360,523 138,097 matched (3)
6. South Anderson 532,399 330,499 matched (3)
7. South Dubnoff 532,399 330,499 matched (3)
8. South Lee 532,399 330,499 matched (3)
9. South McNeil 532,399 330,499 matched (3)
10. West Charles 310,565 165,348 matched (3)
11. West Cobb 310,565 165,348 matched (3)
12. West Grant 310,565 165,348 matched (3)

We can see from the result that all the values of region were matched in both datasets. This is a
rare occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have
done a 1:m merge.

d

We would now like to use a series of examples that shows how merge treats nonkey variables,
which have the same names in the two datasets. We will call these “overlapping” variables.

> Example 5: Overlapping variables

Here are two datasets whose only purpose is for this illustration:

. use http://www.stata-press.com/data/ri3/overlapl, clear

. list, sepby(id)

id seq x1 x2
1. 1 1 1 1
2. 1 2 1 .
3. 1 3 1 2
4. 1 4 2
5. 2 1 1
6. 2 2 2
7. 2 3 1 1
8. 2 4 1 2
9. 2 5 a 1
10. 2 6 a 2
11. 3 1 .a
12. 3 2 1
13. 3 3 .
14. 3 4 a .a
15. 10 1 5 8

. use http://www.stata-press.com/data/r13/overlap2



16 merge — Merge datasets

. list
id bar x1 x2
1. 1 11 1 1
2. 2 12 1
3. 3 14 . .a
4. 20 18 1 1

We can see that id can be used as the key variable for putting the two datasets together. We can also
see that there are two overlapping variables: x1 and x2.

We will start with a simple m:1 merge:

. use http://www.stata-press.com/data/r13/overlapl

. merge m:1 id using http://www.stata-press.com/data/r13/overlap2

Result # of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14 (_merge==3)
. list, sepby(id)
id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 11 matched (3)
3. 1 3 1 2 11 matched (3)
4. 1 4 2 11 matched (3)
5. 2 1 1 12 matched (3)
6. 2 2 . 2 12 matched (3)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 matched (3)
9. 2 5 .a 1 12 matched (3)
10. 2 6 .a 2 12 matched (3)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 . 14 matched (3)
14. 3 4 a .a 14 matched (3)
15. | 10 1 5 8 master only (1)
16. 20 . 1 1 18 using only (2)

Careful inspection shows that for the matched id, the
were originally in the overlapl dataset. This is the
master dataset is the authority and is kept intact.

values of x1 and x2 are still the values that
default behavior of merge—the data in the

4



merge — Merge datasets 17

> Example 6: Updating missing data

Now we would like to investigate the update option. Used by itself, it will replace missing values
in the master dataset with values from the using dataset:

. use http://www.stata-press.com/data/r13/overlapl, clear

. merge m:1 id using http://www.stata-press.com/data/r13/overlap2, update

Result # of obs.

not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

. list, sepby(id)

id seq x1 x2  bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 2 11  nonmissing conflict (5)
4. 1 4 1 2 11  nonmissing conflict (5)
5. 2 1 . 1 12 matched (3)
6. 2 2 . 2 12  nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 nonmissing conflict (5)
9. 2 5 . 1 12 missing updated (4)
10. 2 6 . 2 12  nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)
15 10 1 5 8 master only (1)
16. | 20 . 1 1 18 using only (2)

Looking through the resulting dataset observation by observation, we can see both what the update
option updated as well as how the _merge variable gets its values.

The following is a listing that shows what is happening, where x1_m and x2_m come from the
master dataset (overlapl), x1_u and x2_u come from the using dataset (overlap2), and x1 and
x2 are the values that appear when using merge with the update option.



18 merge — Merge datasets

id | x1m [ x1_u [ x1 | x2_m | x2_u [ x2 _merge
1. 1 1 1 1 1 1 1 matched (3)
2. 1 1 1 1 . 1 1 missing updated (4)
3. 1 1 1 1 2 1 2 nonmissing conflict (5)
4. 1 1 1 2 1 2 | nonmissing conflict (5)
5. 2 1 1 1 matched (3)
6. 2 . . 2 1 2 | nonmissing conflict (5)
7. 2 1 1 1 1 1 matched (3)
8. 2 1 1 2 1 2 | nonmissing conflict (5)
9. 2 .a 1 1 1 missing updated (4)
10. 2 .a 2 1 2 | nonmissing conflict (5)
11. 3 .a .a | .a matched (3)
12. 3 1 .a 1 matched (3)
13. 3 .a | .a missing updated (4)
14. 3 a a .a | .a missing updated (4)
15. 10 5 . 5 8 . 8 master only (1)
16. | 20 . 1 1 . 1 1 using only (2)

From this, we can see two important facts: if there are both a conflict and an updated value, the
value of _merge will reflect that there was a conflict, and missing values in the master dataset are
updated by missing values in the using dataset.

N

> Example 7: Updating all common observations

We would like to see what happens if the update and replace options are specified. The replace
option extends the action of update to use nonmissing values of the using dataset to replace values
in the master dataset. The values of _merge are unaffected by using both update and replace.

. use http://www.stata-press.com/data/r13/overlapl, clear

. merge m:1 id using http://www.stata-press.com/data/r13/overlap2, update replace

Result # of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)




merge — Merge datasets 19

. list, sepby(id)

id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 1 11 nonmissing conflict (5)
4. 1 4 1 1 11  nonmissing conflict (5)
5. 2 1 1 12 matched (3)
6. 2 2 . 1 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 1 12 nonmissing conflict (5)
9. 2 5 1 12 missing updated (4)
10. 2 6 1 12 nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)
15. | 10 1 5 8 master only (1)
16. | 20 . 1 1 18 using only (2)

> Example 8: More on the keep() option

Suppose we would like to use the update option, as we did above, but we would like to keep
only those observations for which the value of the key variable, id, was found in both datasets. This
will be more complicated than in our earlier example, because the update option splits the matches
into matches, match_updates, and match_conflicts. We must either use all these code words
in the keep option or use their numerical equivalents, 3, 4, and 5. Here the latter is simpler.

. use http://www.stata-press.com/data/r13/overlapl, clear

. merge m:1 id using http://www.stata-press.com/data/r13/overlap2, update
> keep(3 4 5)

Result # of obs.

not matched 0

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)

nonmissing conflict 5 (_merge==5)




20 merge — Merge datasets

. list, sepby(id)

id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 2 11 nonmissing conflict (5)
4. 1 4 1 2 11  nonmissing conflict (5)
5. 2 1 1 12 matched (3)
6. 2 2 . 2 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 nonmissing conflict (5)
9. 2 5 1 12 missing updated (4)
10. 2 6 2 12 nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)

> Example 9: A one-to-many merge

As a final example, we would like show one example of a 1:m merge. There is nothing conceptually
different here; what is interesting is the order of the observations in the final dataset:

. use http://www.stata-press.com/data/ri3/overlap2, clear

. merge 1:m id using http://www.stata-press.com/data/r13/overlapl

Result

# of obs.

not matched
from master
from using

matched

2

1 (_merge==1)
1 (_merge==2)

14 (_merge==3)




merge — Merge datasets 21

. list, sepby(id)

id bar x1 x2 seq _merge
1. 1 11 1 1 1 matched (3)
2. 2 12 . 1 1 matched (3)
3. 3 14 . .a 1 matched (3)
4. | 20 18 1 1 . master only (1)
5. 1 11 1 1 2 matched (3)
6. 1 11 1 1 3 matched (3)
7. 1 11 1 1 4 matched (3)
8. 2 12 1 2 matched (3)
9. 2 12 1 3 matched (3)
10. 2 12 1 4 matched (3)
11. 2 12 1 5 matched (3)
12. 2 12 1 6 matched (3)
13. 3 14 2 matched (3)
14. 3 14 . .a 3 matched (3)
15. 3 14 . .a 4 matched (3)
16. 10 . 5 8 1 using only (2)

We can see here that the first four observations come from the master dataset, and all additional
observations, whether matched or unmatched, come below these observations. This illustrates that the
master dataset is always in the upper-left corner of the merged dataset.

4

References
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152-156.

Gould, W. W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/04/18/merging-data-part- 1-merges-gone-bad/.

——. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3-5. Reprinted in Stata
Technical Bulletin Reprints, vol. 4, pp. 22-25. College Station, TX: Stata Press.

Weesie, J. 2000. dm75: Safe and easy matched merging. Stata Technical Bulletin 53: 6-17. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 62-77. College Station, TX: Stata Press.

Also see
[D] append — Append datasets
[D] cross — Form every pairwise combination of two datasets
[D] joinby — Form all pairwise combinations within groups
[D] save — Save Stata dataset
[D] sort — Sort data
[U] 22 Combining datasets


http://www.stata-journal.com/sjpdf.html?articlenum=dm0046
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://www.stata.com/products/stb/journals/stb20.pdf
http://www.stata.com/products/stb/journals/stb53.pdf
http://www.stata.com/manuals13/dappend.pdf#dappend
http://www.stata.com/manuals13/dcross.pdf#dcross
http://www.stata.com/manuals13/djoinby.pdf#djoinby
http://www.stata.com/manuals13/dsave.pdf#dsave
http://www.stata.com/manuals13/dsort.pdf#dsort
http://www.stata.com/manuals13/u22.pdf#u22Combiningdatasets

