
Title stata.com

functions — Functions

Description Acknowledgments References Also see

Description
This entry describes the functions allowed by Stata. For information on Mata functions, see

[M-4] intro.

A quick note about missing values: Stata denotes a numeric missing value by ., .a, .b, . . . ,
or .z. A string missing value is denoted by "" (the empty string). Here any one of these may be
referred to by missing. If a numeric value x is missing, then x ≥ . is true. If a numeric value x is
not missing, then x < . is true.

Functions are listed under the following headings:

Mathematical functions
Probability distributions and density functions
Random-number functions
String functions
Programming functions
Date and time functions
Selecting time spans
Matrix functions returning a matrix
Matrix functions returning a scalar

Mathematical functions

abs(x)
Domain: −8e+307 to 8e+307
Range: 0 to 8e+307
Description: returns the absolute value of x.

acos(x)
Domain: −1 to 1
Range: 0 to π
Description: returns the radian value of the arccosine of x.

acosh(x)
Domain: 1 to 8.9e+307
Range: 0 to 709.77
Description: returns the inverse hyperbolic cosine of x, acosh(x) = ln(x+

√
x2 − 1).

asin(x)
Domain: −1 to 1
Range: −π/2 to π/2
Description: returns the radian value of the arcsine of x.

asinh(x)
Domain: −8.9e+307 to 8.9e+307
Range: −709.77 to 709.77
Description: returns the inverse hyperbolic sine of x, asinh(x) = ln(x+

√
x2 + 1).

1

http://stata.com
http://www.stata.com/manuals13/m-4intro.pdf#m-4intro

2 functions — Functions

atan(x)
Domain: −8e+307 to 8e+307
Range: −π/2 to π/2
Description: returns the radian value of the arctangent of x.

atan2(y, x)
Domain y: −8e+307 to 8e+307
Domain x: −8e+307 to 8e+307
Range: −π to π
Description: returns the radian value of the arctangent of y/x, where the signs of the parameters

y and x are used to determine the quadrant of the answer.

atanh(x)
Domain: −1 to 1
Range: −8e+307 to 8e+307
Description: returns the inverse hyperbolic tangent of x, atanh(x) = 1

2{ln(1 +x)− ln(1−x)}.

ceil(x)
Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307
Description: returns the unique integer n such that n− 1 < x ≤ n.

returns x (not “.”) if x is missing, meaning that ceil(.a) = .a.

Also see floor(x), int(x), and round(x).

cloglog(x)
Domain: 0 to 1
Range: −8e+307 to 8e+307
Description: returns the complementary log-log of x,

cloglog(x) = ln{−ln(1− x)}.

comb(n,k)
Domain n: integers 1 to 1e+305
Domain k: integers 0 to n
Range: 0 to 8e+307 and missing
Description: returns the combinatorial function n!/{k!(n− k)!}.

cos(x)
Domain: −1e+18 to 1e+18
Range: −1 to 1
Description: returns the cosine of x, where x is in radians.

cosh(x)
Domain: −709 to 709
Range: 1 to 4.11e+307
Description: returns the hyperbolic cosine of x, cosh(x) = {exp(x) + exp(−x)}/2.

digamma(x)
Domain: −1e+15 to 8e+307
Range: −8e+307 to 8e+307 and missing
Description: returns the digamma() function, d lnΓ(x)/dx. This is the derivative of lngamma(x).

The digamma(x) function is sometimes called the psi function, ψ(x).

functions — Functions 3

exp(x)
Domain: −8e+307 to 709
Range: 0 to 8e+307
Description: returns the exponential function ex. This function is the inverse of ln(x).

floor(x)
Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307
Description: returns the unique integer n such that n ≤ x < n+ 1.

returns x (not “.”) if x is missing, meaning that floor(.a) = .a.

Also see ceil(x), int(x), and round(x).

int(x)
Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307
Description: returns the integer obtained by truncating x toward 0; thus,

int(5.2) = 5
int(-5.8) = −5

returns x (not “.”) if x is missing, meaning that int(.a) = .a.

One way to obtain the closest integer to x is int(x+sign(x)/2), which
simplifies to int(x+0.5) for x ≥ 0. However, use of the round() function is
preferred. Also see ceil(x), int(x), and round(x).

invcloglog(x)
Domain: −8e+307 to 8e+307
Range: 0 to 1 and missing
Description: returns the inverse of the complementary log-log function of x,

invcloglog(x) = 1− exp{−exp(x)}.

invlogit(x)
Domain: −8e+307 to 8e+307
Range: 0 to 1 and missing
Description: returns the inverse of the logit function of x,

invlogit(x) = exp(x)/{1 + exp(x)}.

ln(x)
Domain: 1e–323 to 8e+307
Range: −744 to 709
Description: returns the natural logarithm, ln(x). This function is the inverse of exp(x).

The logarithm of x in base b can be calculated via logb(x) = loga(x)/ loga(b).
Hence,

log5(x) = ln(x)/ln(5) = log(x)/log(5) = log10(x)/log10(5)
log2(x) = ln(x)/ln(2) = log(x)/log(2) = log10(x)/log10(2)

You can calculate logb(x) by using the formula that best suits your needs.

4 functions — Functions

lnfactorial(n)
Domain: integers 0 to 1e+305
Range: 0 to 8e+307
Description: returns the natural log of factorial = ln(n!).

To calculate n!, use round(exp(lnfactorial(n)),1) to ensure that the result is
an integer. Logs of factorials are generally more useful than the factorials themselves
because of overflow problems.

lngamma(x)
Domain: −2,147,483,648 to 1e+305 (excluding negative integers)
Range: −8e+307 to 8e+307
Description: returns ln{Γ(x)}. Here the gamma function, Γ(x), is defined by

Γ(x) =
∫∞
0
tx−1e−tdt. For integer values of x > 0, this is ln((x− 1)!).

lngamma(x) for x < 0 returns a number such that exp(lngamma(x)) is equal to
the absolute value of the gamma function, Γ(x). That is, lngamma(x) always returns
a real (not complex) result.

log(x)
Domain: 1e–323 to 8e+307
Range: −744 to 709
Description: returns the natural logarithm, ln(x), which is a synonym for ln(x). Also see ln(x)

for more information.

log10(x)
Domain: 1e–323 to 8e+307
Range: −323 to 308
Description: returns the base-10 logarithm of x.

logit(x)
Domain: 0 to 1 (exclusive)
Range: −8e+307 to 8e+307 and missing
Description: returns the log of the odds ratio of x,

logit(x) = ln {x/(1− x)}.

max(x1,x2,. . .,xn)
Domain x1: −8e+307 to 8e+307 and missing
Domain x2: −8e+307 to 8e+307 and missing
. . .
Domain xn: −8e+307 to 8e+307 and missing
Range: −8e+307 to 8e+307 and missing
Description: returns the maximum value of x1, x2, . . . , xn. Unless all arguments are missing,

missing values are ignored.
max(2,10,.,7) = 10
max(.,.,.) = .

functions — Functions 5

min(x1,x2,. . .,xn)
Domain x1: −8e+307 to 8e+307 and missing
Domain x2: −8e+307 to 8e+307 and missing
. . .
Domain xn: −8e+307 to 8e+307 and missing
Range: −8e+307 to 8e+307 and missing
Description: returns the minimum value of x1, x2, . . . , xn. Unless all arguments are missing,

missing values are ignored.
min(2,10,.,7) = 2
min(.,.,.) = .

mod(x,y)
Domain x: −8e+307 to 8e+307
Domain y: 0 to 8e+307
Range: 0 to 8e+307
Description: returns the modulus of x with respect to y.

mod(x, y) = x− y floor(x/y)
mod(x,0) = .

reldif(x,y)
Domain x: −8e+307 to 8e+307 and missing
Domain y: −8e+307 to 8e+307 and missing
Range: −8e+307 to 8e+307 and missing
Description: returns the “relative” difference |x− y|/(|y|+ 1).

returns 0 if both arguments are the same type of extended missing value.
returns missing if only one argument is missing or if the two arguments are

two different types of missing.

round(x,y) or round(x)
Domain x: −8e+307 to 8e+307
Domain y: −8e+307 to 8e+307
Range: −8e+307 to 8e+307
Description: returns x rounded in units of y or x rounded to the nearest integer if the argument

y is omitted.
returns x (not “.”) if x is missing, meaning that round(.a) = .a and

round(.a,y) = .a if y is not missing; if y is missing, then “.” is returned.

For y = 1, or with y omitted, this amounts to the closest integer to x; round(5.2,1)
is 5, as is round(4.8,1); round(-5.2,1) is −5, as is round(-4.8,1). The
rounding definition is generalized for y 6= 1. With y = 0.01, for instance, x is
rounded to two decimal places; round(sqrt(2),.01) is 1.41. y may also be larger
than 1; round(28,5) is 30, which is 28 rounded to the closest multiple of 5.
For y = 0, the function is defined as returning x unmodified. Also see
int(x), ceil(x), and floor(x).

sign(x)
Domain: −8e+307 to 8e+307 and missing
Range: −1, 0, 1 and missing
Description: returns the sign of x: −1 if x < 0, 0 if x = 0, 1 if x > 0, and missing

if x is missing.

6 functions — Functions

sin(x)
Domain: −1e+18 to 1e+18
Range: −1 to 1
Description: returns the sine of x, where x is in radians.

sinh(x)
Domain: −709 to 709
Range: −4.11e+307 to 4.11e+307
Description: returns the hyperbolic sine of x, sinh(x) = {exp(x)− exp(−x)}/2.

sqrt(x)
Domain: 0 to 8e+307
Range: 0 to 1e+154
Description: returns the square root of x.

sum(x)
Domain: all real numbers and missing
Range: −8e+307 to 8e+307 (excluding missing)
Description: returns the running sum of x, treating missing values as zero.

For example, following the command generate y=sum(x), the jth observation
on y contains the sum of the first through jth observations on x. See [D] egen for
an alternative sum function, total(), that produces a constant equal to the overall
sum.

tan(x)
Domain: −1e+18 to 1e+18
Range: −1e+17 to 1e+17 and missing
Description: returns the tangent of x, where x is in radians.

tanh(x)
Domain: −8e+307 to 8e+307
Range: −1 to 1 and missing
Description: returns the hyperbolic tangent of x,

tanh(x) = {exp(x)− exp(−x)}/{exp(x) + exp(−x)}.

trigamma(x)
Domain: −1e+15 to 8e+307
Range: 0 to 8e+307 and missing
Description: returns the second derivative of lngamma(x) = d2 lnΓ(x)/dx2. The trigamma()

function is the derivative of digammma(x).

trunc(x) is a synonym for int(x).

Technical note

The trigonometric functions are defined in terms of radians. There are 2π radians in a circle. If
you prefer to think in terms of degrees, because there are also 360 degrees in a circle, you may
convert degrees into radians by using the formula r = dπ/180, where d represents degrees and r
represents radians. Stata includes the built-in constant pi, equal to π to machine precision. Thus,
to calculate the sine of theta, where theta is measured in degrees, you could type

sin(theta* pi/180)

http://www.stata.com/manuals13/degen.pdf#degen
http://www.stata.com/manuals13/degen.pdf#degenSyntaxtotal()

functions — Functions 7

atan() similarly returns radians, not degrees. The arccotangent can be obtained as

acot(x) = pi/2 - atan(x)

Probability distributions and density functions

The probability distributions and density functions are organized under the following headings:

Beta and noncentral beta distributions
Binomial distribution
Chi-squared and noncentral chi-squared distributions
Dunnett’s multiple range distribution
F and noncentral F distributions
Gamma distribution
Hypergeometric distribution
Negative binomial distribution
Normal (Gaussian), log of the normal, and binormal distributions
Poisson distribution
Student’s t and noncentral Student’s t distributions
Tukey’s Studentized range distribution

Beta and noncentral beta distributions

ibeta(a,b,x)
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1
Description: returns the cumulative beta distribution with shape parameters a and b defined by

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1 dt

returns 0 if x < 0.
returns 1 if x > 1.

ibeta() returns the regularized incomplete beta function, also known as the
incomplete beta function ratio. The incomplete beta function without
regularization is given by (gamma(a)*gamma(b)/gamma(a+b))*ibeta(a,b,x)
or, better when a or b might be large,
exp(lngamma(a)+lngamma(b)-lngamma(a+b))*ibeta(a,b,x).

Here is an example of the use of the regularized incomplete beta function.
Although Stata has a cumulative binomial function (see binomial()), the
probability that an event occurs k or fewer times in n trials, when the
probability of one event is p, can be evaluated as
cond(k==n,1,1-ibeta(k+1,n-k,p)). The reverse cumulative binomial
(the probability that an event occurs k or more times) can be evaluated
as cond(k==0,1,ibeta(k,n-k+1,p)). See Press et al. (2007, 270–273)
for a more complete description and for suggested uses for this function.

8 functions — Functions

betaden(a,b,x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 8e+307
Description: returns the probability density of the beta distribution,

betaden(a,b,x) =
xa−1(1− x)b−1∫∞

0
ta−1(1− t)b−1dt

=
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

where a and b are the shape parameters.
returns 0 if x < 0 or x > 1.

ibetatail(a,b,x)
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) beta distribution with shape

parameters a and b defined by

ibetatail(a,b,x) = 1− ibeta(a,b,x) =

∫ 1

x

betaden(a,b,t) dt

returns 1 if x < 0.
returns 0 if x > 1.

ibetatail() is also known as the complement to the incomplete beta function
(ratio).

invibeta(a,b,p)
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse cumulative beta distribution: if ibeta(a,b,x) = p,

then invibeta(a,b,p) = x.

invibetatail(a,b,p)
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse reverse cumulative (upper tail or survivor) beta distribution:

if ibetatail(a,b,x) = p, then invibetatail(a,b,p) = x.

functions — Functions 9

nibeta(a,b,np,x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1
Description: returns the cumulative noncentral beta distribution

Ix(a, b, np) =

∞∑
j=0

e−np/2(np/2)j

Γ(j + 1)
Ix(a+ j, b)

where a and b are shape parameters, np is the noncentrality parameter, x is the
value of a beta random variable, and Ix(a, b) is the cumulative beta distribution,
ibeta().

returns 0 if x < 0.
returns 1 if x > 1.

nibeta(a,b,0,x)= ibeta(a,b,x), but ibeta() is the preferred function
to use for the central beta distribution. nibeta() is computed using an
algorithm described in Johnson, Kotz, and Balakrishnan (1995).

nbetaden(a,b,np,x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 1,000
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 8e+307
Description: returns the probability density function of the noncentral beta distribution,

∞∑
j=0

e−np/2(np/2)j

Γ(j + 1)

{
Γ(a+ b+ j)

Γ(a+ j)Γ(b)
xa+j−1(1− x)b−1

}
where a and b are shape parameters, np is the noncentrality parameter, and
x is the value of a beta random variable.

returns 0 if x < 0 or x > 1.

nbetaden(a,b,0,x)= betaden(a,b,x), but betaden() is the preferred
function to use for the central beta distribution. nbetaden() is computed using an
algorithm described in Johnson, Kotz, and Balakrishnan (1995).

invnibeta(a,b,np,p)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 1,000
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse cumulative noncentral beta distribution:

if nibeta(a,b,np,x) = p, then invibeta(a,b,np,p) = x.

10 functions — Functions

Binomial distribution

binomial(n,k,θ)
Domain n: 0 to 1e+17
Domain k: −8e+307 to 8e+307

Interesting domain is 0 ≤ k < n
Domain θ: 0 to 1
Range: 0 to 1
Description: returns the probability of observing floor(k) or fewer successes in floor(n) trials

when the probability of a success on one trial is θ.
returns 0 if k < 0.
returns 1 if k > n.

binomialp(n,k,p)
Domain n: 1 to 1e+6
Domain k: 0 to n
Domain p: 0 to 1
Range: 0 to 1
Description: returns the probability of observing floor(k) successes in floor(n) trials when

the probability of a success on one trial is p.

binomialtail(n,k,θ)
Domain n: 0 to 1e+17
Domain k: −8e+307 to 8e+307

Interesting domain is 0 ≤ k < n
Domain θ: 0 to 1
Range: 0 to 1
Description: returns the probability of observing floor(k) or more successes in floor(n) trials

when the probability of a success on one trial is θ.
returns 1 if k < 0.
returns 0 if k > n.

invbinomial(n,k,p)
Domain n: 1 to 1e+17
Domain k: 0 to n−1
Domain p: 0 to 1 (exclusive)
Range: 0 to 1
Description: returns the inverse of the cumulative binomial; that is, it returns θ (θ = probability

of success on one trial) such that the probability of observing floor(k) or
fewer successes in floor(n) trials is p.

invbinomialtail(n,k,p)
Domain n: 1 to 1e+17
Domain k: 1 to n
Domain p: 0 to 1 (exclusive)
Range: 0 to 1
Description: returns the inverse of the right cumulative binomial; that is, it returns θ

(θ = probability of success on one trial) such that the probability of
observing floor(k) or more successes in floor(n) trials is p.

functions — Functions 11

Chi-squared and noncentral chi-squared distributions

chi2(df,x)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative χ2 distribution with df degrees of freedom.

chi2(df,x) = gammap(df/2,x/2).
returns 0 if x < 0.

chi2den(df,x)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain x: −8e+307 to 8e+307
Range: 0 to 8e+307
Description: returns the probability density of the chi-squared distribution with df

degrees of freedom. chi2den(df,x) = gammaden(df/2,2,0,x).
returns 0 if x < 0.

chi2tail(df,x)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) χ2 distribution with df degrees

of freedom. chi2tail(df,x) = 1− chi2(df,x).
returns 1 if x < 0.

invchi2(df,p)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse of chi2(): if chi2(df,x) = p, then invchi2(df,p) = x.

invchi2tail(df,p)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse of chi2tail(): if chi2tail(df,x) = p, then

invchi2tail(df,p) = x.

12 functions — Functions

nchi2(df,np,x)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative noncentral χ2 distribution,∫ x

0

e−t/2 e−np/2

2df/2

∞∑
j=0

tdf/2+j−1 npj

Γ(df/2 + j) 22j j!
dt

where df denotes the degrees of freedom, np is the noncentrality parameter,
and x is the value of χ2.

returns 0 if x < 0.

nchi2(df,0,x)= chi2(df,x), but chi2() is the preferred function to use for
the central χ2 distribution.

nchi2den(df,np,x)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307
Range: 0 to 8e+307
Description: returns the probability density of the noncentral χ2 distribution, where df denotes

the degrees of freedom, np is the noncentrality parameter, and x is the value
of the χ2.

returns 0 if x < 0.

nchi2den(df,0,x)= chi2den(df,x), but chi2den() is the preferred function
to use for the central χ2 distribution.

nchi2tail(df,np,x)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) noncentral χ2 distribution,

where df denotes the degrees of freedom, np is the noncentrality parameter,
and x is the value of the χ2.

returns 1 if x < 0.

invnchi2(df,np,p)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative noncentral χ2 distribution:

if nchi2(df,np,x) = p, then invnchi2(df,np,p) = x;
df must be an integer.

functions — Functions 13

invnchi2tail(df,np,p)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentral χ2

distribution: if nchi2tail(df,np,x) = p, then
invnchi2tail(df,np,p) = x.

npnchi2(df,x,p)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain x: 0 to 8e+307
Domain p: 0 to 1
Range: 0 to 10,000
Description: returns the noncentrality parameter, np, for noncentral χ2:

if nchi2(df,np,x) = p, then npnchi2(df,x,p) = np.

Dunnett’s multiple range distribution

dunnettprob(k,df,x)
Domain k: 2 to 1e+6
Domain df : 2 to 1e+6
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative multiple range distribution that is used in Dunnett’s

multiple-comparison method with k ranges and df degrees of freedom.
returns 0 if x < 0.

dunnettprob() is computed using an algorithm described in Miller (1981).

invdunnettprob(k,df,p)
Domain k: 2 to 1e+6
Domain df : 2 to 1e+6
Domain p: 0 to 1 (right exclusive)
Range: 0 to 8e+307
Description: returns the inverse cumulative multiple range distribution that is used in Dunnett’s

multiple-comparison method with k ranges and df degrees of freedom. If
dunnettprob(k,df,x) = p, then invdunnettprob(k,df,p) = x.

invdunnettprob() is computed using an algorithm described in Miller (1981).

14 functions — Functions� �
Charles William Dunnett (1921–2007) was a Canadian statistician best known for his work on
multiple-comparison procedures. He was born in Windsor, Ontario, and graduated in mathematics
and physics from McMaster University. After naval service in World War II, Dunnett’s career
included further graduate work, teaching, and research at Toronto, Columbia, the New York State
Maritime College, the Department of National Health and Welfare in Ottawa, Cornell, Lederle
Laboratories, and Aberdeen before he became Professor of Clinical Epidemiology and Biostatistics
at McMaster University in 1974. He was President and Gold Medalist of the Statistical Society of
Canada. Throughout his career, Dunnett took a keen interest in computing. According to Google
Scholar, his 1955 paper on comparing treatments with a control has been cited over 4,000 times.� �

F and noncentral F distributions

F(df1,df2,f)
Domain df1: 2e–10 to 2e+17 (may be nonintegral)
Domain df2: 2e–10 to 2e+17 (may be nonintegral)
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 1
Description: returns the cumulative F distribution with df1 numerator and df2 denominator

degrees of freedom: F(df1,df2,f) =
∫ f
0
Fden(df1,df2,t) dt.

returns 0 if f < 0.

Fden(df1,df2,f)
Domain df1: 1e–323 to 8e+307 (may be nonintegral)
Domain df2: 1e–323 to 8e+307 (may be nonintegral)
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 8e+307
Description: returns the probability density function of the F distribution with df1 numerator

and df2 denominator degrees of freedom:

Fden(df1,df2,f) =
Γ(df1+df22)

Γ(df12)Γ(df22)

(
df1
df2

) df1
2

· f
df1
2 −1

(
1 +

df1
df2

f

)− 1
2 (df1+df2)

returns 0 if f < 0.

Ftail(df1,df2,f)
Domain df1: 2e–10 to 2e+17 (may be nonintegral)
Domain df2: 2e–10 to 2e+17 (may be nonintegral)
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) F distribution with df1

numerator and df2 denominator degrees of freedom.
Ftail(df1,df2,f) = 1− F(df1,df2,f).

returns 1 if f < 0.

functions — Functions 15

invF(df1,df2,p)
Domain df1: 2e–10 to 2e+17 (may be nonintegral)
Domain df2: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative F distribution: if F(df1,df2,f) = p,

then invF(df1,df2,p) = f .

invFtail(df1,df2,p)
Domain df1: 2e–10 to 2e+17 (may be nonintegral)
Domain df2: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) F distribution:

if Ftail(df1,df2,f) = p, yy then invFtail(df1,df2,p) = f .

nF(df1,df2,np,f)
Domain df1: 2e–10 to 1e+8
Domain df2: 2e–10 to 1e+8
Domain np: 0 to 10,000
Domain f : −8e+307 to 8e+307
Range: 0 to 1
Description: returns the cumulative noncentral F distribution with df1 numerator and df2

denominator degrees of freedom and noncentrality parameter np.
nF(df1,df2,0,f) = F(df1,df2,f).

returns 0 if f < 0.

nF() is computed using nibeta() based on the relationship between the
noncentral beta and noncentral F distributions:
nF(df1,df2,np,f) = nibeta(df1/2,df2/2,np,df1 × f/((df1 × f) + df2)).

16 functions — Functions

nFden(df1,df2,np,f)
Domain df1: 1e–323 to 8e+307 (may be nonintegral)
Domain df2: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 8e+307
Description: returns the probability density function of the noncentral F distribution with df1

numerator and df2 denominator degrees of freedom and noncentrality
parameter np.

returns 0 if f < 0.

nFden(df1,df2,0,f)= Fden(df1,df2,f), but Fden() is the preferred function
to use for the central F distribution.

Also, if F follows the noncentral F distribution with df1 and df2 degrees of
freedom and noncentrality parameter np, then

df1F

df2 + df1F

follows a noncentral beta distribution with shape parameters a = df1/2, b = df2/2,
and noncentrality parameter np, as given in nbetaden(). nFden() is computed
based on this relationship.

nFtail(df1,df2,np,f)
Domain df1: 1e–323 to 8e+307 (may be nonintegral)
Domain df2: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) noncentral F distribution with

df1 numerator and df2 denominator degrees of freedom and noncentrality
parameter np.

returns 1 if f < 0.

nFtail() is computed using nibeta() based on the relationship between the
noncentral beta and F distributions. See Johnson, Kotz, and Balakrishnan (1995) for
more details.

invnFtail(df1,df2,np,p)
Domain df1: 1e–323 to 8e+307 (may be nonintegral)
Domain df2: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentralF distribution:

if nFtail(df1,df2,np,x) = p, then invnFtail(df1,df2,np,p) = x.

functions — Functions 17

npnF(df1,df2,f,p)
Domain df1: 2e–10 to 1e+6 (may be nonintegral)
Domain df2: 2e–10 to 1e+6 (may be nonintegral)
Domain f : 0 to 8e+307
Domain p: 0 to 1
Range: 0 to 1,000
Description: returns the noncentrality parameter, np, for the noncentral F :

if nF(df1,df2,np,f) = p, then npnF(df1,df2,f,p) = np.

Gamma distribution

gammap(a,x)
Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative gamma distribution with shape parameter a defined by

1

Γ(a)

∫ x

0

e−tta−1 dt

returns 0 if x < 0.

The cumulative Poisson (the probability of observing k or fewer events if the
expected is x) can be evaluated as 1-gammap(k+1,x). The reverse cumulative (the
probability of observing k or more events) can be evaluated as gammap(k,x). See
Press et al. (2007, 259–266) for a more complete description and for suggested uses
for this function.

gammap() is also known as the incomplete gamma function (ratio).

Probabilities for the three-parameter gamma distribution (see gammaden()) can
be calculated by shifting and scaling x; that is, gammap(a,(x− g)/b).

gammaden(a,b,g,x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain g: −8e+307 to 8e+307
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ g
Range: 0 to 8e+307
Description: returns the probability density function of the gamma distribution defined by

1

Γ(a)ba
(x− g)a−1e−(x−g)/b

where a is the shape parameter, b is the scale parameter, and g is the
location parameter.

returns 0 if x < g.

18 functions — Functions

gammaptail(a,x)
Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) gamma distribution with shape

parameter a defined by

gammaptail(a,x) = 1− gammap(a,x) =

∫ ∞
x

gammaden(a,t) dt

returns 1 if x < 0.

gammaptail() is also known as the complement to the incomplete gamma function
(ratio).

invgammap(a,p)
Domain a: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative gamma distribution: if gammap(a,x) = p,

then invgammap(a,p) = x.

invgammaptail(a,p)
Domain a: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) gamma distribution:

if gammaptail(a,x) = p, then invgammaptail(a,p) = x.

dgammapda(a,x)
Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: −16 to 0
Description: returns ∂P (a,x)

∂a , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

dgammapdada(a,x)
Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: −0.02 to 4.77e+5
Description: returns ∂2P (a,x)

∂a2 , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

functions — Functions 19

dgammapdadx(a,x)
Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: −0.04 to 8e+307
Description: returns ∂2P (a,x)

∂a∂x , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

dgammapdx(a,x)
Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 8e+307
Description: returns ∂P (a,x)

∂x , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

dgammapdxdx(a,x)
Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1e+40
Description: returns ∂2P (a,x)

∂x2 , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

Hypergeometric distribution

hypergeometric(N,K,n,k)
Domain N : 2 to 1e+5
Domain K: 1 to N−1
Domain n: 1 to N−1
Domain k: max(0,n−N +K) to min(K,n)
Range: 0 to 1
Description: returns the cumulative probability of the hypergeometric distribution. N is the

population size, K is the number of elements in the population that have the
attribute of interest, and n is the sample size. Returned is the probability
of observing k or fewer elements from a sample of size n that have
the attribute of interest.

hypergeometricp(N,K,n,k)
Domain N : 2 to 1e+5
Domain K: 1 to N−1
Domain n: 1 to N−1
Domain k: max(0,n−N +K) to min(K,n)
Range: 0 to 1 (right exclusive)
Description: returns the hypergeometric probability of k successes (where success is obtaining

an element with the attribute of interest) out of a sample of size n, from
a population of size N containing K elements that have the attribute of interest.

20 functions — Functions

Negative binomial distribution

nbinomial(n,k,p)
Domain n: 1e–10 to 1e+17 (can be nonintegral)
Domain k: 0 to 253 − 1
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1
Description: returns the cumulative probability of the negative binomial distribution. n can be

nonintegral. When n is an integer, nbinomial() returns the probability of
observing k or fewer failures before the nth success, when the probability of
a success on one trial is p.

The negative binomial distribution function is evaluated using the ibeta() function.

nbinomialp(n,k,p)
Domain n: 1e–10 to 1e+6 (can be nonintegral)
Domain k: 0 to 1e+10
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1
Description: returns the negative binomial probability. When n is an integer, nbinomialp()

returns the probability of observing exactly floor(k) failures before
the nth success, when the probability of a success on one trial is p.

nbinomialtail(n,k,p)
Domain n: 1e–10 to 1e+17 (can be nonintegral)
Domain k: 0 to 253 − 1
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1
Description: returns the reverse cumulative probability of the negative binomial distribution. When

n is an integer, nbinomialtail() returns the probability of observing k or
more failures before the nth success, when the probability of a success on one
trial is p.

The reverse negative binomial distribution function is evaluated using the
ibetatail() function.

invnbinomial(n,k,q)
Domain n: 1e–10 to 1e+17 (can be nonintegral)
Domain k: 0 to 253 − 1
Domain q: 0 to 1 (exclusive)
Range: 0 to 1
Description: returns the value of the negative binomial parameter, p, such that

q = nbinomial(n,k,p).

invnbinomial() is evaluated using invibeta().

functions — Functions 21

invnbinomialtail(n,k,q)
Domain n: 1e–10 to 1e+17 (can be nonintegral)
Domain k: 1 to 253 − 1
Domain q: 0 to 1 (exclusive)
Range: 0 to 1 (exclusive)
Description: returns the value of the negative binomial parameter, p, such that

q = nbinomialtail(n,k,p).

invnbinomialtail() is evaluated using invibetatail().

Normal (Gaussian), log of the normal, and binormal distributions

binormal(h,k,ρ)
Domain h: −8e+307 to 8e+307
Domain k: −8e+307 to 8e+307
Domain ρ: −1 to 1
Range: 0 to 1
Description: returns the joint cumulative distribution Φ(h, k , ρ) of bivariate normal

with correlation ρ; cumulative over (−∞, h]× (−∞, k]:

Φ(h, k, ρ) =
1

2π
√

1− ρ2

∫ h

−∞

∫ k

−∞
exp

{
− 1

2(1− ρ2)

(
x21 − 2ρx1x2 + x22

)}
dx1 dx2

normal(z)
Domain: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the cumulative standard normal distribution.

normal(z) =
∫ z
−∞

1√
2π
e−x

2/2dx

normalden(z)
Domain: −8e+307 to 8e+307
Range: 0 to 0.39894 . . .
Description: returns the standard normal density, N(0, 1).

normalden(x,σ)
Domain x: −8e+307 to 8e+307
Domain σ: 1e–308 to 8e+307
Range: 0 to 8e+307
Description: returns the normal density with mean 0 and standard deviation σ:

normalden(x,1) = normalden(x) and
normalden(x,σ) = normalden(x/σ)/σ.

22 functions — Functions

normalden(x,µ,σ)
Domain x: −8e+307 to 8e+307
Domain µ: −8e+307 to 8e+307
Domain σ: 1e–308 to 8e+307
Range: 0 to 8e+307
Description: returns the normal density with mean µ and standard deviation σ, N(µ, σ2):

normalden(x,0,s) = normalden(x,s) and
normalden(x,µ,σ) = normalden((x− µ)/σ)/σ. In general,

normalden(z,µ,σ) =
1

σ
√

2π
e−

1
2

{
(z−µ)
σ

}2

invnormal(p)
Domain: 1e–323 to 1− 2−53

Range: −38.449394 to 8.2095362
Description: returns the inverse cumulative standard normal distribution:

if normal(z) = p, then invnormal(p) = z.

lnnormal(z)
Domain: −1e+99 to 8e+307
Range: −5e+197 to 0
Description: returns the natural logarithm of the cumulative standard normal distribution:

lnnormal(z) = ln
(∫ z

−∞

1√
2π
e−x

2/2dx

)
lnnormalden(z)

Domain: −1e+154 to 1e+154
Range: −5e+307 to −0.91893853 = lnnormalden(0)
Description: returns the natural logarithm of the standard normal density, N(0, 1).

lnnormalden(x,σ)
Domain x: −8e+307 to 8e+307
Domain σ: 1e–323 to 8e+307
Range: −5e+307 to 742.82799
Description: returns the natural logarithm of the normal density with mean 0 and standard deviation

σ: lnnormalden(x, 1) = lnnormalden(x) and
lnnormalden(x,σ) = lnnormalden(x/σ)− ln(σ).

lnnormalden(x,µ,σ)
Domain x: −8e+307 to 8e+307
Domain µ: −8e+307 to 8e+307
Domain σ: 1e–323 to 8e+307
Range: 1e–323 to 8e+307
Description: returns the natural logarithm of the normal density with mean µ and standard deviation

σ, N(µ, σ2): lnnormalden(x,0,s) = lnnormalden(x,s) and
lnnormalden(x,µ,σ) = lnnormalden((x− µ)/σ)− ln(σ). In general,

lnnormalden(z,µ,σ) = ln
[

1

σ
√

2π
e−

1
2

{
(z−µ)
σ

}2
]

functions — Functions 23

Poisson distribution

poisson(m,k)
Domain m: 1e–10 to 253 − 1
Domain k: 0 to 253 − 1
Range: 0 to 1
Description: returns the probability of observing floor(k) or fewer outcomes that are distributed

as Poisson with mean m.

The Poisson distribution function is evaluated using the gammaptail() function.

poissonp(m,k)
Domain m: 1e–10 to 1e+8
Domain k: 0 to 1e+9
Range: 0 to 1
Description: returns the probability of observing floor(k) outcomes that are distributed as

Poisson with mean m.

The Poisson probability function is evaluated using the gammaden() function.

poissontail(m,k)
Domain m: 1e–10 to 253 − 1
Domain k: 0 to 253 − 1
Range: 0 to 1
Description: returns the probability of observing floor(k) or more outcomes that are distributed

as Poisson with mean m.

The reverse cumulative Poisson distribution function is evaluated using the gammap()
function.

invpoisson(k,p)
Domain k: 0 to 253 − 1
Domain p: 0 to 1 (exclusive)
Range: 1.110e–16 to 253

Description: returns the Poisson mean such that the cumulative Poisson distribution evaluated at
k is p: if poisson(m,k) = p, then invpoisson(k,p) = m.

The inverse Poisson distribution function is evaluated using the invgammaptail()
function.

invpoissontail(k,q)
Domain k: 0 to 253 − 1
Domain q: 0 to 1 (exclusive)
Range: 0 to 253 (left exclusive)
Description: returns the Poisson mean such that the reverse cumulative Poisson distribution

evaluated at k is q: if poissontail(m,k) = q, then
invpoissontail(k,q) = m.

The inverse of the reverse cumulative Poisson distribution function is evaluated
using the invgammap() function.

24 functions — Functions

Student’s t and noncentral Student’s t distributions

t(df,t)
Domain df : 2e+10 to 2e+17 (may be nonintegral)
Domain t: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the cumulative Student’s t distribution with df degrees of freedom.

tden(df,t)
Domain df : 1e–323 to 8e+307(may be nonintegral)
Domain t: −8e+307 to 8e+307
Range: 0 to 0.39894 . . .
Description: returns the probability density function of Student’s t distribution:

tden(df,t) =
Γ{(df + 1)/2}√
πdfΓ(df/2)

·
(
1 + t2/df)−(df+1)/2

ttail(df,t)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain t: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) Student’s t distribution;

it returns the probability T > t:

ttail(df,t) =

∫ ∞
t

Γ{(df + 1)/2}√
πdfΓ(df/2)

·
(
1 + x2/df)−(df+1)/2 dx

invt(df,p)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: −8e+307 to 8e+307
Description: returns the inverse cumulative Student’s t distribution:

if t(df,t) = p, then invt(df,p) = t.

invttail(df,p)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: −8e+307 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) Student’s t distribution:

if ttail(df,t) = p, then invttail(df,p) = t.

nt(df,np,t)
Domain df : 1e–100 to 1e+10 (may be nonintegral)
Domain np: −1,000 to 1,000
Domain t: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the cumulative noncentral Student’s t distribution with df degrees of freedom

and noncentrality parameter np. nt(df,0,t) = t(df,t).

functions — Functions 25

ntden(df,np,t)
Domain df : 1e–100 to 1e+10 (may be nonintegral)
Domain np: −1,000 to 1,000
Domain t: −8e+307 to 8e+307
Range: 0 to 0.39894 . . .
Description: returns the probability density function of the noncentral Student’s t distribution with

df degrees of freedom and noncentrality parameter np.

nttail(df,np,t)
Domain df : 1e–100 to 1e+10 (may be nonintegral)
Domain np: −1,000 to 1,000
Domain t: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) noncentral

Student’s t distribution with df degrees of freedom and
noncentrality parameter np.

invnttail(df,np,p)
Domain df : 1 to 1e+6 (may be nonintegral)
Domain np: −1,000 to 1,000
Domain p: 0 to 1
Range: −8e+10 to 8e+10
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentral

Student’s t distribution: if nttail(df,np,t) = p,
then invnttail(df,np,p) = t.

npnt(df,t,p)
Domain df : 1e–100 to 1e+8 (may be nonintegral)
Domain t: −8e+307 to 8e+307
Domain p: 0 to 1
Range: −1,000 to 1,000
Description: returns the noncentrality parameter, np, for the noncentral Student’s t distribution:

if nt(df,np,t) = p, then npnt(df,t,p) = np.

Tukey’s Studentized range distribution

tukeyprob(k,df,x)
Domain k: 2 to 1e+6
Domain df : 2 to 1e+6
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative Tukey’s Studentized range distribution with k ranges and

df degrees of freedom. If df is a missing value, then the normal distribution
is used instead of Student’s t.

returns 0 if x < 0.

tukeyprob() is computed using an algorithm described in Miller (1981).

26 functions — Functions

invtukeyprob(k,df,p)
Domain k: 2 to 1e+6
Domain df : 2 to 1e+6
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative Tukey’s Studentized range distribution with k ranges

and df degrees of freedom. If df is a missing value, then the normal distribution
is used instead of Student’s t. If tukeyprob(k,df,x) = p, then
invtukeyprob(k,df,p) = x.

invtukeyprob() is computed using an algorithm described in Miller (1981).

Random-number functions

runiform()
Range: 0 to nearly 1 (0 to 1− 2−32)
Description: returns uniform random variates.

runiform() returns uniformly distributed random variates on the interval
[0, 1). runiform() takes no arguments, but the parentheses must be typed.
runiform() can be seeded with the set seed command; see the technical note at
the end of this subsection. (See Matrix functions for the related matuniform()
matrix function.)

To generate random variates over the interval [a, b), use
a+(b-a)*runiform().

To generate random integers over [a, b], use a+int((b-a+1)*runiform()).

rbeta(a,b)
Domain a: 0.05 to 1e+5
Domain b: 0.15 to 1e+5
Range: 0 to 1 (exclusive)
Description: returns beta(a,b) random variates, where a and b are the beta distribution shape

parameters.

Besides the standard methodology for generating random variates from a given
distribution, rbeta() uses the specialized algorithms of Johnk (Gentle 2003),
Atkinson and Whittaker (1970, 1976), Devroye (1986), and
Schmeiser and Babu (1980).

functions — Functions 27

rbinomial(n,p)
Domain n: 1 to 1e+11
Domain p: 1e–8 to 1−1e–8
Range: 0 to n
Description: returns binomial(n,p) random variates, where n is the number of trials and p is the

success probability.

Besides the standard methodology for generating random variates from a given
distribution, rbinomial() uses the specialized algorithms of
Kachitvichyanukul (1982), Kachitvichyanukul and Schmeiser (1988), and
Kemp (1986).

rchi2(df)
Domain df : 2e–4 to 2e+8
Range: 0 to c(maxdouble)
Description: returns chi-squared, with df degrees of freedom, random variates.

rgamma(a,b)
Domain a: 1e–4 to 1e+8
Domain b: c(smallestdouble) to c(maxdouble)
Range: 0 to c(maxdouble)
Description: returns gamma(a,b) random variates, where a is the gamma shape parameter and b

is the scale parameter.

Methods for generating gamma variates are taken from Ahrens and Dieter (1974),
Best (1983), and Schmeiser and Lal (1980).

rhypergeometric(N,K,n)
Domain N : 2 to 1e+6
Domain K: 1 to N−1
Domain n: 1 to N−1
Range: max(0,n−N +K) to min(K,n)
Description: returns hypergeometric random variates. The distribution parameters are integer

valued, where N is the population size, K is the number of elements in
the population that have the attribute of interest, and n is the sample size.

Besides the standard methodology for generating random variates from a given
distribution, rhypergeometric() uses the specialized algorithms of
Kachitvichyanukul (1982) and Kachitvichyanukul and Schmeiser (1985).

rnbinomial(n,p)
Domain n: 1e–4 to 1e+5
Domain p: 1e–4 to 1−1e–4
Range: 0 to 253 − 1
Description: returns negative binomial random variates. If n is integer valued, rnbinomial()

returns the number of failures before the nth success, where the probability of
success on a single trial is p. n can also be nonintegral.

rnormal()
Range: c(mindouble) to c(maxdouble)
Description: returns standard normal (Gaussian) random variates, that is, variates from a normal

distribution with a mean of 0 and a standard deviation of 1.

28 functions — Functions

rnormal(m)
Domain m: c(mindouble) to c(maxdouble)
Range: c(mindouble) to c(maxdouble)
Description: returns normal(m,1) (Gaussian) random variates, where m is the mean and the

standard deviation is 1.

rnormal(m,s)
Domain m: c(mindouble) to c(maxdouble)
Domain s: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)
Description: returns normal(m,s) (Gaussian) random variates, where m is the mean and s is the

standard deviation.

The methods for generating normal (Gaussian) random variates are taken from
Knuth (1998, 122–128); Marsaglia, MacLaren, and Bray (1964); and Walker (1977).

rpoisson(m)
Domain m: 1e–6 to 1e+11
Range: 0 to 253 − 1
Description: returns Poisson(m) random variates, where m is the distribution mean.

Poisson variates are generated using the probability integral transform methods
of Kemp and Kemp (1990, 1991), as well as the method of Kachitvichyanukul (1982).

rt(df)
Domain df : 1 to 253 − 1
Range: c(mindouble) to c(maxdouble)
Description: returns Student’s t random variates, where df is the degrees of freedom.

Student’s t variates are generated using the method of Kinderman and Monahan
(1977, 1980).

Technical note

The uniform pseudorandom-number function, runiform(), is based on George Marsaglia’s
(G. Marsaglia, 1994, pers. comm.) 32-bit pseudorandom-number generator KISS (keep it simple
stupid). The KISS generator is composed of two 32-bit pseudorandom-number generators and two
16-bit generators (combined to make one 32-bit generator). The four generators are defined by the
recursions

xn = 69069xn−1 + 1234567 mod 232 (1)

yn = yn−1(I + L13)(I +R17)(I + L5) (2)

zn = 65184
(
zn−1 mod 216

)
+ int

(
zn−1/2

16
)

(3)

wn = 63663
(
wn−1 mod 216

)
+ int

(
wn−1/2

16
)

(4)

In recursion (2), the 32-bit word yn is viewed as a 1 × 32 binary vector; L is the 32 × 32 matrix
that produces a left shift of one (L has 1s on the first left subdiagonal, 0s elsewhere); and R is L
transpose, affecting a right shift by one. In recursions (3) and (4), int(x) is the integer part of x.

functions — Functions 29

The KISS generator produces the 32-bit random number

Rn = xn + yn + zn + 216wn mod 232

runiform() takes the output from the KISS generator and divides it by 232 to produce a real number
on the interval [0, 1).

All the nonuniform random-number generators rely on uniform random numbers that are also
generated using this KISS algorithm.

The recursions (1)–(4) have, respectively, the periods

232 (1)

232 − 1 (2)

(65184 · 216 − 2)/2 ≈ 231 (3)

(63663 · 216 − 2)/2 ≈ 231 (4)

Thus the overall period for the KISS generator is

232 · (232 − 1) · (65184 · 215 − 1) · (63663 · 215 − 1) ≈ 2126

When Stata first comes up, it initializes the four recursions in KISS by using the seeds

x0 = 123456789 (1)

y0 = 521288629 (2)

z0 = 362436069 (3)

w0 = 2262615 (4)

Successive calls to runiform() then produce the sequence

R1

232
,
R2

232
,
R3

232
, . . .

Hence, runiform() gives the same sequence of random numbers in every Stata session (measured
from the start of the session) unless you reinitialize the seed. The full seed is the set of four numbers
(x, y, z, w), but you can reinitialize the seed by simply issuing the command

. set seed #

where # is any integer between 0 and 231 − 1, inclusive. When this command is issued, the initial
value x0 is set equal to #, and the other three recursions are restarted at the seeds y0, z0, and w0

given above. The first 100 random numbers are discarded, and successive calls to runiform() give
the sequence

R ′101
232

,
R ′102
232

,
R ′103
232

, . . .

30 functions — Functions

However, if the command

. set seed 123456789

is given, the first 100 random numbers are not discarded, and you get the same sequence of random
numbers that runiform() produces by default; also see [R] set seed.

Technical note
You may “capture” the current seed (x, y, z, w) by coding

. local curseed = "‘c(seed)’"

and, later in your code, reestablish that seed by coding

. set seed ‘curseed’

When the seed is set this way, the first 100 random numbers are not discarded.

c(seed) contains a 30-plus long character string similar to

X075bcd151f123bb5159a55e50022865746ad

The string contains an encoding of the four numbers (x, y, z, w) along with checksums and redundancy
to ensure that, at set seed time, it is valid.

String functions

Stata includes the following string functions. In the display below, s indicates a string subexpression
(a string literal, a string variable, or another string expression), n indicates a numeric subexpression
(a number, a numeric variable, or another numeric expression), and re indicates a regular expression
based on Henry Spencer’s NFA algorithms and this is nearly identical to the POSIX.2 standard.

abbrev(s,n)
Domain s: strings
Domain n: 5 to 32
Range: strings
Description: returns name s, abbreviated to n characters.

If any of the characters of s are a period, “.”, and n < 8, then the value of
n defaults to a value of 8. Otherwise, if n < 5, then n defaults to a value of 5.
If n is missing, abbrev() will return the entire string s. abbrev() is
typically used with variable names and variable names with factor-variable or
time-series operators (the period case). abbrev("displacement",8) is displa~t.

char(n)
Domain: integers 0 to 255
Range: ASCII characters
Description: returns the character corresponding to ASCII code n.

returns "" if n is not in the domain.

http://www.stata.com/manuals13/rsetseed.pdf#rsetseed

functions — Functions 31

indexnot(s1,s2)
Domain s1: strings (to be searched)
Domain s2: strings of individual characters (to search for)
Range: integers ≥ 0
Description: returns the position in s1 of the first character of s1 not found in s2, or 0

if all characters of s1 are found in s2.

itrim(s)
Domain: strings
Range: strings with no multiple, consecutive internal blanks
Description: returns s with multiple, consecutive internal blanks collapsed to one blank.

itrim("hello there") = "hello there"

length(s)
Domain: strings
Range: integers ≥ 0
Description: returns the length of s. length("ab") = 2

lower(s)
Domain: strings
Range: strings with lowercased characters
Description: returns the lowercased variant of s. lower("THIS") = "this"

ltrim(s)
Domain: strings
Range: strings without leading blanks
Description: returns s without leading blanks. ltrim(" this") = "this"

plural(n,s) or plural(n,s1,s2)
Domain n: real numbers
Domain s: strings
Domain s1: strings
Domain s2: strings
Range: strings
Description: returns the plural of s, or s1 in the 3-argument case, if n 6= ±1.

The plural is formed by adding “s” to s if you called plural(n,s). If
you called plural(n,s1,s2) and s2 begins with the character “+”, the plural
is formed by adding the remainder of s2 to s1. If s2 begins with the character
“-”, the plural is formed by subtracting the remainder of s2 from s1. If s2
begins with neither “+” nor “-”, then the plural is formed by returning s2.

returns s, or s1 in the 3-argument case, if n = ±1.

plural(1, "horse") = "horse"
plural(2, "horse") = "horses"
plural(2, "glass", "+es") = "glasses"
plural(1, "mouse", "mice") = "mouse"
plural(2, "mouse", "mice") = "mice"
plural(2, "abcdefg", "-efg") = "abcd"

32 functions — Functions

proper(s)
Domain: strings
Range: strings
Description: returns a string with the first letter capitalized, and capitalizes any other letters

immediately following characters that are not letters; all other
letters converted to lowercase.
proper("mR. joHn a. sMitH") = "Mr. John A. Smith"
proper("jack o’reilly") = "Jack O’Reilly"
proper("2-cent’s worth") = "2-Cent’S Worth"

real(s)
Domain: strings
Range: −8e+307 to 8e+307 and missing
Description: returns s converted to numeric, or returns missing.

real("5.2")+1 = 6.2
real("hello") = .

regexm(s,re)
Domain s: strings
Domain re: regular expression
Range: strings
Description: performs a match of a regular expression and evaluates to 1 if regular

expression re is satisfied by the string s, otherwise returns 0.
Regular expression syntax is based on Henry Spencer’s NFA algorithm,
and this is nearly identical to the POSIX.2 standard. s and re may not
contain binary 0 (\0).

regexr(s1,re,s2)
Domain s1: strings
Domain re: regular expression
Domain s2: strings
Range: strings
Description: replaces the first substring within s1 that matches re with s2 and returns

the resulting string. If s1 contains no substring that matches re, the unaltered
s1 is returned. s1 and the result of regexr() may be at most 1,100,000
characters long. s1, re, and s2 may not contain binary 0 (\0).

regexs(n)
Domain: 0 to 9
Range: strings
Description: returns subexpression n from a previous regexm() match, where

0 ≤ n < 10. Subexpression 0 is reserved for the entire string that
satisfied the regular expression. The returned subexpression may
be at most 1,100,000 characters long.

reverse(s)
Domain: strings
Range: reversed strings
Description: returns s reversed. reverse("hello") = "olleh"

functions — Functions 33

rtrim(s)
Domain: strings
Range: strings without trailing blanks
Description: returns s without trailing blanks. rtrim("this ") = "this"

soundex(s)
Domain: strings
Range: strings
Description: returns the soundex code for a string, s. The soundex code consists of a letter

followed by three numbers: the letter is the first letter of the name and the
numbers encode the remaining consonants. Similar sounding consonants are
encoded by the same number.

soundex("Ashcraft") = "A226"
soundex("Robert") = "R163"
soundex("Rupert") = "R163"

soundex nara(s)
Domain: strings
Range: strings
Description: returns the U.S. Census soundex code for a string, s. The soundex code consists

of a letter followed by three numbers: the letter is the first letter of the
name and the numbers encode the remaining consonants. Similar sounding
consonants are encoded by the same number.

soundex nara("Ashcraft") = "A261"

strcat(s1,s2)
Domain s1: strings
Domain s2: strings
Range: strings
Description: There is no strcat() function. Instead the addition operator is used to

concatenate strings:
"hello " + "world" = "hello world"
"a" + "b" = "ab"

strdup(s1,n)
Domain s1: strings
Domain n: nonnegative integers 0, 1, 2, . . .
Range: strings
Description: There is no strdup() function. Instead the multiplication operator is used to

create multiple copies of strings:
"hello" * 3 = "hellohellohello"
3 * "hello" = "hellohellohello"
0 * "hello" = ""
"hello" * 1 = "hello"

34 functions — Functions

string(n)
Domain: −8e+307 to 8e+307 and missing
Range: strings
Description: returns n converted to a string.

string(4)+"F" = "4F"
string(1234567) = "1234567"
string(12345678) = "1.23e+07"
string(.) = "."

string(n,s)
Domain n: −8e+307 to 8e+307 and missing
Domain s: strings containing % fmt numeric display format
Range: strings
Description: returns n converted to a string.

string(4,"%9.2f") = "4.00"
string(123456789,"%11.0g") = "123456789"
string(123456789,"%13.0gc") = "123,456,789"
string(0,"%td") = "01jan1960"
string(225,"%tq") = "2016q2"
string(225,"not a format") = ""

strlen(s) is a synonym for length(s).

strlower(x) is a synonym for lower(x).

strltrim(x) is a synonym for ltrim(x).

strmatch(s1,s2)
Domain s: strings
Range: 0 or 1
Description: returns 1 if s1 matches the pattern s2; otherwise, it returns 0.

strmatch("17.4","1??4") returns 1. In s2, "?" means that one character
goes here, and "*" means that zero or more characters go here. Also see
regexm(), regexr(), and regexs().

strofreal(n) is a synonym for string(n).

strofreal(n,s) is a synonym for string(n,s).

strpos(s1,s2)
Domain s1: strings (to be searched)
Domain s2: strings (to search for)
Range: integers ≥ 0
Description: returns the position in s1 at which s2 is first found; otherwise, it returns 0.

strpos("this","is") = 3
strpos("this","it") = 0

strproper(x) is a synonym for proper(x).

strreverse(x) is a synonym for reverse(x).

strrtrim(x) is a synonym for rtrim(x).

functions — Functions 35

strtoname(s,p)
Domain s: strings
Domain p: 0 or 1
Range: strings
Description: returns s translated into a Stata name. Each character in s that is not allowed

in a Stata name is converted to an underscore character, . If the first character
in s is a numeric character and p is not 0, then the result is prefixed with
an underscore. The result is truncated to 32 characters.

strtoname("name",1) = "name"
strtoname("a name",1) = "a name"
strtoname("5",1) = " 5"
strtoname("5:30",1) = " 5 30"
strtoname("5",0) = "5"
strtoname("5:30",0) = "5 30"

strtoname(s)
Domain s: strings
Range: strings
Description: returns s translated into a Stata name. Each character in s that is not allowed

in a Stata name is converted to an underscore character, . If the first character
in s is a numeric character, then the result is prefixed with
an underscore. The result is truncated to 32 characters.

strtoname("name") = "name"
strtoname("a name") = "a name"
strtoname("5") = " 5"
strtoname("5:30") = " 5 30"

strtrim(x) is a synonym for trim(x).

strupper(x) is a synonym for upper(x).

subinstr(s1,s2,s3,n)
Domain s1: strings (to be substituted into)
Domain s2: strings (to be substituted from)
Domain s3: strings (to be substituted with)
Domain n: integers ≥ 0 and missing
Range: strings
Description: returns s1, where the first n occurrences in s1 of s2 have been replaced

with s3. If n is missing, all occurrences are replaced.
Also see regexm(), regexr(), and regexs().
subinstr("this is the day","is","X",1) = "thX is the day"
subinstr("this is the hour","is","X",2) = "thX X the hour"
subinstr("this is this","is","X",.) = "thX X thX"

36 functions — Functions

subinword(s1,s2,s3,n)
Domain s1: strings (to be substituted for)
Domain s2: strings (to be substituted from)
Domain s3: strings (to be substituted with)
Domain n: integers ≥ 0 and missing
Range: strings
Description: returns s1, where the first n occurrences in s1 of s2 as a word have

been replaced with s3. A word is defined as a space-separated token.
A token at the beginning or end of s1 is considered space-separated.
If n is missing, all occurrences are replaced.
Also see regexm(), regexr(), and regexs().

subinword("this is the day","is","X",1) = "this X the day"
subinword("this is the hour","is","X",.) = "this X the hour"
subinword("this is this","th","X",.) = "this is this"

substr(s,n1,n2)
Domain s: strings
Domain n1: integers ≥ 1 and ≤ −1
Domain n2: integers ≥ 1 and ≤ −1
Range: strings
Description: returns the substring of s, starting at column n1, for a length of n2.

If n1 < 0, n1 is interpreted as distance from the end of the string;
if n2 = . (missing), the remaining portion of the string is returned.

substr("abcdef",2,3) = "bcd"
substr("abcdef",-3,2) = "de"
substr("abcdef",2,.) = "bcdef"
substr("abcdef",-3,.) = "def"
substr("abcdef",2,0) = ""
substr("abcdef",15,2) = ""

trim(s)
Domain: strings
Range: strings without leading or trailing blanks
Description: returns s without leading and trailing blanks; equivalent to

ltrim(rtrim(s)). trim(" this ") = "this"

upper(s)
Domain: strings
Range: strings with uppercased characters
Description: returns the uppercased variant of s. upper("this") = "THIS"

word(s, n)
Domain s: strings
Domain n: integers . . . ,−2,−1, 0, 1, 2, . . .
Range: strings
Description: returns the nth word in s. Positive numbers count words from the beginning of s,

and negative numbers count words from the end of s. (1 is the first word in s,
and -1 is the last word in s.) Returns missing ("") if n is missing.

functions — Functions 37

wordcount(s)
Domain: strings
Range: nonnegative integers 0, 1, 2, . . .
Description: returns the number of words in s. A word is a set of characters that start

and terminate with spaces, start with the beginning of the string,
or terminate with the end of the string.

Programming functions

autocode(x,n,x0,x1)
Domain x: −8e+307 to 8e+307
Domain n: integers 1 to 8e+307
Domain x0: −8e+307 to 8e+307
Domain x1: x0 to 8e+307
Range: x0 to x1
Description: partitions the interval from x0 to x1 into n equal-length intervals and

returns the upper bound of the interval that contains x. This function is an
automated version of recode() (see below).
See [U] 25 Working with categorical data and factor variables for an example.

The algorithm for autocode() is
if (n ≥ . |x0 ≥ . |x1 ≥ . |n ≤ 0 |x0 ≥ x1)

then return missing
if x ≥ ., then return x

otherwise
for i = 1 to n− 1

xmap = x0 + i ∗ (x1 − x0)/n
if x ≤ xmap then return xmap

end
otherwise

return x1

byteorder()
Range: 1 and 2
Description: returns 1 if your computer stores numbers by using a hilo byte order and evaluates

to 2 if your computer stores numbers by using a lohi byte order. Consider the
number 1 written as a 2-byte integer. On some computers (called hilo), it is
written as “00 01”, and on other computers (called lohi), it is written as
“01 00” (with the least significant byte written first). There are similar issues
for 4-byte integers, 4-byte floats, and 8-byte floats. Stata automatically handles
byte-order differences for Stata-created files. Users need not be concerned about
this issue. Programmers producing customary binary files can use byteorder()
to determine the native byte ordering; see [P] file.

http://www.stata.com/manuals13/u25.pdf#u25Workingwithcategoricaldataandfactorvariables
http://www.stata.com/manuals13/pfile.pdf#pfile

38 functions — Functions

c(name)
Domain: names
Range: real values, strings, and missing
Description: returns the value of the system or constant result c(name); see [P] creturn.

Referencing c(name) will return an error if the result does not exist.
returns a scalar if the result is scalar.
returns a string of the result containing the first 2,045 characters.

caller()
Range: 1 to 13
Description: returns version of the program or session that invoked the currently running program;

see [P] version. The current version at the time of this writing is 13, so 13
is the upper end of this range. If Stata 13.1 were the current version, 13.1 would
be the upper end of this range, and likewise, if Stata 14 were the current
version, 14 would be the upper end of this range. This is a function for use
by programmers.

chop(x, ε)
Domain x: −8e+307 to 8e+307
Domain ε: −8e+307 to 8e+307
Range: −8e+307 to 8e+307
Description: returns round(x) if abs(x− round(x)) < ε; otherwise, returns x.

returns x if x is missing.

clip(x,a,b)
Domain x: −8e+307 to 8e+307
Domain a: −8e+307 to 8e+307
Domain b: −8e+307 to 8e+307
Range: −8e+307 to 8e+307
Description: returns x if a < x < b, b if x ≥ b, a if x ≤ a, and missing if x is missing

or if a > b. If a or b is missing, this is interpreted as a = −∞
or b = +∞, respectively.

returns x if x is missing.

http://www.stata.com/manuals13/pcreturn.pdf#pcreturn
http://www.stata.com/manuals13/pversion.pdf#pversion

functions — Functions 39

cond(x,a,b,c) or cond(x,a,b)
Domain x: −8e+307 to 8e+307 and missing; 0⇒ false, otherwise interpreted as true
Domain a: numbers and strings
Domain b: numbers if a is a number; strings if a is a string
Domain c: numbers if a is a number; strings if a is a string
Range: a, b, and c
Description: returns a if x is true and nonmissing, b if x is false, and c if x is missing.

returns a if c is not specified and x evaluates to missing.

Note that expressions such as x > 2 will never evaluate to missing.

cond(x>2,50,70) returns 50 if x > 2 (includes x ≥ .)
cond(x>2,50,70) returns 70 if x ≤ 2

If you need a case for missing values in the above examples, try

cond(missing(x), ., cond(x>2,50,70)) returns . if x is missing ,
returns 50 if x > 2, and returns 70 if x ≤ 2

If the first argument is a scalar that may contain a missing value or a
variable containing missing values, the fourth argument has an effect.

cond(wage,1,0,.) returns 1 if wage is not zero and not missing
cond(wage,1,0,.) returns 0 if wage is zero
cond(wage,1,0,.) returns . if wage is missing

Caution: If the first argument to cond() is a logical expression, that is,
cond(x>2,50,70,.), the fourth argument is never reached.

e(name)
Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of stored result e(name);

see [U] 18.8 Accessing results calculated by other programs
e(name) = scalar missing if the stored result does not exist
e(name) = specified matrix if the stored result is a matrix
e(name) = scalar numeric value if the stored result is a scalar
e(name) = a string containing the first 2,045 characters

if the stored result is a string

e(sample)
Range: 0 and 1
Description: returns 1 if the observation is in the estimation sample and 0 otherwise.

epsdouble()
Range: a double-precision number close to 0
Description: returns the machine precision of a double-precision number. If d < epsdouble()

and (double) x = 1, then x+ d = (double) 1. This function takes no
arguments, but the parentheses must be included.

http://www.stata.com/manuals13/u18.pdf#u18.8Accessingresultscalculatedbyotherprograms

40 functions — Functions

epsfloat()
Range: a floating-point number close to 0
Description: returns the machine precision of a floating-point number. If d < epsfloat()

and (float) x = 1, then x+ d = (float) 1. This function takes no
arguments, but the parentheses must be included.

fileexists(f)
Domain: filenames
Range: 0 and 1
Description: returns 1 if the file specified by f exists; returns 0 otherwise.

If the file exists but is not readable, fileexists() will still return 1,
because it does exist. If the “file” is a directory, fileexists() will return 0.

fileread(f)
Domain: filenames
Range: strings
Description: returns the contents of the file specified by f .

If the file does not exist or an I/O error occurs while reading the file, then
“fileread() error #” is returned, where # is a standard Stata error return code.

filereaderror(f)
Domain: strings
Range: integers
Description: returns 0 or positive integer, said value having the interpretation of a return code.

It is used like this

. generate strL s = fileread(filename) if fileexists(filename)

. assert filereaderror(s)==0

or this

. generate strL s = fileread(filename) if fileexists(filename)

. generate rc = filereaderror(s)

That is, filereaderror(s) is used on the result returned by fileread(filename)
to determine whether an I/O error occurred.

In the example, we only fileread() files that fileexist(). That is not required.
If the file does not exist, that will be detected by filereaderror() as an error.
The way we showed the example, we did not want to read missing files as errors.
If we wanted to treat missing files as errors, we would have coded

. generate strL s = fileread(filename)

. assert filereaderror(s)==0

or

. generate strL s = fileread(filename)

. generate rc = filereaderror(s)

functions — Functions 41

filewrite(f,s
[
,r
]
)

Domain f : filenames
Domain s: strings
Domain r: integers 1 or 2
Range: integers
Description: writes the string specified by s to the file specified by f and returns the

number of bytes in the resulting file.

If the optional argument r is specified as 1, the file specified by f will be replaced
if it exists. If r is specified as 2, the file specified by f will be appended to if it
exists. Any other values of r are treated as if r were not specified; that is, f
will only be written to if it does not already exist.

When the file f is freshly created or is replaced, the value returned by filewrite()
is the number of bytes written to the file, strlen(s). If r is specified as 2, and
thus filewrite() is appending to an existing file, the value returned is the
total number of bytes in the resulting file; that is, the value is the sum of the
number of the bytes in the file as it existed before filewrite() was called
and the number of bytes newly written to it, strlen(s).

If the file exists and r is not specified as 1 or 2, or an error occurs while writing
to the file, then a negative number (#) is returned, where abs(#) is a standard
Stata error return code.

float(x)
Domain: −1e+38 to 1e+38
Range: −1e+38 to 1e+38
Description: returns the value of x rounded to float precision.

Although you may store your numeric variables as byte, int, long, float, or
double, Stata converts all numbers to double before performing any calculations.
Consequently, difficulties can arise in comparing numbers that have no finite binary
representation.

For example, if the variable x is stored as a float and contains the value 1.1
(a repeating “decimal” in binary), the expression x==1.1 will evaluate to false
because the literal 1.1 is the double representation of 1.1, which is different from
the float representation stored in x. (They differ by 2.384× 10−8.) The
expression x==float(1.1) will evaluate to true because the float() function
converts the literal 1.1 to its float representation before it is compared with x.
(See [U] 13.11 Precision and problems therein for more information.)

fmtwidth(fmtstr)
Range: strings
Description: returns the output length of the %fmt contained in fmtstr.

returns missing if fmtstr does not contain a valid %fmt. For example,
fmtwidth("%9.2f") returns 9 and fmtwidth("%tc") returns 18.

has eprop(name)
Domain: names
Range: 0 or 1
Description: returns 1 if name appears as a word in e(properties); otherwise, returns 0.

http://www.stata.com/manuals13/u13.pdf#u13.11Precisionandproblemstherein

42 functions — Functions

inlist(z,a,b,. . .)
Domain: all reals or all strings
Range: 0 or 1
Description: returns 1 if z is a member of the remaining arguments; otherwise, returns 0.

All arguments must be reals or all must be strings. The number of
arguments is between 2 and 255 for reals and between 2 and 10 for strings.

inrange(z,a,b)
Domain: all reals or all strings
Range: 0 or 1
Description: returns 1 if it is known that a ≤ z ≤ b; otherwise, returns 0.

The following ordered rules apply:
z ≥ . returns 0.
a ≥ . and b = . returns 1.
a ≥ . returns 1 if z ≤ b; otherwise, it returns 0.
b ≥ . returns 1 if a ≤ z; otherwise, it returns 0.
Otherwise, 1 is returned if a ≤ z ≤ b.
If the arguments are strings, “.” is interpreted as "".

irecode(x,x1,x2,x3,. . .,xn)
Domain x: −8e+307 to 8e+307
Domain xi: −8e+307 to 8e+307
Range: nonnegative integers
Description: returns missing if x is missing or x1, . . . , xn is not weakly increasing.

returns 0 if x ≤ x1.
returns 1 if x1 < x ≤ x2.
returns 2 if x2 < x ≤ x3.
. . .
returns n if x > xn.

Also see autocode() and recode() for other styles of recode functions.

irecode(3, -10, -5, -3, -3, 0, 15, .) = 5

matrix(exp)
Domain: any valid expression
Range: evaluation of exp
Description: restricts name interpretation to scalars and matrices; see scalar() function below.

maxbyte()
Range: one integer number
Description: returns the largest value that can be stored in storage type byte. This function

takes no arguments, but the parentheses must be included.

maxdouble()
Range: one double-precision number
Description: returns the largest value that can be stored in storage type double. This function

takes no arguments, but the parentheses must be included.

maxfloat()
Range: one floating-point number
Description: returns the largest value that can be stored in storage type float. This function

takes no arguments, but the parentheses must be included.

functions — Functions 43

maxint()
Range: one integer number
Description: returns the largest value that can be stored in storage type int. This function

takes no arguments, but the parentheses must be included.

maxlong()
Range: one integer number
Description: returns the largest value that can be stored in storage type long. This function

takes no arguments, but the parentheses must be included.

mi(x1,x2,. . .,xn) is a synonym for missing(x1,x2,. . .,xn).

minbyte()
Range: one integer number
Description: returns the smallest value that can be stored in storage type byte. This function

takes no arguments, but the parentheses must be included.

mindouble()
Range: one double-precision number
Description: returns the smallest value that can be stored in storage type double. This function

takes no arguments, but the parentheses must be included.

minfloat()
Range: one floating-point number
Description: returns the smallest value that can be stored in storage type float. This function

takes no arguments, but the parentheses must be included.

minint()
Range: one integer number
Description: returns the smallest value that can be stored in storage type int. This function

takes no arguments, but the parentheses must be included.

minlong()
Range: one integer number
Description: returns the smallest value that can be stored in storage type long. This function

takes no arguments, but the parentheses must be included.

missing(x1,x2,. . .,xn)
Domain xi: any string or numeric expression
Range: 0 and 1
Description: returns 1 if any xi evaluates to missing; otherwise, returns 0.

Stata has two concepts of missing values: a numeric missing value (., .a, .b,
. . . , .z) and a string missing value (""). missing() returns 1 (meaning true) if
any expression xi evaluates to missing. If x is numeric, missing(x) is equivalent
to x ≥ .. If x is string, missing(x) is equivalent to x=="".

44 functions — Functions

r(name)
Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of the stored result r(name);

see [U] 18.8 Accessing results calculated by other programs
r(name) = scalar missing if the stored result does not exist
r(name) = specified matrix if the stored result is a matrix
r(name) = scalar numeric value if the stored result is a scalar

that can be interpreted as a number
r(name) = a string containing the first 2,045 characters

if the stored result is a string

recode(x,x1,x2,. . .,xn)
Domain x: −8e+307 to 8e+307 and missing
Domain x1: −8e+307 to 8e+307
Domain x2: x1 to 8e+307
. . .
Domain xn: xn−1 to 8e+307
Range: x1, x2, . . ., xn and missing
Description: returns missing if x1, . . . , xn is not weakly increasing.

returns x if x is missing.
returns x1 if x ≤ x1; x2 if x ≤ x2, . . .; otherwise,

xn if x > x1, x2, . . . , xn−1.
xi ≥ . is interpreted as xi = +∞.

Also see autocode() and irecode() for other styles of recode functions.

replay()
Range: integers 0 and 1, meaning false and true, respectively
Description: returns 1 if the first nonblank character of local macro ‘0’ is a comma,

or if ‘0’ is empty. This is a function for use by programmers writing
estimation commands; see [P] ereturn.

return(name)
Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of the to-be-stored result r(name);

see [P] return.
return(name) = scalar missing if the stored result does not exist
return(name) = specified matrix if the stored result is a matrix
return(name) = scalar numeric value if the stored result is a scalar
return(name) = a string containing the first 2,045 characters

if the stored result is a string

s(name)
Domain: names
Range: strings and missing
Description: returns the value of stored result s(name);

see [U] 18.8 Accessing results calculated by other programs
s(name) = . if the stored result does not exist
s(name) = a string containing the first 2,045 characters

if the stored result is a string

http://www.stata.com/manuals13/u18.pdf#u18.8Accessingresultscalculatedbyotherprograms
http://www.stata.com/manuals13/pereturn.pdf#pereturn
http://www.stata.com/manuals13/preturn.pdf#preturn
http://www.stata.com/manuals13/u18.pdf#u18.8Accessingresultscalculatedbyotherprograms

functions — Functions 45

scalar(exp)
Domain: any valid expression
Range: evaluation of exp
Description: restricts name interpretation to scalars and matrices.

Names in expressions can refer to names of variables in the dataset, names of
matrices, or names of scalars. Matrices and scalars can have the same names as
variables in the dataset. If names conflict, Stata assumes that you are referring to the
name of the variable in the dataset.

matrix() and scalar() explicitly state that you are referring to matrices and
scalars. matrix() and scalar() are the same function; scalars and matrices may
not have the same names and so cannot be confused. Typing scalar(x) makes it
clear that you are referring to the scalar or matrix named x and not the variable
named x, should there happen to be a variable of that name.

smallestdouble()
Range: a double-precision number close to 0
Description: returns the smallest double-precision number greater than zero. If

0 < d < smallestdouble(), then d does not have full double
precision; these are called the denormalized numbers. This function
takes no arguments, but the parentheses must be included.

Date and time functions

Stata’s date and time functions are described with examples in [U] 24 Working with dates and
times and [D] datetime. What follows is a technical description. We use the following notation:

eb %tb business calendar date (days)
etc %tc encoded datetime (ms. since 01jan1960 00:00:00.000)
etC %tC encoded datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
ed %td encoded date (days since 01jan1960)
ew %tw encoded weekly date (weeks since 1960w1)
em %tm encoded monthly date (months since 1960m1)
eq %tq encoded quarterly date (quarters since 1960q1)
eh %th encoded half-yearly date (half-years since 1960h1)
ey %ty encoded yearly date (years)
M month, 1–12
D day of month, 1–31
Y year, 0100–9999
h hour, 0–23
m minute, 0–59
s second, 0–59 or 60 if leap seconds
W week number, 1–52
Q quarter number, 1–4
H half-year number, 1 or 2

The date and time functions, where integer arguments are required, allow noninteger values and use
the floor() of the value.

http://www.stata.com/manuals13/u24.pdf#u24Workingwithdatesandtimes
http://www.stata.com/manuals13/u24.pdf#u24Workingwithdatesandtimes
http://www.stata.com/manuals13/ddatetime.pdf#ddatetime

46 functions — Functions

A Stata date-and-time (%t) variable is recorded as the milliseconds, days, weeks, etc., depending
upon the units from 01jan1960; negative values indicate dates and times before 01jan1960. Allowable
dates and times are those between 01jan0100 and 31dec9999, inclusive, but all functions are based
on the Gregorian calendar, and values do not correspond to historical dates before Friday, 15oct1582.

bofd("cal",ed)
Domain cal: business calendar names and formats
Domain ed: %td as defined by business calendar named cal
Range: as defined by business calendar named cal
Description: returns the eb business date corresponding to ed.

Cdhms(ed,h,m,s)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

corresponding to ed, h, m, s.

Chms(h,m,s)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

corresponding to h, m, s on 01jan1960.

Clock(s1,s2
[
,Y
]
)

Domain s1: strings
Domain s2: strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

corresponding to s1 based on s2 and Y .

Function Clock() works the same as function clock() except that Clock() returns
a leap second–adjusted %tC value rather than an unadjusted %tc value. Use
Clock() only if original time values have been adjusted for leap seconds.

functions — Functions 47

clock(s1,s2
[
,Y
]
)

Domain s1: strings
Domain s2: strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999) and missing
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) corresponding to

s1 based on s2 and Y .

s1 contains the date, time, or both, recorded as a string, in virtually any
format. Months can be spelled out, abbreviated (to three characters), or indicated as
numbers; years can include or exclude the century; blanks and punctuation are allowed.

s2 is any permutation of M, D, [##]Y, h, m, and s, with their order defining the
order that month, day, year, hour, minute, and second occur (and whether they
occur) in s1. ##, if specified, indicates the default century for two-digit years in s1.
For instance, s2 = "MD19Y hm" would translate s1 = "11/15/91 21:14" as
15nov1991 21:14. The space in "MD19Y hm" was not significant and the string would
have translated just as well with "MD19Yhm".

Y provides an alternate way of handling two-digit years. Y specifies the largest
year that is to be returned when a two-digit year is encountered; see function date()
below. If neither ## nor Y is specified, clock() returns missing when it
encounters a two-digit year.

Cmdyhms(M,D,Y ,h,m,s)
Domain M : integers 1 to 12
Domain D: integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

corresponding to M , D, Y , h, m, s.

Cofc(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

of etc (ms. without leap seconds since 01jan1960 00:00:00.000).

cofC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Description: returns the etc datetime (ms. without leap seconds since 01jan1960 00:00:00.000)

of etC (ms. with leap seconds since 01jan1960 00:00:00.000).

48 functions — Functions

Cofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

of date ed at time 00:00:00.000.

cofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) of date ed at time

00:00:00.000.

daily(s1,s2
[
,Y
]
) is a synonym for date(s1,s2

[
,Y
]
).

date(s1,s2
[
,Y
]
)

Domain s1: strings
Domain s2: strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549) and missing
Description: returns the ed date (days since 01jan1960) corresponding to s1 based on s2 and Y .

s1 contains the date, recorded as a string, in virtually any format. Months can
be spelled out, abbreviated (to three characters), or indicated as numbers; years can
include or exclude the century; blanks and punctuation are allowed.

s2 is any permutation of M, D, and [##]Y, with their order defining the order
that month, day, and year occur in s1. ##, if specified, indicates the default century
for two-digit years in s1. For instance, s2 = "MD19Y" would translate
s1 = "11/15/91" as 15nov1991.

Y provides an alternate way of handling two-digit years. When a two-digit year
is encountered, the largest year, topyear, that does not exceed Y is returned.

date("1/15/08","MDY",1999) = 15jan1908
date("1/15/08","MDY",2019) = 15jan2008

date("1/15/51","MDY",2000) = 15jan1951
date("1/15/50","MDY",2000) = 15jan1950
date("1/15/49","MDY",2000) = 15jan1949

date("1/15/01","MDY",2050) = 15jan2001
date("1/15/00","MDY",2050) = 15jan2000

If neither ## nor Y is specified, date() returns missing when it encounters
a two-digit year. See Working with two-digit years in [D] datetime translation
for more information.

day(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 31 and missing
Description: returns the numeric day of the month corresponding to ed.

http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslationRemarksandexamplesWorkingwithtwo-digityears
http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslation

functions — Functions 49

dhms(ed,h,m,s)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999) and missing
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) corresponding to

ed, h, m, and s.

dofb(eb,"cal")
Domain eb: %tb as defined by business calendar named cal
Domain cal: business calendar names and formats
Range: as defined by business calendar named cal
Description: returns the ed datetime corresponding to eb.

dofC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Description: returns the ed date (days since 01jan1960) of datetime etC (ms. with leap

seconds since 01jan1960 00:00:00.000).

dofc(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Description: returns the ed date (days since 01jan1960) of datetime etc (ms. since 01jan1960

00:00:00.000).

dofh(eh)
Domain eh: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079)
Range: %td dates 01jan0100 to 01jul9999 (integers −679,350 to 2,936,366)
Description: returns the ed date (days since 01jan1960) of the start of half-year eh.

dofm(em)
Domain em: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479)
Range: %td dates 01jan0100 to 01dec9999 (integers −679,350 to 2,936,519)
Description: returns the ed date (days since 01jan1960) of the start of month em.

dofq(eq)
Domain eq: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159)
Range: %td dates 01jan0100 to 01oct9999 (integers −679,350 to 2,936,458)
Description: returns the ed date (days since 01jan1960) of the start of quarter eq .

dofw(ew)
Domain ew: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079)
Range: %td dates 01jan0100 to 24dec9999 (integers −679,350 to 2,936,542)
Description: returns the ed date (days since 01jan1960) of the start of week ew.

dofy(ey)
Domain ey: %ty dates 0100 to 9999 (integers 0100 to 9999)
Range: %td dates 01jan0100 to 01jan9999 (integers −679,350 to 2,936,185)
Description: returns the ed date (days since 01jan1960) of 01jan in year ey .

50 functions — Functions

dow(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 0 to 6 and missing
Description: returns the numeric day of the week corresponding to date ed;

0 = Sunday, 1 = Monday, . . . , 6 = Saturday.

doy(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 366 and missing
Description: returns the numeric day of the year corresponding to date ed.

halfyear(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1, 2, and missing
Description: returns the numeric half of the year corresponding to date ed.

halfyearly(s1,s2
[
,Y
]
)

Domain s1: strings
Domain s2: strings "HY" and "YH"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079) and missing
Description: returns the eh half-yearly date (half-years since 1960h1) corresponding to s1 based

on s2 and Y ; Y specifies topyear; see date().

hh(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: integers 0 through 23, missing
Description: returns the hour corresponding to datetime etc (ms. since 01jan1960 00:00:00.000).

hhC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: integers 0 through 23, missing
Description: returns the hour corresponding to datetime etC (ms. with leap seconds since

01jan1960 00:00:00.000).

hms(h,m,s)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan1960 00:00:00.000 to 01jan1960 23:59:59.999

(integers 0 to 86,399,999 and missing)
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) corresponding to

h, m, s on 01jan1960.

hofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079)
Description: returns the eh half-yearly date (half years since 1960h1) containing date ed.

hours(ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns ms/3,600,000.

functions — Functions 51

mdy(M,D,Y)
Domain M : integers 1 to 12
Domain D: integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549) and missing
Description: returns the ed date (days since 01jan1960) corresponding to M , D, Y .

mdyhms(M,D,Y ,h,m,s)
Domain M : integers 1 to 12
Domain D: integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999) and missing
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) corresponding to

M , D, Y , h, m, s.

minutes(ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns ms/60,000.

mm(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: integers 0 through 59, missing
Description: returns the minute corresponding to datetime etc (ms. since 01jan1960 00:00:00.000).

mmC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: integers 0 through 59, missing
Description: returns the minute corresponding to datetime etC (ms. with leap seconds since

01jan1960 00:00:00.000).

mofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479)
Description: returns the em monthly date (months since 1960m1) containing date ed.

month(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 12 and missing
Description: returns the numeric month corresponding to date ed.

monthly(s1,s2
[
,Y
]
)

Domain s1: strings
Domain s2: strings "MY" and "YM"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479) and missing
Description: returns the em monthly date (months since 1960m1) corresponding to s1 based on

s2 and Y ; Y specifies topyear; see date().

52 functions — Functions

msofhours(h)
Domain h: real; hours
Range: real and missing; milliseconds
Description: returns h× 3,600,000.

msofminutes(m)
Domain m: real; minutes
Range: real and missing; milliseconds
Description: returns m× 60,000.

msofseconds(s)
Domain s: real; seconds
Range: real and missing; milliseconds
Description: returns s× 1,000.

qofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159)
Description: returns the eq quarterly date (quarters since 1960q1) containing date ed.

quarter(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 4 and missing
Description: returns the numeric quarter of the year corresponding to date ed.

quarterly(s1,s2
[
,Y
]
)

Domain s1: strings
Domain s2: strings "QY" and "YQ"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159) and missing
Description: returns the eq quarterly date (quarters since 1960q1) corresponding to s1 based on

s2 and Y ; Y specifies topyear; see date().

seconds(ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns ms/1,000.

ss(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: real 0.000 through 59.999, missing
Description: returns the second corresponding to datetime etc (ms. since 01jan1960 00:00:00.000).

ssC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: real 0.000 through 60.999, missing
Description: returns the second corresponding to datetime etC (ms. with leap seconds since

01jan1960 00:00:00.000).

functions — Functions 53

tC(l)
Domain l: datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Description: convenience function to make typing dates and times in expressions easier;

same as tc(), except returns leap second–adjusted values; for example, typing
tc(29nov2007 9:15) is equivalent to typing 1511946900000, whereas
tC(29nov2007 9:15) is 1511946923000.

tc(l)
Domain l: datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Description: convenience function to make typing dates and times in expressions easier;

for example, typing tc(2jan1960 13:42) is equivalent to typing 135720000;
the date but not the time may be omitted, and then 01jan1960 is
assumed; the seconds portion of the time may be omitted and
is assumed to be 0.000; tc(11:02) is equivalent to typing 39720000.

td(l)
Domain l: date literal strings 01jan0100 to 31dec9999
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Description: convenience function to make typing dates in expressions easier;

for example, typing td(2jan1960) is equivalent to typing 1.

th(l)
Domain l: half-year literal strings 0100h1 to 9999h2
Range: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079)
Description: convenience function to make typing half-yearly dates in expressions easier;

for example, typing th(1960h2) is equivalent to typing 1.

tm(l)
Domain l: month literal strings 0100m1 to 9999m12
Range: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479)
Description: convenience function to make typing monthly dates in expressions easier;

for example, typing tm(1960m2) is equivalent to typing 1.

tq(l)
Domain l: quarter literal strings 0100q1 to 9999q4
Range: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159)
Description: convenience function to make typing quarterly dates in expressions easier;

for example, typing tq(1960q2) is equivalent to typing 1.

tw(l)
Domain l: week literal strings 0100w1 to 9999w52
Range: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079)
Description: convenience function to make typing weekly dates in expressions easier;

for example, typing tw(1960w2) is equivalent to typing 1.

week(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 52 and missing
Description: returns the numeric week of the year corresponding to date ed, the

%td encoded date (days since 01jan1960). Note: The first week
of a year is the first 7-day period of the year.

54 functions — Functions

weekly(s1,s2
[
,Y
]
)

Domain s1: strings
Domain s2: strings "WY" and "YW"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079) and missing
Description: returns the ew weekly date (weeks since 1960w1) corresponding to s1 based on s2

and Y ; Y specifies topyear; see date().

wofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079)
Description: returns the ew weekly date (weeks since 1960w1) containing date ed.

year(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 0100 to 9999 (but probably 1800 to 2100)
Description: returns the numeric year corresponding to date ed.

yearly(s1,s2
[
,Y
]
)

Domain s1: strings
Domain s2: string "Y"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %ty dates 0100 to 9999 (integers 0100 to 9999) and missing
Description: returns the ey yearly date (year) corresponding to s1 based on s2 and Y ;

Y specifies topyear; see date().

yh(Y ,H)
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain H : integers 1, 2
Range: %th dates 1000h1 to 9999h2 (integers −1,920 to 16,079)
Description: returns the eh half-yearly date (half-years since 1960h1) corresponding to year Y ,

half-year H .

ym(Y ,M)
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain M : integers 1 to 12
Range: %tm dates 1000m1 to 9999m12 (integers −11,520 to 96,479)
Description: returns the em monthly date (months since 1960m1) corresponding to year Y ,

month M .

yofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %ty dates 0100 to 9999 (integers 0100 to 9999)
Description: returns the ey yearly date (year) containing date ed.

yq(Y ,Q)
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain Q: integers 1 to 4
Range: %tq dates 1000q1 to 9999q4 (integers −3,840 to 32,159)
Description: returns the eq quarterly date (quarters since 1960q1) corresponding to year Y ,

quarter Q.

functions — Functions 55

yw(Y ,W)
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain W : integers 1 to 52
Range: %tw dates 1000w1 to 9999w52 (integers −49,920 to 418,079)
Description: returns the ew weekly date (weeks since 1960w1) corresponding to year Y ,

week W .

Selecting time spans

tin(d1,d2)
Domain d1: date or time literals recorded in units of t previously tsset
Domain d2: date or time literals recorded in units of t previously tsset
Range: 0 and 1, 1⇒ true
Description: true if d1 ≤ t ≤ d2, where t is the time variable previously tsset.

You must have previously tsset the data to use tin(); see [TS] tsset. When
you tsset the data, you specify a time variable, t, and the format on t states how
it is recorded. You type d1 and d2 according to that format.

If t has a %tc format, you could type tin(5jan1992 11:15, 14apr2002 12:25).

If t has a %td format, you could type tin(5jan1992, 14apr2002).

If t has a %tw format, you could type tin(1985w1, 2002w15).

If t has a %tm format, you could type tin(1985m1, 2002m4).

If t has a %tq format, you could type tin(1985q1, 2002q2).

If t has a %th format, you could type tin(1985h1, 2002h1).

If t has a %ty format, you could type tin(1985, 2002).

Otherwise, t is just a set of integers, and you could type tin(12, 38).

The details of the %t format do not matter. If your t is formatted %tdnn/dd/yy
so that 5jan1992 displays as 1/5/92, you would still type the date in day–month–year
order: tin(5jan1992, 14apr2002).

twithin(d1,d2)
Domain d1: date or time literals recorded in units of t previously tsset
Domain d2: date or time literals recorded in units of t previously tsset
Range: 0 and 1, 1⇒ true
Description: true if d1 < t < d2, where t is the time variable previously tsset;

see the tin() function above; twithin() is similar, except the range is
exclusive.

http://www.stata.com/manuals13/tstsset.pdf#tstsset

56 functions — Functions

Matrix functions returning a matrix

In addition to the functions listed below, see [P] matrix svd for singular value decomposi-
tion, [P] matrix symeigen for eigenvalues and eigenvectors of symmetric matrices, and [P] matrix
eigenvalues for eigenvalues of nonsymmetric matrices.

cholesky(M)
Domain: n× n, positive-definite, symmetric matrices
Range: n× n lower-triangular matrices
Description: returns the Cholesky decomposition of the matrix:

if R = cholesky(S), then RRT = S.
RT indicates the transpose of R.
Row and column names are obtained from M .

corr(M)
Domain: n× n symmetric variance matrices
Range: n× n symmetric correlation matrices
Description: returns the correlation matrix of the variance matrix.

Row and column names are obtained from M .

diag(v)
Domain: 1× n and n× 1 vectors
Range: n× n diagonal matrices
Description: returns the square, diagonal matrix created from the row or column vector.

Row and column names are obtained from the column names of M if M is
a row vector or from the row names of M if M is a column vector.

get(systemname)
Domain: existing names of system matrices
Range: matrices
Description: returns a copy of Stata internal system matrix systemname.

This function is included for backward compatibility with previous versions
of Stata.

hadamard(M,N)
Domain M : m× n matrices
Domain N : m× n matrices
Range: m× n matrices
Description: returns a matrix whose i, j element is M [i, j] ·N [i, j] (if M and N

are not the same size, this function reports a conformability error).

I(n)
Domain: real scalars 1 to matsize
Range: identity matrices
Description: returns an n× n identity matrix if n is an integer; otherwise, this function returns

the round(n)×round(n) identity matrix.

http://www.stata.com/manuals13/pmatrixsvd.pdf#pmatrixsvd
http://www.stata.com/manuals13/pmatrixsymeigen.pdf#pmatrixsymeigen
http://www.stata.com/manuals13/pmatrixeigenvalues.pdf#pmatrixeigenvalues
http://www.stata.com/manuals13/pmatrixeigenvalues.pdf#pmatrixeigenvalues

functions — Functions 57

inv(M)
Domain: n× n nonsingular matrices
Range: n× n matrices
Description: returns the inverse of the matrix M . If M is singular, this will result in an error.

The function invsym() should be used in preference to inv() because invsym()
is more accurate. The row names of the result are obtained from the column
names of M , and the column names of the result are obtained from the row names
of M .

invsym(M)
Domain: n× n symmetric matrices
Range: n× n symmetric matrices
Description: returns the inverse of M if M is positive definite. If M is not positive definite,

rows will be inverted until the diagonal terms are zero or negative; the rows and
columns corresponding to these terms will be set to 0, producing a g2 inverse.
The row names of the result are obtained from the column names of M ,
and the column names of the result are obtained from the row names of M .

J(r,c,z)
Domain r: integer scalars 1 to matsize
Domain c: integer scalars 1 to matsize
Domain z: scalars −8e+307 to 8e+307
Range: r × c matrices
Description: returns the r × c matrix containing elements z.

matuniform(r,c)
Domain r: integer scalars 1 to matsize
Domain c: integer scalars 1 to matsize
Range: r × c matrices
Description: returns the r × c matrices containing uniformly distributed pseudorandom numbers

on the interval [0, 1).

58 functions — Functions

nullmat(matname)
Domain: matrix names, existing and nonexisting
Range: matrices including null if matname does not exist
Description: nullmat() is for use with the row-join (,) and column-join (\) operators in

programming situations. Consider the following code fragment, which is an attempt
to create the vector (1, 2, 3, 4):

forvalues i = 1/4 {
mat v = (v, ‘i’)

}

The above program will not work because, the first time through the loop, v will not
yet exist, and thus forming (v, ‘i’) makes no sense. nullmat() relaxes that
restriction:

forvalues i = 1/4 {
mat v = (nullmat(v), ‘i’)

}

The nullmat() function informs Stata that if v does not exist, the function row-join
is to be generalized. Joining nothing with ‘i’ results in (‘i’). Thus the first time
through the loop, v = (1) is formed. The second time through, v does exist, so
v = (1, 2) is formed, and so on.

nullmat() can be used only with the , and \ operators.

sweep(M,i)
Domain M : n× n matrices
Domain i: integer scalars 1 to n
Range: n× n matrices
Description: returns matrix M with ith row/column swept. The row and column names of the

resultant matrix are obtained from M , except that the nth row and column
names are interchanged. If B = sweep(A,k), then

Bkk =
1

Akk

Bik = −Aik
Akk

, i 6= k

Bkj =
Akj
Akk

, j 6= k

Bij = Aij −
AikAkj
Akk

, i 6= k, j 6= k

vec(M)
Domain: matrices
Range: column vectors (n× 1 matrices)
Description: returns a column vector formed by listing the elements of M , starting

with the first column and proceeding column by column.

functions — Functions 59

vecdiag(M)
Domain: n× n matrices
Range: 1× n vectors
Description: returns the row vector containing the diagonal of matrix M .

vecdiag() is the opposite of diag(). The row name is
set to r1; the column names are obtained from the column names of M .

Matrix functions returning a scalar

colnumb(M,s)
Domain M : matrices
Domain s: strings
Range: integer scalars 1 to matsize and missing
Description: returns the column number of M associated with column name s.

returns missing if the column cannot be found.

colsof(M)
Domain: matrices
Range: integer scalars 1 to matsize
Description: returns the number of columns of M .

det(M)
Domain: n× n (square) matrices
Range: scalars −8e+307 to 8e+307
Description: returns the determinant of matrix M .

diag0cnt(M)
Domain: n× n (square) matrices
Range: integer scalars 0 to n
Description: returns the number of zeros on the diagonal of M .

el(s,i,j)
Domain s: strings containing matrix name
Domain i: scalars 1 to matsize
Domain j: scalars 1 to matsize
Range: scalars −8e+307 to 8e+307 and missing
Description: returns s[floor(i),floor(j)], the i, j element of the matrix named s.

returns missing if i or j are out of range or if matrix s does not exist.

issymmetric(M)
Domain M : matrices
Range: integers 0 and 1
Description: returns 1 if the matrix is symmetric; otherwise, returns 0.

matmissing(M)
Domain M : matrices
Range: integers 0 and 1
Description: returns 1 if any elements of the matrix are missing; otherwise, returns 0.

mreldif(X,Y)
Domain X: matrices
Domain Y : matrices with same number of rows and columns as X
Range: scalars −8e+307 to 8e+307
Description: returns the relative difference of X and Y , where the relative difference is

defined as maxi,j
(
|xij − yij |/(|yij |+ 1)

)
.

60 functions — Functions

rownumb(M,s)
Domain M : matrices
Domain s: strings
Range: integer scalars 1 to matsize and missing
Description: returns the row number of M associated with row name s.

returns missing if the row cannot be found.

rowsof(M)
Domain: matrices
Range: integer scalars 1 to matsize
Description: returns the number of rows of M .

trace(M)
Domain: n× n (square) matrices
Range: scalars −8e+307 to 8e+307
Description: returns the trace of matrix M .

Acknowledgments
We thank George Marsaglia of Florida State University for providing his KISS (keep it simple

stupid) random-number generator.

We thank John R. Gleason of Syracuse University (retired) for directing our attention to
Wichura (1988) for calculating the cumulative normal density accurately, for sharing his experi-
ences about techniques with us, and for providing C code to make the calculations.� �

Jacques Salomon Hadamard (1865–1963) was born in Versailles, France. He studied at the Ecole
Normale Supérieure in Paris and obtained a doctorate in 1892 for a thesis on functions defined by
Taylor series. Hadamard taught at Bordeaux for 4 years and in a productive period published an
outstanding theorem on prime numbers, proved independently by Charles de la Vallée Poussin,
and worked on what are now called Hadamard matrices. In 1897, he returned to Paris, where he
held a series of prominent posts. In his later career, his interests extended from pure mathematics
toward mathematical physics. Hadamard produced papers and books in many different areas. He
campaigned actively against anti-Semitism at the time of the Dreyfus affair. After the fall of
France in 1940, he spent some time in the United States and then Great Britain.� �

References
Abramowitz, M., and I. A. Stegun, ed. 1968. Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables. 7th ed. Washington, DC: National Bureau of Standards.

Ahrens, J. H., and U. Dieter. 1974. Computer methods for sampling from gamma, beta, Poisson, and binomial
distributions. Computing 12: 223–246.

Atkinson, A. C., and J. C. Whittaker. 1970. Algorithm AS 134: The generation of beta random variables with one
parameter greater than and one parameter less than 1. Applied Statistics 28: 90–93.

. 1976. A switching algorithm for the generation of beta random variables with at least one parameter less than
1. Journal of the Royal Statistical Society, Series A 139: 462–467.

Best, D. J. 1983. A note on gamma variate generators with shape parameters less than unity. Computing 30: 185–188.

Buis, M. L. 2007. Stata tip 48: Discrete uses for uniform(). Stata Journal 7: 434–435.

Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446–447.

. 2004. Stata tip 6: Inserting awkward characters in the plot. Stata Journal 4: 95–96.

http://www.stata-journal.com/sjpdf.html?articlenum=pr0032
http://www.stata-journal.com/sjpdf.html?articlenum=dm0002
http://www.stata-journal.com/sjpdf.html?articlenum=dm0006

functions — Functions 61

. 2006. Stata tip 39: In a list or out? In a range or out? Stata Journal 6: 593–595.

. 2007. Stata tip 43: Remainders, selections, sequences, extractions: Uses of the modulus. Stata Journal 7:
143–145.

. 2011a. Stata tip 98: Counting substrings within strings. Stata Journal 11: 318–320.

. 2011b. Speaking Stata: Fun and fluency with functions. Stata Journal 11: 460–471.

Devroye, L. 1986. Non-uniform Random Variate Generation. New York: Springer.

Dunnett, C. W. 1955. A multiple comparison for comparing several treatments with a control. Journal of the American
Statistical Association 50: 1096–1121.

Gentle, J. E. 2003. Random Number Generation and Monte Carlo Methods. 2nd ed. New York: Springer.

Gould, W. W. 2012a. Using Stata’s random-number generators, part 1. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/.

. 2012b. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog: Not
Elsewhere Classified.
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.

. 2012c. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-
with-replacement/.

. 2012d. Using Stata’s random-number generators, part 4: Details. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/.

Hilbe, J. M. 2010. Creating synthetic discrete-response regression models. Stata Journal 10: 104–124.

Hilbe, J. M., and W. Linde-Zwirble. 1995. sg44: Random number generators. Stata Technical Bulletin 28: 20–21.
Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 118–121. College Station, TX: Stata Press.

. 1998. sg44.1: Correction to random number generators. Stata Technical Bulletin 41: 23. Reprinted in Stata
Technical Bulletin Reprints, vol. 7, p. 166. College Station, TX: Stata Press.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699–718.

Johnson, N. L., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions, Vol. 2. 2nd ed. New York:
Wiley.

Kachitvichyanukul, V. 1982. Computer Generation of Poisson, Binomial, and Hypergeometric Random Variables. PhD
thesis, Purdue University.

Kachitvichyanukul, V., and B. W. Schmeiser. 1985. Computer generation of hypergeometric random variates. Journal
of Statistical Computation and Simulation 22: 127–145.

. 1988. Binomial random variate generation. Communications of the Association for Computing Machinery 31:
216–222.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond() function. Stata Journal 5:
413–420.

Kemp, A. W., and C. D. Kemp. 1990. A composition-search algorithm for low-parameter Poisson generation. Journal
of Statistical Computation and Simulation 35: 239–244.

Kemp, C. D. 1986. A modal method for generating binomial variates. Communications in Statistics, Theory and
Methods 15: 805–813.

Kemp, C. D., and A. W. Kemp. 1991. Poisson random variate generation. Applied Statistics 40: 143–158.

Kinderman, A. J., and J. F. Monahan. 1977. Computer generation of random variables using the ratio of uniform
deviates. ACM Transactions on Mathematical Software 3: 257–260.

. 1980. New methods for generating Student’s t and gamma variables. Computing 25: 369–377.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. 3rd ed. Reading, MA:
Addison–Wesley.

Lukácsy, K. 2011. Generating random samples from user-defined distributions. Stata Journal 11: 299–304.

Marsaglia, G., M. D. MacLaren, and T. A. Bray. 1964. A fast procedure for generating normal random variables.
Communications of the Association for Computing Machinery 7: 4–10.

http://www.stata-journal.com/sjpdf.html?articlenum=dm0026
http://www.stata-journal.com/sjpdf.html?articlenum=pr0031
http://www.stata-journal.com/article.html?article=dm0056
http://www.stata-journal.com/article.html?article=dm0058
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/
http://www.stata-journal.com/sjpdf.html?articlenum=st0186
http://www.stata.com/products/stb/journals/stb28.pdf
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.stata-journal.com/article.html?article=dm0071
http://www.stata-journal.com/sjpdf.html?articlenum=pr0016
http://www.stata-journal.com/article.html?article=st0229

62 functions — Functions

Mazýa, V. G., and T. O. Shaposhnikova. 1998. Jacques Hadamard, A Universal mathematician. Providence, RI:
American Mathematical Society.

Miller, R. G., Jr. 1981. Simultaneous Statistical Inference. 2nd ed. New York: Springer.

Moore, R. J. 1982. Algorithm AS 187: Derivatives of the incomplete gamma integral. Applied Statistics 31: 330–335.

Oldham, K. B., J. C. Myland, and J. Spanier. 2009. An Atlas of Functions. 2nd ed. New York: Springer.

Posten, H. O. 1993. An effective algorithm for the noncentral beta distribution function. American Statistician 47:
129–131.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific
Computing. 3rd ed. New York: Cambridge University Press.

Rising, W. R. 2010. Stata tip 86: The missing() function. Stata Journal 10: 303–304.

Schmeiser, B. W., and A. J. G. Babu. 1980. Beta variate generation via exponential majorizing functions. Operations
Research 28: 917–926.

Schmeiser, B. W., and R. Lal. 1980. Squeeze methods for generating gamma variates. Journal of the American
Statistical Association 75: 679–682.

Tamhane, A. C. 2008. Eulogy to Charles Dunnett. Biometrical Journal 50: 636–637.

Walker, A. J. 1977. An efficient method for generating discrete random variables with general distributions. ACM
Transactions on Mathematical Software 3: 253–256.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640–642.

Wichura, M. J. 1988. Algorithm AS241: The percentage points of the normal distribution. Applied Statistics 37:
477–484.

Also see
[D] egen — Extensions to generate

[M-5] intro — Mata functions

[U] 13.3 Functions
[U] 14.8 Matrix functions

http://www.stata-journal.com/sjpdf.html?articlenum=dm0049
http://www.stata-journal.com/sjpdf.html?articlenum=st0181
http://www.stata.com/manuals13/degen.pdf#degen
http://www.stata.com/manuals13/m-5intro.pdf#m-5intro
http://www.stata.com/manuals13/u13.pdf#u13.3Functions
http://www.stata.com/manuals13/u14.pdf#u14.8Matrixfunctions

