This entry describes the functions allowed by Stata. For information on Mata functions, see [M-4] intro.

A quick note about missing values: Stata denotes a numeric missing value by .a, .b, .c, or .z. A string missing value is denoted by "" (the empty string). Here any one of these may be referred to by missing. If a numeric value \(x \) is missing, then \(x \geq . \) is true. If a numeric value \(x \) is not missing, then \(x < . \) is true.

Functions are listed under the following headings:

- Mathematical functions
- Probability distributions and density functions
- Random-number functions
- String functions
- Programming functions
- Date and time functions
- Selecting time spans
- Matrix functions returning a matrix
- Matrix functions returning a scalar

Mathematical functions

abs(\(x \))

- **Domain:** \(-8e+307 \) to \(8e+307\)
- **Range:** 0 to \(8e+307\)
- **Description:** returns the absolute value of \(x \).

acos(\(x \))

- **Domain:** \(-1 \) to 1
- **Range:** 0 to \(\pi\)
- **Description:** returns the radian value of the arccosine of \(x \).

acosh(\(x \))

- **Domain:** 1 to \(8.9e+307\)
- **Range:** 0 to 709.77
- **Description:** returns the inverse hyperbolic cosine of \(x \), \(\text{acosh}(x) = \ln(x + \sqrt{x^2 - 1}) \).

asin(\(x \))

- **Domain:** \(-1 \) to 1
- **Range:** \(-\pi/2 \) to \(\pi/2\)
- **Description:** returns the radian value of the arcsine of \(x \).

asinh(\(x \))

- **Domain:** \(-8.9e+307 \) to \(8.9e+307\)
- **Range:** \(-709.77 \) to 709.77
- **Description:** returns the inverse hyperbolic sine of \(x \), \(\text{asinh}(x) = \ln(x + \sqrt{x^2 + 1}) \).
atan(x)
- **Domain:** $-8e+307$ to $8e+307$
- **Range:** $-\pi/2$ to $\pi/2$
- **Description:** returns the radian value of the arctangent of x.

atan2(y, x)
- **Domain y:** $-8e+307$ to $8e+307$
- **Domain x:** $-8e+307$ to $8e+307$
- **Range:** $-\pi$ to π
- **Description:** returns the radian value of the arctangent of y/x, where the signs of the parameters y and x are used to determine the quadrant of the answer.

atanh(x)
- **Domain:** -1 to 1
- **Range:** $-8e+307$ to $8e+307$
- **Description:** returns the inverse hyperbolic tangent of x, $\text{atanh}(x) = \frac{1}{2}\{\ln(1 + x) - \ln(1 - x)\}$.

ceil(x)
- **Domain:** $-8e+307$ to $8e+307$
- **Range:** integers in $-8e+307$ to $8e+307$
- **Description:** returns the unique integer n such that $n - 1 < x \leq n$.
 - returns x (not “.”) if x is missing, meaning that ceil(.a) = .a.

Also see floor(x), int(x), and round(x).

cloglog(x)
- **Domain:** 0 to 1
- **Range:** $-8e+307$ to $8e+307$
- **Description:** returns the complementary log-log of x, $\text{cloglog}(x) = \ln\{-\ln(1 - x)\}$.

comb(n, k)
- **Domain n:** integers 1 to $1e+305$
- **Domain k:** integers 0 to n
- **Range:** 0 to $8e+307$ and missing
- **Description:** returns the combinatorial function $n!/[k!(n-k)!]$.

cos(x)
- **Domain:** $-1e+18$ to $1e+18$
- **Range:** -1 to 1
- **Description:** returns the cosine of x, where x is in radians.

cosh(x)
- **Domain:** -709 to 709
- **Range:** 1 to $4.11e+307$
- **Description:** returns the hyperbolic cosine of x, $\text{cosh}(x) = \{\exp(x) + \exp(-x)\}/2$.

digamma(x)
- **Domain:** $-1e+15$ to $8e+307$
- **Range:** $-8e+307$ to $8e+307$ and missing
- **Description:** returns the digamma() function, $d\ln\Gamma(x)/dx$. This is the derivative of lngamma(x).

The digamma(x) function is sometimes called the psi function, $\psi(x)$.
\(\exp(x) \)
- **Domain:** \(-8e+307\) to \(709\)
- **Range:** \(0\) to \(8e+307\)
- **Description:** returns the exponential function \(e^x\). This function is the inverse of \(\ln(x)\).

\(\text{floor}(x) \)
- **Domain:** \(-8e+307\) to \(8e+307\)
- **Range:** integers in \(-8e+307\) to \(8e+307\)
- **Description:** returns the unique integer \(n\) such that \(n \leq x < n + 1\).
- returns \(x\) (not “.”) if \(x\) is missing, meaning that \(\text{floor}(.a) = .a\).
- Also see \(\text{ceil}(x)\), \(\text{int}(x)\), and \(\text{round}(x)\).

\(\text{int}(x) \)
- **Domain:** \(-8e+307\) to \(8e+307\)
- **Range:** integers in \(-8e+307\) to \(8e+307\)
- **Description:** returns the integer obtained by truncating \(x\) toward 0; thus,
 - \(\text{int}(5.2) = 5\)
 - \(\text{int}(-5.8) = -5\)
- returns \(x\) (not “.”) if \(x\) is missing, meaning that \(\text{int}(.a) = .a\).
- One way to obtain the closest integer to \(x\) is \(\text{int}(x + \text{sign}(x)/2)\), which simplifies to \(\text{int}(x+0.5)\) for \(x \geq 0\). However, use of the \(\text{round}()\) function is preferred. Also see \(\text{ceil}(x)\), \(\text{int}(x)\), and \(\text{round}(x)\).

\(\text{invcloglog}(x) \)
- **Domain:** \(-8e+307\) to \(8e+307\)
- **Range:** \(0\) to \(1\) and \(\text{missing}\)
- **Description:** returns the inverse of the complementary log-log function of \(x\),
 \[
 \text{invcloglog}(x) = 1 - \exp\{-\exp(x)\}.
 \]

\(\text{invlogit}(x) \)
- **Domain:** \(-8e+307\) to \(8e+307\)
- **Range:** \(0\) to \(1\) and \(\text{missing}\)
- **Description:** returns the inverse of the logit function of \(x\),
 \[
 \text{invlogit}(x) = \exp(x)/\{1 + \exp(x)\}.
 \]

\(\ln(x) \)
- **Domain:** \(1e-323\) to \(8e+307\)
- **Range:** \(-744\) to \(709\)
- **Description:** returns the natural logarithm, \(\ln(x)\). This function is the inverse of \(\exp(x)\).

The logarithm of \(x\) in base \(b\) can be calculated via \(\log_b(x) = \log_a(x)/\log_a(b)\). Hence,
\[
\begin{align*}
\log_5(x) &= \ln(x)/\ln(5) = \log(x)/\log(5) = \log_{10}(x)/\log_{10}(5) \\
\log_2(x) &= \ln(x)/\ln(2) = \log(x)/\log(2) = \log_{10}(x)/\log_{10}(2)
\end{align*}
\]

You can calculate \(\log_b(x)\) by using the formula that best suits your needs.
lnfactorial(n)
Domain: integers 0 to 1e+305
Range: 0 to 8e+307
Description: returns the natural log of factorial = \ln(n!).

To calculate n!, use round(exp(lnfactorial(n)),1) to ensure that the result is an integer. Logs of factorials are generally more useful than the factorials themselves because of overflow problems.

lngamma(x)
Domain: −2,147,483,648 to 1e+305 (excluding negative integers)
Range: −8e+307 to 8e+307
Description: returns \ln(\Gamma(x)) \). Here the gamma function, \Gamma(x), is defined by
\[\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt. \]
For integer values of x > 0, this is \ln((x - 1)!).

lngamma(x) for x < 0 returns a number such that exp(lngamma(x)) is equal to the absolute value of the gamma function, \Gamma(x). That is, lngamma(x) always returns a real (not complex) result.

log(x)
Domain: 1e–323 to 8e+307
Range: −744 to 709
Description: returns the natural logarithm, \ln(x), which is a synonym for ln(x). Also see ln(x) for more information.

log10(x)
Domain: 1e–323 to 8e+307
Range: −323 to 308
Description: returns the base-10 logarithm of x.

logit(x)
Domain: 0 to 1 (exclusive)
Range: −8e+307 to 8e+307 and missing
Description: returns the log of the odds ratio of x,
logit(x) = \ln\{x/(1 - x)\}.

max(x_1, x_2, \ldots, x_n)
Domain x_1: −8e+307 to 8e+307 and missing
Domain x_2: −8e+307 to 8e+307 and missing
...
Domain x_n: −8e+307 to 8e+307 and missing
Range: −8e+307 to 8e+307 and missing
Description: returns the maximum value of x_1, x_2, \ldots, x_n. Unless all arguments are missing, missing values are ignored.
max(2, 10, ., 7) = 10
max(., ., .) = .
\[
\text{min}(x_1, x_2, \ldots, x_n)
\]
Domain \(x_1\): \(-8e+307\) to \(8e+307\) and \textit{missing}
Domain \(x_2\): \(-8e+307\) to \(8e+307\) and \textit{missing}
\[
\ldots
\]
Domain \(x_n\): \(-8e+307\) to \(8e+307\) and \textit{missing}
Range: \(-8e+307\) to \(8e+307\) and \textit{missing}
Description: returns the minimum value of \(x_1, x_2, \ldots, x_n\). Unless all arguments are \textit{missing}, missing values are ignored.
\[
\text{min}(2, 10, ., 7) = 2
\]
\[
\text{min}(., ., .) = .
\]

\[
\text{mod}(x, y)
\]
Domain \(x\): \(-8e+307\) to \(8e+307\)
Domain \(y\): \(0\) to \(8e+307\)
Range: \(0\) to \(8e+307\)
Description: returns the modulus of \(x\) with respect to \(y\).
\[
\text{mod}(x, y) = x - y \times \text{floor}(x/y)
\]
\[
\text{mod}(x, 0) = .
\]

\[
\text{reldif}(x, y)
\]
Domain \(x\): \(-8e+307\) to \(8e+307\) and \textit{missing}
Domain \(y\): \(-8e+307\) to \(8e+307\) and \textit{missing}
Range: \(-8e+307\) to \(8e+307\) and \textit{missing}
Description: returns the “relative” difference \(|x - y|/(|y| + 1)\).
returns 0 if both arguments are the same type of extended missing value.
returns \textit{missing} if only one argument is missing or if the two arguments are two different types of \textit{missing}.

\[
\text{round}(x, y) \text{ or } \text{round}(x)
\]
Domain \(x\): \(-8e+307\) to \(8e+307\)
Domain \(y\): \(-8e+307\) to \(8e+307\)
Range: \(-8e+307\) to \(8e+307\)
Description: returns \(x\) rounded in units of \(y\) or \(x\) rounded to the nearest integer if the argument \(y\) is omitted.
returns \(x\) (not “.”) if \(x\) is missing, meaning that \text{round}(.a) = .a and \text{round}(.a, y) = .a if \(y\) is not missing; if \(y\) is missing, then “.” is returned.

For \(y = 1\), or with \(y\) omitted, this amounts to the closest integer to \(x\); \text{round}(5.2, 1) is 5, as is \text{round}(4.8, 1); \text{round}(-5.2, 1) is -5, as is \text{round}(-4.8, 1). The rounding definition is generalized for \(y \neq 1\). With \(y = 0.01\), for instance, \(x\) is rounded to two decimal places: \text{round}(\sqrt{2}, .01) is 1.41. \(y\) may also be larger than 1; \text{round}(28, 5) is 30, which is 28 rounded to the closest multiple of 5.
For \(y = 0\), the function is defined as returning \(x\) unmodified. Also see \text{int}(x), \text{ceil}(x), and \text{floor}(x).

\[
\text{sign}(x)
\]
Domain: \(-8e+307\) to \(8e+307\) and \textit{missing}
Range: \(-1, 0, 1\) and \textit{missing}
Description: returns the sign of \(x\): \(-1\) if \(x < 0\), 0 if \(x = 0\), 1 if \(x > 0\), and \textit{missing} if \(x\) is missing.
6 functions — Functions

\(\sin(x)\)

Domain: \(-1e+18\) to \(1e+18\)
Range: \(-1\) to \(1\)
Description: returns the sine of \(x\), where \(x\) is in radians.

\(\sinh(x)\)

Domain: \(-709\) to \(709\)
Range: \(-4.11e+307\) to \(4.11e+307\)
Description: returns the hyperbolic sine of \(x\), \(\sinh(x) = \frac{\exp(x) - \exp(-x)}{2}\).

\(\sqrt{x}\)

Domain: \(0\) to \(8e+307\)
Range: \(0\) to \(1e+154\)
Description: returns the square root of \(x\).

\(\text{sum}(x)\)

Domain: all real numbers and \textit{missing}
Range: \(-8e+307\) to \(8e+307\) (excluding \textit{missing})
Description: returns the running sum of \(x\), treating missing values as zero.

For example, following the command \texttt{generate y=sum(x)}, the \(j\)th observation on \(y\) contains the sum of the first through \(j\)th observations on \(x\). See [D] \texttt{egen} for an alternative sum function, \texttt{total()}, that produces a constant equal to the overall sum.

\(\tan(x)\)

Domain: \(-1e+18\) to \(1e+18\)
Range: \(-1e+17\) to \(1e+17\) and \textit{missing}
Description: returns the tangent of \(x\), where \(x\) is in radians.

\(\tanh(x)\)

Domain: \(-8e+307\) to \(8e+307\)
Range: \(-1\) to \(1\) and \textit{missing}
Description: returns the hyperbolic tangent of \(x\),
\[\tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}\] .

\(\text{trigamma}(x)\)

Domain: \(-1e+15\) to \(8e+307\)
Range: \(0\) to \(8e+307\) and \textit{missing}
Description: returns the second derivative of \(\text{lngamma}(x) = \frac{d^2 \ln \Gamma(x)}{dx^2}\). The \texttt{trigamma()} function is the derivative of \texttt{digamma}(\(x\)).

\(\text{trunc}(x)\) is a synonym for \(\texttt{int}(x)\).

\(\text{Technical note}\)

The trigonometric functions are defined in terms of \textit{radians}. There are \(2\pi\) radians in a circle. If you prefer to think in terms of \textit{degrees}, because there are also 360 degrees in a circle, you may convert degrees into radians by using the formula \(r = \frac{d\pi}{180}\), where \(d\) represents degrees and \(r\) represents radians. Stata includes the built-in constant \texttt{_pi}, equal to \(\pi\) to machine precision. Thus, to calculate the sine of \texttt{theta}, where \texttt{theta} is measured in degrees, you could type
\[
\sin(\texttt{theta*_pi/180})
\]
atan() similarly returns radians, not degrees. The arccotangent can be obtained as
\[
\text{acot}(x) = \frac{\pi}{2} - \text{atan}(x)
\]

Probability distributions and density functions

The probability distributions and density functions are organized under the following headings:

- Beta and noncentral beta distributions
- Binomial distribution
- Chi-squared and noncentral chi-squared distributions
- Dunnett’s multiple range distribution
- F and noncentral F distributions
- Gamma distribution
- Hypergeometric distribution
- Negative binomial distribution
- Normal (Gaussian), log of the normal, and binormal distributions
- Poisson distribution
- Student’s t and noncentral Student’s t distributions
- Tukey’s Studentized range distribution

Beta and noncentral beta distributions

\[\text{ibeta}(a, b, x)\]

Domain
- \(a\): 1e–10 to 1e+17
- \(b\): 1e–10 to 1e+17
- \(x\): −8e+307 to 8e+307

Interesting domain is
\[
0 \leq x \leq 1
\]

Range: 0 to 1

Description: returns the cumulative beta distribution with shape parameters \(a\) and \(b\) defined by

\[
I_x(a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1 - t)^{b-1} dt
\]

returns 0 if \(x < 0\).

returns 1 if \(x > 1\).

\(\text{ibeta}()\) returns the regularized incomplete beta function, also known as the incomplete beta function ratio. The incomplete beta function without regularization is given by \((\text{gamma}(a)\times\text{gamma}(b)/\text{gamma}(a+b))\times\text{ibeta}(a, b, x)\) or, better when \(a\) or \(b\) might be large,

\[\exp(\text{lngamma}(a)+\text{lngamma}(b)-\text{lngamma}(a+b))\times\text{ibeta}(a, b, x).\]

Here is an example of the use of the regularized incomplete beta function. Although Stata has a cumulative binomial function (see \text{binomial}()), the probability that an event occurs \(k\) or fewer times in \(n\) trials, when the probability of one event is \(p\), can be evaluated as

\[\text{cond}(k==n, 1, 1-\text{ibeta}(k+1, n-k, p))\].

The reverse cumulative binomial (the probability that an event occurs \(k\) or more times) can be evaluated as

\[\text{cond}(k==0, 1, \text{ibeta}(k, n-k+1, p))\].

See Press et al. (2007, 270–273) for a more complete description and for suggested uses for this function.
betaden(a, b, x)

Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain x: $-8e+307$ to 8e+307
Interesting domain is $0 \leq x \leq 1$
Range: 0 to 8e+307
Description: returns the probability density of the beta distribution,

\[
\text{betaden}(a, b, x) = \frac{x^{a-1}(1-x)^{b-1}}{\int_0^\infty t^{a-1}(1-t)^{b-1} \, dt} = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a-1}(1-x)^{b-1}
\]

where a and b are the shape parameters.

returns 0 if $x < 0$ or $x > 1$.

ibetatail(a, b, x)

Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain x: $-8e+307$ to 8e+307
Interesting domain is $0 \leq x \leq 1$
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) beta distribution with shape parameters a and b defined by

\[
\text{ibetatail}(a, b, x) = 1 - \text{ibeta}(a, b, x) = \int_x^1 \text{betaden}(a, b, t) \, dt
\]

returns 1 if $x < 0$.
returns 0 if $x > 1$.

invibeta(a, b, p)

Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse cumulative beta distribution: if $\text{ibeta}(a, b, x) = p$, then $\text{invibeta}(a, b, p) = x$.

invibetatail(a, b, p)

Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse reverse cumulative (upper tail or survivor) beta distribution: if $\text{ibetatail}(a, b, x) = p$, then $\text{invibetatail}(a, b, p) = x$.
nibeta(a, b, np, x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307
Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1
Description: returns the cumulative noncentral beta distribution

\[I_x(a, b, np) = \sum_{j=0}^{\infty} \frac{e^{-np/2}(np/2)^j}{\Gamma(j+1)} I_x(a+j, b) \]

where a and b are shape parameters, np is the noncentrality parameter, x is the value of a beta random variable, and \(I_x(a, b) \) is the cumulative beta distribution, ibeta().
returns 0 if x < 0.
returns 1 if x > 1.

nibeta(a, b, 0, x) = ibeta(a, b, x), but ibeta() is the preferred function to use for the central beta distribution. nibeta() is computed using an algorithm described in Johnson, Kotz, and Balakrishnan (1995).

nbetaden(a, b, np, x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 1,000
Domain x: −8e+307 to 8e+307
Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 8e+307
Description: returns the probability density function of the noncentral beta distribution,

\[\sum_{j=0}^{\infty} \frac{e^{-np/2}(np/2)^j}{\Gamma(j+1)} \left\{ \frac{\Gamma(a+b+j)}{\Gamma(a+j)\Gamma(b)} x^{a+j-1}(1-x)^{b-1} \right\} \]

where a and b are shape parameters, np is the noncentrality parameter, and x is the value of a beta random variable.
returns 0 if x < 0 or x > 1.

nbetaden(a, b, 0, x) = betaden(a, b, x), but betaden() is the preferred function to use for the central beta distribution. nbetaden() is computed using an algorithm described in Johnson, Kotz, and Balakrishnan (1995).

invnibeta(a, b, np, p)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 1,000
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse cumulative noncentral beta distribution:
if nibeta(a, b, np, x) = p, then invibeta(a, b, np, p) = x.
Binomial distribution

\(\text{binomial}(n, k, \theta) \)

Domain \(n \): 0 to 1e+17
Domain \(k \): \(-8e+307\) to \(8e+307\)
Interesting domain is \(0 \leq k < n\)
Domain \(\theta \): 0 to 1
Range: 0 to 1
Description: returns the probability of observing \(\text{floor}(k)\) or fewer successes in \(\text{floor}(n)\) trials when the probability of a success on one trial is \(\theta\).
returns 0 if \(k < 0\).
returns 1 if \(k > n\).

\(\text{binomialp}(n, k, p) \)

Domain \(n \): 1 to 1e+6
Domain \(k \): 0 to \(n\)
Domain \(p \): 0 to 1
Range: 0 to 1
Description: returns the probability of observing \(\text{floor}(k)\) successes in \(\text{floor}(n)\) trials when the probability of a success on one trial is \(p\).

\(\text{binomialtail}(n, k, \theta) \)

Domain \(n \): 0 to 1e+17
Domain \(k \): \(-8e+307\) to \(8e+307\)
Interesting domain is \(0 \leq k < n\)
Domain \(\theta \): 0 to 1
Range: 0 to 1
Description: returns the probability of observing \(\text{floor}(k)\) or more successes in \(\text{floor}(n)\) trials when the probability of a success on one trial is \(\theta\).
returns 1 if \(k < 0\).
returns 0 if \(k > n\).

\(\text{invbinomial}(n, k, p) \)

Domain \(n \): 1 to 1e+17
Domain \(k \): 0 to \(n-1\)
Domain \(p \): 0 to 1 (exclusive)
Range: 0 to 1
Description: returns the inverse of the cumulative binomial; that is, it returns \(\theta\) (\(\theta = \) probability of success on one trial) such that the probability of observing \(\text{floor}(k)\) or fewer successes in \(\text{floor}(n)\) trials is \(p\).

\(\text{invbinomialtail}(n, k, p) \)

Domain \(n \): 1 to 1e+17
Domain \(k \): 1 to \(n\)
Domain \(p \): 0 to 1 (exclusive)
Range: 0 to 1
Description: returns the inverse of the right cumulative binomial; that is, it returns \(\theta\) (\(\theta = \) probability of success on one trial) such that the probability of observing \(\text{floor}(k)\) or more successes in \(\text{floor}(n)\) trials is \(p\).
Chi-squared and noncentral chi-squared distributions

\texttt{chi2}(df, x)

Domain \textit{df}: 2e–10 to 2e+17 (may be nonintegral)

Domain \textit{x}: \(-8e+307\) to \(8e+307\)

Interesting domain is \(x \geq 0\)

Range: 0 to 1

Description: returns the cumulative \(\chi^2\) distribution with \textit{df} degrees of freedom.

\[
\text{chi2}(df, x) = \text{gammap}(df/2, x/2).
\]

returns 0 if \(x < 0\).

\texttt{chi2den}(df, x)

Domain \textit{df}: 2e–10 to 2e+17 (may be nonintegral)

Domain \textit{x}: \(-8e+307\) to \(8e+307\)

Range: 0 to \(8e+307\)

Description: returns the probability density of the chi-squared distribution with \textit{df} degrees of freedom.

\[
\text{chi2den}(df, x) = \text{gammaden}(df/2, 2, 0, x).
\]

returns 0 if \(x < 0\).

\texttt{chi2tail}(df, x)

Domain \textit{df}: 2e–10 to 2e+17 (may be nonintegral)

Domain \textit{x}: \(-8e+307\) to \(8e+307\)

Interesting domain is \(x \geq 0\)

Range: 0 to 1

Description: returns the reverse cumulative (upper tail or survivor) \(\chi^2\) distribution with \textit{df} degrees of freedom.

\[
\text{chi2tail}(df, x) = 1 - \text{chi2}(df, x).
\]

returns 1 if \(x < 0\).

\texttt{invchi2}(df, p)

Domain \textit{df}: 2e–10 to 2e+17 (may be nonintegral)

Domain \textit{p}: 0 to 1

Range: 0 to \(8e+307\)

Description: returns the inverse of \texttt{chi2}(): if \texttt{chi2}(df, x) = p, then \texttt{invchi2}(df, p) = x.

\texttt{invchi2tail}(df, p)

Domain \textit{df}: 2e–10 to 2e+17 (may be nonintegral)

Domain \textit{p}: 0 to 1

Range: 0 to \(8e+307\)

Description: returns the inverse of \texttt{chi2tail}(): if \texttt{chi2tail}(df, x) = p, then

\[
\text{invchi2tail}(df, p) = x.
\]
\textbf{nchi2}(df, np, x)

Domain \textit{df}: 2e–10 to 1e+6 (may be nonintegral)
Domain \textit{np}: 0 to 10,000
Domain \textit{x}: \(-8e+307\) to \(8e+307\)

Interesting domain is \(x \geq 0\)

Range: 0 to 1

Description: returns the cumulative noncentral \(\chi^2\) distribution,

\[
\int_0^x e^{-t/2} e^{-np/2} \sum_{j=0}^{\infty} \frac{t^{df/2+j-1} np^j}{\Gamma(df/2+j) 2^{2j} j!} dt
\]

where \(df\) denotes the degrees of freedom, \(np\) is the noncentrality parameter, and \(x\) is the value of \(\chi^2\).

returns 0 if \(x < 0\).

\textbf{nchi2}(df, 0, x) = \textbf{chi2}(df, x), but \textbf{chi2()} is the preferred function to use for the central \(\chi^2\) distribution.

\textbf{nchi2den}(df, np, x)

Domain \textit{df}: 2e–10 to 1e+6 (may be nonintegral)
Domain \textit{np}: 0 to 10,000
Domain \textit{x}: \(-8e+307\) to \(8e+307\)
Range: 0 to \(8e+307\)

Description: returns the probability density of the noncentral \(\chi^2\) distribution, where \(df\) denotes the degrees of freedom, \(np\) is the noncentrality parameter, and \(x\) is the value of the \(\chi^2\).

returns 0 if \(x < 0\).

\textbf{nchi2den}(df, 0, x) = \textbf{chi2den}(df, x), but \textbf{chi2den()} is the preferred function to use for the central \(\chi^2\) distribution.

\textbf{nchi2tail}(df, np, x)

Domain \textit{df}: 2e–10 to 1e+6 (may be nonintegral)
Domain \textit{np}: 0 to 10,000
Domain \textit{x}: \(-8e+307\) to \(8e+307\)
Range: 0 to 1

Description: returns the reverse cumulative (upper tail or survivor) noncentral \(\chi^2\) distribution,

where \(df\) denotes the degrees of freedom, \(np\) is the noncentrality parameter, and \(x\) is the value of the \(\chi^2\).

returns 1 if \(x < 0\).

\textbf{invnchi2}(df, np, p)

Domain \textit{df}: 2e–10 to 1e+6 (may be nonintegral)
Domain \textit{np}: 0 to 10,000
Domain \textit{p}: 0 to 1
Range: 0 to \(8e+307\)

Description: returns the inverse cumulative noncentral \(\chi^2\) distribution:

if \textbf{nchi2}(df, np, x) = p, then \textbf{invnchi2}(df, np, p) = x;
\(df\) must be an integer.
invnchi2tail(df, np, p)
Domain df: 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentral χ^2 distribution: if $\text{nchi2tail}(df, np, x) = p$, then $\text{invnchi2tail}(df, np, p) = x$.

npnchi2(df, x, p)
Domain df: 2e–10 to 1e+6 (may be nonintegral)
Domain x: 0 to 8e+307
Domain p: 0 to 1
Range: 0 to 10,000
Description: returns the noncentrality parameter, np, for noncentral χ^2: if $\text{nchi2}(df, np, x) = p$, then $\text{npnchi2}(df, x, p) = np$.

Dunnett’s multiple range distribution

dunnettprob(k, df, x)
Domain k: 2 to 1e+6
Domain df: 2 to 1e+6
Domain x: $-8e+307$ to $8e+307$
 Interesting domain is $x \geq 0$
Range: 0 to 1
Description: returns the cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with k ranges and df degrees of freedom. Returns 0 if $x < 0$.

dunnettprob() is computed using an algorithm described in Miller (1981).

invdunnettprob(k, df, p)
Domain k: 2 to 1e+6
Domain df: 2 to 1e+6
Domain p: 0 to 1 (right exclusive)
Range: 0 to 8e+307
Description: returns the inverse cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with k ranges and df degrees of freedom. If $\text{dunnettprob}(k, df, x) = p$, then $\text{invdunnettprob}(k, df, p) = x$.

invdunnettprob() is computed using an algorithm described in Miller (1981).
Charles William Dunnett (1921–2007) was a Canadian statistician best known for his work on multiple-comparison procedures. He was born in Windsor, Ontario, and graduated in mathematics and physics from McMaster University. After naval service in World War II, Dunnett’s career included further graduate work, teaching, and research at Toronto, Columbia, the New York State Maritime College, the Department of National Health and Welfare in Ottawa, Cornell, Lederle Laboratories, and Aberdeen before he became Professor of Clinical Epidemiology and Biostatistics at McMaster University in 1974. He was President and Gold Medalist of the Statistical Society of Canada. Throughout his career, Dunnett took a keen interest in computing. According to Google Scholar, his 1955 paper on comparing treatments with a control has been cited over 4,000 times.

F and noncentral F distributions

\[F(df_1, df_2, f) \]
- **Domain** \(df_1 \): \(2e^{-10} \) to \(2e+17\) (may be nonintegral)
- **Domain** \(df_2 \): \(2e^{-10} \) to \(2e+17\) (may be nonintegral)
- **Domain** \(f \): \(-8e+307\) to \(8e+307\)
 - Interesting domain is \(f \geq 0 \)
- **Range**: 0 to 1
- **Description**: returns the cumulative \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom:
 \[F(df_1, df_2, f) = \int_0^f F_{den}(df_1, df_2, t) \, dt. \]
 returns 0 if \(f < 0 \).

\[F_{den}(df_1, df_2, f) \]
- **Domain** \(df_1 \): \(1e^{-323} \) to \(8e+307\) (may be nonintegral)
- **Domain** \(df_2 \): \(1e^{-323} \) to \(8e+307\) (may be nonintegral)
- **Domain** \(f \): \(-8e+307\) to \(8e+307\)
 - Interesting domain is \(f \geq 0 \)
- **Range**: 0 to \(8e+307\)
- **Description**: returns the probability density function of the \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom:
 \[F_{den}(df_1, df_2, f) = \frac{\Gamma\left(\frac{df_1+df_2}{2}\right)}{\Gamma\left(\frac{df_1}{2}\right)\Gamma\left(\frac{df_2}{2}\right)} \left(\frac{df_1}{df_2}\right)^{\frac{df_1}{2}} \cdot f^{-\frac{df_1}{2}-1} \left(1 + \frac{df_1}{df_2} f\right)^{-\frac{1}{2}(df_1+df_2)} \]
 returns 0 if \(f < 0 \).

\[F_{tail}(df_1, df_2, f) \]
- **Domain** \(df_1 \): \(2e^{-10} \) to \(2e+17\) (may be nonintegral)
- **Domain** \(df_2 \): \(2e^{-10} \) to \(2e+17\) (may be nonintegral)
- **Domain** \(f \): \(-8e+307\) to \(8e+307\)
 - Interesting domain is \(f \geq 0 \)
- **Range**: 0 to 1
- **Description**: returns the reverse cumulative (upper tail or survivor) \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom.
 \[F_{tail}(df_1, df_2, f) = 1 - F(df_1, df_2, f). \]
 returns 1 if \(f < 0 \).
functions — Functions

invF(\(df_1, df_2, p\))
 Domain \(df_1\): 2e–10 to 2e+17 (may be nonintegral)
 Domain \(df_2\): 2e–10 to 2e+17 (may be nonintegral)
 Domain \(p\): 0 to 1
 Range: 0 to 8e+307
 Description: returns the inverse cumulative \(F\) distribution: if \(F(df_1, df_2, f) = p\), then \(\text{invF}(df_1, df_2, p) = f\).

invFtail(\(df_1, df_2, p\))
 Domain \(df_1\): 2e–10 to 2e+17 (may be nonintegral)
 Domain \(df_2\): 2e–10 to 2e+17 (may be nonintegral)
 Domain \(p\): 0 to 1
 Range: 0 to 8e+307
 Description: returns the inverse reverse cumulative (upper tail or survivor) \(F\) distribution: if \(F\text{tail}(df_1, df_2, f) = p\), then \(\text{invFtail}(df_1, df_2, p) = f\).

nF(\(df_1, df_2, np, f\))
 Domain \(df_1\): 2e–10 to 1e+8
 Domain \(df_2\): 2e–10 to 1e+8
 Domain \(np\): 0 to 10,000
 Domain \(f\): −8e+307 to 8e+307
 Range: 0 to 1
 Description: returns the cumulative noncentral \(F\) distribution with \(df_1\) numerator and \(df_2\) denominator degrees of freedom and noncentrality parameter \(np\).
 \[nF(df_1, df_2, 0, f) = F(df_1, df_2, f). \]
 returns 0 if \(f < 0\).

\(nF()\) is computed using \texttt{nibeta()} based on the relationship between the noncentral beta and noncentral \(F\) distributions:
\[
nF(df_1, df_2, np, f) = \text{nibeta}(df_1/2, df_2/2, np, df_1 \times f / ((df_1 \times f) + df_2)).
\]
nFden(df_1, df_2, np, f)
- Domain df_1: 1e−323 to 8e+307 (may be nonintegral)
- Domain df_2: 1e−323 to 8e+307 (may be nonintegral)
- Domain np: 0 to 1,000
- Domain f: $-8e+307$ to $8e+307$
 - Interesting domain is $f \geq 0$
- Range: 0 to $8e+307$
- Description: returns the probability density function of the noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter np.
 - returns 0 if $f < 0$.

$nFden(df_1, df_2, 0, f) = Fden(df_1, df_2, f)$, but $Fden()$ is the preferred function to use for the central F distribution.

Also, if F follows the noncentral F distribution with df_1 and df_2 degrees of freedom and noncentrality parameter np, then

$$\frac{df_1 F}{df_2 + df_1 F}$$

follows a noncentral beta distribution with shape parameters $a = df_1/2$, $b = df_2/2$, and noncentrality parameter np, as given in $nbetaden()$. $nFden()$ is computed based on this relationship.

nFtail(df_1, df_2, np, f)
- Domain df_1: 1e−323 to 8e+307 (may be nonintegral)
- Domain df_2: 1e−323 to 8e+307 (may be nonintegral)
- Domain np: 0 to 1,000
- Domain f: $-8e+307$ to $8e+307$
 - Interesting domain is $f \geq 0$
- Range: 0 to 1
- Description: returns the reverse cumulative (upper tail or survivor) noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter np.
 - returns 1 if $f < 0$.

$nFtail()$ is computed using $nibeta()$ based on the relationship between the noncentral beta and F distributions. See Johnson, Kotz, and Balakrishnan (1995) for more details.

invnFtail(df_1, df_2, np, p)
- Domain df_1: 1e−323 to 8e+307 (may be nonintegral)
- Domain df_2: 1e−323 to 8e+307 (may be nonintegral)
- Domain np: 0 to 1,000
- Domain p: 0 to 1
- Range: 0 to $8e+307$
- Description: returns the inverse reverse cumulative (upper tail or survivor) noncentral F distribution:
 - if $nFtail(df_1, df_2, np, x) = p$, then $invnFtail(df_1, df_2, np, p) = x$.
\[\text{npnF}(df_1, df_2, f, p) \]

Domain \(df_1 \): 2e–10 to 1e+6 (may be nonintegral)
Domain \(df_2 \): 2e–10 to 1e+6 (may be nonintegral)
Domain \(f \): 0 to 8e+307
Domain \(p \): 0 to 1
Range: 0 to 1,000
Description: returns the noncentrality parameter, \(np \), for the noncentral \(F \):

\[\text{if } \text{nF}(df_1, df_2, np, f) = p, \text{ then } \text{npnF}(df_1, df_2, f, p) = np. \]

Gamma distribution

\[\text{gammap}(a, x) \]

Domain \(a \): 1e–10 to 1e+17
Domain \(x \): −8e+307 to 8e+307

Interesting domain is \(x \geq 0 \)
Range: 0 to 1
Description: returns the cumulative gamma distribution with shape parameter \(a \) defined by

\[\frac{1}{\Gamma(a)} \int_0^x e^{-t} t^{a-1} dt \]

returns 0 if \(x < 0 \).

The cumulative Poisson (the probability of observing \(k \) or fewer events if the expected is \(x \)) can be evaluated as \(1 - \text{gammap}(k+1, x) \). The reverse cumulative (the probability of observing \(k \) or more events) can be evaluated as \(\text{gammap}(k, x) \). See Press et al. (2007, 259–266) for a more complete description and for suggested uses for this function.

\(\text{gammap()} \) is also known as the incomplete gamma function (ratio).

Probabilities for the three-parameter gamma distribution (see \(\text{gammaden()} \)) can be calculated by shifting and scaling \(x \); that is, \(\text{gammap}(a, (x - g)/b) \).

\[\text{gammaden}(a, b, g, x) \]

Domain \(a \): 1e–323 to 8e+307
Domain \(b \): 1e–323 to 8e+307
Domain \(g \): −8e+307 to 8e+307
Domain \(x \): −8e+307 to 8e+307

Interesting domain is \(x \geq g \)
Range: 0 to 8e+307
Description: returns the probability density function of the gamma distribution defined by

\[\frac{1}{\Gamma(a) b^a} (x - g)^{a-1} e^{-(x-g)/b} \]

where \(a \) is the shape parameter, \(b \) is the scale parameter, and \(g \) is the location parameter.

returns 0 if \(x < g \).
gammaptail\((a, x) \)
Domain \(a \): 1e–10 to 1e+17
Domain \(x \): −8e+307 to 8e+307
Interesting domain is \(x \geq 0 \)
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter \(a \) defined by
\[
\text{gammaptail}(a, x) = 1 - \text{gammap}(a, x) = \int_x^\infty \text{gammaden}(a, t) \, dt
\]
returns 1 if \(x < 0 \).
\(\text{gammaptail}() \) is also known as the complement to the incomplete gamma function (ratio).

invgammap\((a, p) \)
Domain \(a \): 1e–10 to 1e+17
Domain \(p \): 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative gamma distribution: if \(\text{gammap}(a, x) = p \), then \(\text{invgammap}(a, p) = x \).

invgammaptail\((a, p) \)
Domain \(a \): 1e–10 to 1e+17
Domain \(p \): 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) gamma distribution:
if \(\text{gammaptail}(a, x) = p \), then \(\text{invgammaptail}(a, p) = x \).

dgammap\(da,(a,x) \)
Domain \(a \): 1e–7 to 1e+17
Domain \(x \): −8e+307 to 8e+307
Interesting domain is \(x \geq 0 \)
Range: −16 to 0
Description: returns \(\frac{\partial P(a, x)}{\partial a} \), where \(P(a, x) = \text{gammap}(a, x) \).
returns 0 if \(x < 0 \).

dgammap\(da,(a,x) \)
Domain \(a \): 1e–7 to 1e+17
Domain \(x \): −8e+307 to 8e+307
Interesting domain is \(x \geq 0 \)
Range: −0.02 to 4.77e+5
Description: returns \(\frac{\partial^2 P(a, x)}{\partial a^2} \), where \(P(a, x) = \text{gammap}(a, x) \).
returns 0 if \(x < 0 \).
\textbf{dgammadadx}(a, x)

Domain \(a\): 1e–7 to 1e+17
Domain \(x\): \(-8e+307\) to \(8e+307\)
Interesting domain is \(x \geq 0\)
Range: \(-0.04\) to \(8e+307\)
Description: returns \(\frac{\partial^2 P(a, x)}{\partial a \partial x}\), where \(P(a, x) = \text{gammap}(a, x)\).
returns 0 if \(x < 0\).

\textbf{dgammapdx}(a, x)

Domain \(a\): 1e–10 to 1e+17
Domain \(x\): \(-8e+307\) to \(8e+307\)
Interesting domain is \(x \geq 0\)
Range: 0 to \(8e+307\)
Description: returns \(\frac{\partial P(a, x)}{\partial x}\), where \(P(a, x) = \text{gammap}(a, x)\).
returns 0 if \(x < 0\).

\textbf{dgammapddx}(a, x)

Domain \(a\): 1e–10 to 1e+17
Domain \(x\): \(-8e+307\) to \(8e+307\)
Interesting domain is \(x \geq 0\)
Range: 0 to 1e+40
Description: returns \(\frac{\partial^2 P(a, x)}{\partial x^2}\), where \(P(a, x) = \text{gammap}(a, x)\).
returns 0 if \(x < 0\).

\textbf{Hypergeometric distribution}

\textbf{hypergeometric}(N, K, n, k)

Domain \(N\): 2 to 1e+5
Domain \(K\): 1 to \(N-1\)
Domain \(n\): 1 to \(N-1\)
Domain \(k\): \(\max(0, n - N + K)\) to \(\min(K, n)\)
Range: 0 to 1
Description: returns the cumulative probability of the hypergeometric distribution. \(N\) is the population size, \(K\) is the number of elements in the population that have the attribute of interest, and \(n\) is the sample size. Returned is the probability of observing \(k\) or fewer elements from a sample of size \(n\) that have the attribute of interest.

\textbf{hypergeometricp}(N, K, n, k)

Domain \(N\): 2 to 1e+5
Domain \(K\): 1 to \(N-1\)
Domain \(n\): 1 to \(N-1\)
Domain \(k\): \(\max(0, n - N + K)\) to \(\min(K, n)\)
Range: 0 to 1 (right exclusive)
Description: returns the hypergeometric probability of \(k\) successes (where success is obtaining an element with the attribute of interest) out of a sample of size \(n\), from a population of size \(N\) containing \(K\) elements that have the attribute of interest.
Negative binomial distribution

\textbf{nbinomial}(n,k,p)

- \textit{Domain n:} 1e–10 to 1e+17 (can be nonintegral)
- \textit{Domain k:} 0 to 2^{53} – 1
- \textit{Domain p:} 0 to 1 (left exclusive)
- \textit{Range:} 0 to 1
- \textit{Description:} returns the cumulative probability of the negative binomial distribution. \(n \) can be nonintegral. When \(n \) is an integer, \textbf{nbinomial}() returns the probability of observing \(k \) or fewer failures before the \(n \)th success, when the probability of a success on one trial is \(p \).

The negative binomial distribution function is evaluated using the \texttt{ibeta()} function.

\textbf{nbinomialp}(n,k,p)

- \textit{Domain n:} 1e–10 to 1e+6 (can be nonintegral)
- \textit{Domain k:} 0 to 1e+10
- \textit{Domain p:} 0 to 1 (left exclusive)
- \textit{Range:} 0 to 1
- \textit{Description:} returns the negative binomial probability. When \(n \) is an integer, \textbf{nbinomialp}() returns the probability of observing exactly floor\((k)\) failures before the \(n \)th success, when the probability of a success on one trial is \(p \).

\textbf{nbinomialtail}(n,k,p)

- \textit{Domain n:} 1e–10 to 1e+17 (can be nonintegral)
- \textit{Domain k:} 0 to 2^{53} – 1
- \textit{Domain p:} 0 to 1 (left exclusive)
- \textit{Range:} 0 to 1
- \textit{Description:} returns the reverse cumulative probability of the negative binomial distribution. When \(n \) is an integer, \textbf{nbinomialtail}() returns the probability of observing \(k \) or more failures before the \(n \)th success, when the probability of a success on one trial is \(p \).

The reverse negative binomial distribution function is evaluated using the \texttt{ibetatail()} function.

\textbf{invnbinomial}(n,k,q)

- \textit{Domain n:} 1e–10 to 1e+17 (can be nonintegral)
- \textit{Domain k:} 0 to 2^{53} – 1
- \textit{Domain q:} 0 to 1 (exclusive)
- \textit{Range:} 0 to 1
- \textit{Description:} returns the value of the negative binomial parameter, \(p \), such that \(q = \textbf{nbinomial}(n,k,p) \).

\textbf{invnbinomial}() is evaluated using \texttt{invibeta}().
invnbinomialtail(n,k,q)
Domain n: $1e–10$ to $1e+17$ (can be nonintegral)
Domain k: 1 to $2^{53} - 1$
Domain q: 0 to 1 (exclusive)
Range: 0 to 1 (exclusive)
Description: returns the value of the negative binomial parameter, p, such that $q = \text{nbinomialtail}(n,k,p)$.

invnbinomialtail() is evaluated using invibetatail().

Normal (Gaussian), log of the normal, and binormal distributions

binormal(h,k,ρ)
Domain h: $−8e+307$ to $8e+307$
Domain k: $−8e+307$ to $8e+307$
Domain ρ: $−1$ to 1
Range: 0 to 1
Description: returns the joint cumulative distribution $\Phi(h,k,\rho)$ of bivariate normal with correlation ρ; cumulative over $(-\infty,h] \times (-\infty,k]$:

$$\Phi(h,k,\rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^h \int_{-\infty}^k \exp \left\{ -\frac{1}{2(1-\rho^2)} \left(x_1^2 - 2\rho x_1 x_2 + x_2^2 \right) \right\} dx_1 \, dx_2$$

normal(z)
Domain: $−8e+307$ to $8e+307$
Range: 0 to 1
Description: returns the cumulative standard normal distribution.

$$\text{normal}(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

normalden(z)
Domain: $−8e+307$ to $8e+307$
Range: 0 to $0.39894 \ldots$
Description: returns the standard normal density, $N(0,1)$.

normalden(x,σ)
Domain x: $−8e+307$ to $8e+307$
Domain σ: $1e–308$ to $8e+307$
Range: 0 to $8e+307$
Description: returns the normal density with mean 0 and standard deviation σ:

$$\text{normalden}(x,1) = \text{normalden}(x) \quad \text{and} \quad \text{normalden}(x,\sigma) = \text{normalden}(x/\sigma)/\sigma.$$
normalden(x, μ, σ)
Domain x: $-8e+307$ to $8e+307$
Domain μ: $-8e+307$ to $8e+307$
Domain σ: $1e-308$ to $8e+307$
Range: 0 to $8e+307$
Description: returns the normal density with mean μ and standard deviation σ, $N(\mu, \sigma^2)$:
\[\text{normalden}(x, 0, s) = \text{normalden}(x, s) \text{ and } \text{normalden}(x, \mu, \sigma) = \text{normalden}((x - \mu)/\sigma)/\sigma. \]
In general,
\[\text{normalden}(z, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi} e^{-\frac{1}{2} \left\{ \frac{(z-\mu)}{\sigma} \right\}^2}} \]

invnormal(p)
Domain: $1e-323$ to $1 - 2^{-53}$
Range: -38.449394 to 8.2095362
Description: returns the inverse cumulative standard normal distribution:
if $\text{normal}(z) = p$, then $\text{invnormal}(p) = z$.

lnnormal(z)
Domain: $-1e+99$ to $8e+307$
Range: $-5e+197$ to 0
Description: returns the natural logarithm of the cumulative standard normal distribution:
\[\lnnormal(z) = \ln \left(\int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \right) \]

lnnormalden(z)
Domain: $-1e+154$ to $1e+154$
Range: $-5e+307$ to $-0.91893853 = \lnnormalden(0)$
Description: returns the natural logarithm of the standard normal density, $N(0, 1)$.

lnnormalden(x, σ)
Domain x: $-8e+307$ to $8e+307$
Domain σ: $1e-323$ to $8e+307$
Range: $-5e+307$ to 742.82799
Description: returns the natural logarithm of the normal density with mean 0 and standard deviation σ: $\lnnormalden(x, 1) = \lnnormalden(x)$ and
\[\lnnormalden(x, \sigma) = \lnnormalden(x/\sigma) - \ln(\sigma). \]

lnnormalden(x, μ, σ)
Domain x: $-8e+307$ to $8e+307$
Domain μ: $-8e+307$ to $8e+307$
Domain σ: $1e-323$ to $8e+307$
Range: $1e-323$ to $8e+307$
Description: returns the natural logarithm of the normal density with mean μ and standard deviation σ, $N(\mu, \sigma^2)$:
\[\text{lnnormalden}(x, 0, s) = \text{lnnormalden}(x, s) \text{ and } \text{lnnormalden}(x, \mu, \sigma) = \text{lnnormalden}((x - \mu)/\sigma) - \ln(\sigma). \]
In general,
\[\lnnormalden(z, \mu, \sigma) = \ln \left[\frac{1}{\sigma \sqrt{2\pi} e^{-\frac{1}{2} \left\{ \frac{(z-\mu)}{\sigma} \right\}^2}} \right] \]
Poisson distribution

\[\text{poisson}(m, k) \]
- Domain \(m \): 1e–10 to \(2^{53} - 1 \)
- Domain \(k \): 0 to \(2^{53} - 1 \)
- Range: 0 to 1
- Description: returns the probability of observing \(\text{floor}(k) \) or fewer outcomes that are distributed as Poisson with mean \(m \).

The Poisson distribution function is evaluated using the \text{gammaptail()} function.

\[\text{poissonp}(m, k) \]
- Domain \(m \): 1e–10 to 1e+8
- Domain \(k \): 0 to 1e+9
- Range: 0 to 1
- Description: returns the probability of observing \(\text{floor}(k) \) outcomes that are distributed as Poisson with mean \(m \).

The Poisson probability function is evaluated using the \text{gammaden()} function.

\[\text{poissontail}(m, k) \]
- Domain \(m \): 1e–10 to \(2^{53} - 1 \)
- Domain \(k \): 0 to \(2^{53} - 1 \)
- Range: 0 to 1
- Description: returns the probability of observing \(\text{floor}(k) \) or more outcomes that are distributed as Poisson with mean \(m \).

The reverse cumulative Poisson distribution function is evaluated using the \text{gamm}() function.

\[\text{invpoisson}(k, p) \]
- Domain \(k \): 0 to \(2^{53} - 1 \)
- Domain \(p \): 0 to 1 (exclusive)
- Range: 1.110e–16 to \(2^{53} \)
- Description: returns the Poisson mean such that the cumulative Poisson distribution evaluated at \(k \) is \(p \): if \(\text{poisson}(m, k) = p \), then \(\text{invpoisson}(k, p) = m \).

The inverse Poisson distribution function is evaluated using the \text{invgammaptail()} function.

\[\text{invpoissontail}(k, q) \]
- Domain \(k \): 0 to \(2^{53} - 1 \)
- Domain \(q \): 0 to 1 (exclusive)
- Range: 0 to \(2^{53} \) (left exclusive)
- Description: returns the Poisson mean such that the reverse cumulative Poisson distribution evaluated at \(k \) is \(q \): if \(\text{poissontail}(m, k) = q \), then \(\text{invpoissontail}(k, q) = m \).

The inverse of the reverse cumulative Poisson distribution function is evaluated using the \text{invgamma()} function.
Student’s t and noncentral Student’s t distributions

\(t(df, t) \)
- **Domain** \(df \): 2e+10 to 2e+17 (may be nonintegral)
- **Domain** \(t \): −8e+307 to 8e+307
- **Range**: 0 to 1
- **Description**: returns the cumulative Student’s \(t \) distribution with \(df \) degrees of freedom.

\(tden(df, t) \)
- **Domain** \(df \): 1e–323 to 8e+307 (may be nonintegral)
- **Domain** \(t \): −8e+307 to 8e+307
- **Range**: 0 to 0.39894...
- **Description**: returns the probability density function of Student’s \(t \) distribution:

\[
tden(df, t) = \frac{\Gamma\left(\frac{df + 1}{2}\right)}{\sqrt{\pi df} \Gamma(df/2)} \cdot \left(1 + \frac{t^2}{df}\right)^{-\frac{(df+1)}{2}}
\]

\(ttail(df, t) \)
- **Domain** \(df \): 2e–10 to 2e+17 (may be nonintegral)
- **Domain** \(t \): −8e+307 to 8e+307
- **Range**: 0 to 1
- **Description**: returns the reverse cumulative (upper tail or survivor) Student’s \(t \) distribution; it returns the probability \(T > t \):

\[
ttail(df, t) = \int_{t}^{\infty} \frac{\Gamma\left(\frac{df + 1}{2}\right)}{\sqrt{\pi df} \Gamma(df/2)} \cdot \left(1 + \frac{x^2}{df}\right)^{-\frac{(df+1)}{2}} dx
\]

\(invt(df, p) \)
- **Domain** \(df \): 2e–10 to 2e+17 (may be nonintegral)
- **Domain** \(p \): 0 to 1
- **Range**: −8e+307 to 8e+307
- **Description**: returns the inverse cumulative Student’s \(t \) distribution:

\[
\text{if } t(df, t) = p, \text{ then } invt(df, p) = t.
\]

\(invttail(df, p) \)
- **Domain** \(df \): 2e–10 to 2e+17 (may be nonintegral)
- **Domain** \(p \): 0 to 1
- **Range**: −8e+307 to 8e+307
- **Description**: returns the inverse reverse cumulative (upper tail or survivor) Student’s \(t \) distribution:

\[
\text{if } ttail(df, t) = p, \text{ then } invttail(df, p) = t.
\]

\(nt(df, np, t) \)
- **Domain** \(df \): 1e–100 to 1e+10 (may be nonintegral)
- **Domain** \(np \): −1,000 to 1,000
- **Domain** \(t \): −8e+307 to 8e+307
- **Range**: 0 to 1
- **Description**: returns the cumulative noncentral Student’s \(t \) distribution with \(df \) degrees of freedom and noncentrality parameter \(np \). \(nt(df, 0, t) = t(df, t) \).
$\text{ntden}(df, np, t)$
Domain df: 1e–100 to 1e+10 (may be nonintegral)
Domain np: –1,000 to 1,000
Domain t: –8e+307 to 8e+307
Range: 0 to 0.39894 . . .
Description: returns the probability density function of the noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np.

$\text{nttail}(df, np, t)$
Domain df: 1e–100 to 1e+10 (may be nonintegral)
Domain np: –1,000 to 1,000
Domain t: –8e+307 to 8e+307
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np.

$\text{invnttail}(df, np, p)$
Domain df: 1 to 1e+6 (may be nonintegral)
Domain np: –1,000 to 1,000
Domain p: 0 to 1
Range: –8e+10 to 8e+10
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentral Student’s t distribution: if $\text{ntail}(df, np, t) = p$, then $\text{invnttail}(df, np, p) = t$.

$\text{npnt}(df, t, p)$
Domain df: 1e–100 to 1e+8 (may be nonintegral)
Domain t: –8e+307 to 8e+307
Domain p: 0 to 1
Range: –1,000 to 1,000
Description: returns the noncentrality parameter, np, for the noncentral Student’s t distribution: if $\text{nt}(df, np, t) = p$, then $\text{npnt}(df, t, p) = np$.

Tukey’s Studentized range distribution

$\text{tukeyprob}(k, df, x)$
Domain k: 2 to 1e+6
Domain df: 2 to 1e+6
Domain x: –8e+307 to 8e+307
Interesting domain is $x \geq 0$
Range: 0 to 1
Description: returns the cumulative Tukey’s Studentized range distribution with k ranges and df degrees of freedom. If df is a missing value, then the normal distribution is used instead of Student’s t.
returns 0 if $x < 0$.

$\text{tukeyprob}()$ is computed using an algorithm described in Miller (1981).
invtukeyprob\((k, df, p) \)

Domain \(k \): 2 to \(1\times10^6 \)
Domain \(df \): 2 to \(1\times10^6 \)
Domain \(p \): 0 to 1
Range: 0 to \(8\times10^3 \)

Description: returns the inverse cumulative Tukey’s Studentized range distribution with \(k \) ranges and \(df \) degrees of freedom. If \(df \) is a missing value, then the normal distribution is used instead of Student’s \(t \). If \(\text{tukeyprob}(k, df, x) = p \), then \(\text{invtukeyprob}(k, df, p) = x \).

\(\text{invtukeyprob}() \) is computed using an algorithm described in Miller (1981).

Random-number functions

\(\text{runiform}() \)

Range: 0 to nearly 1 (0 to \(1 - 2^{-32} \))
Description: returns uniform random variates.

\(\text{runiform()} \) returns uniformly distributed random variates on the interval \([0, 1)\). \(\text{runiform()} \) takes no arguments, but the parentheses must be typed. \(\text{runiform()} \) can be seeded with the \text{set seed} command; see the technical note at the end of this subsection. (See \text{Matrix functions} for the related \text{matuniform()} matrix function.)

To generate random variates over the interval \([a, b]\), use \(a + (b-a) \times \text{runiform()} \).

To generate random integers over \([a, b]\), use \(a + \text{int}((b-a+1) \times \text{runiform()} \).

\(\text{rbeta}(a, b) \)

Domain \(a \): 0.05 to \(1\times10^5 \)
Domain \(b \): 0.15 to \(1\times10^5 \)
Range: 0 to 1 (exclusive)
Description: returns \(\text{beta}(a, b) \) random variates, where \(a \) and \(b \) are the beta distribution shape parameters.

Besides the standard methodology for generating random variates from a given distribution, \(\text{rbeta}() \) uses the specialized algorithms of Johnk (Gentle 2003), Atkinson and Whittaker (1970, 1976), Devroye (1986), and Schmeiser and Babu (1980).
rbinomial(n,p)
Domain n: 1 to 1e+11
Domain p: 1e–8 to 1–1e–8
Range: 0 to n
Description: returns binomial(n,p) random variates, where n is the number of trials and p is the success probability.

Besides the standard methodology for generating random variates from a given distribution, rbinomial() uses the specialized algorithms of Kachitvichyanukul (1982), Kachitvichyanukul and Schmeiser (1988), and Kemp (1986).

rchisq(df)
Domain df: 2e–4 to 2e+8
Range: 0 to c(maxdouble)
Description: returns chi-squared, with df degrees of freedom, random variates.

rgamma(a,b)
Domain a: 1e–4 to 1e+8
Domain b: c(smallestdouble) to c(maxdouble)
Range: 0 to c(maxdouble)
Description: returns gamma(a,b) random variates, where a is the gamma shape parameter and b is the scale parameter.

Methods for generating gamma variates are taken from Ahrens and Dieter (1974), Best (1983), and Schmeiser and Lal (1980).

rhypergeometric(N,K,n)
Domain N: 2 to 1e+6
Domain K: 1 to N–1
Domain n: 1 to N–1
Range: max(0,n − N + K) to min(K,n)
Description: returns hypergeometric random variates. The distribution parameters are integer valued, where N is the population size, K is the number of elements in the population that have the attribute of interest, and n is the sample size.

Besides the standard methodology for generating random variates from a given distribution, rhypergeometric() uses the specialized algorithms of Kachitvichyanukul (1982) and Kachitvichyanukul and Schmeiser (1985).

rnbinomial(n,p)
Domain n: 1e–4 to 1e+5
Domain p: 1e–4 to 1–1e–4
Range: 0 to 253 – 1
Description: returns negative binomial random variates. If n is integer valued, rnbinomial() returns the number of failures before the nth success, where the probability of success on a single trial is p. n can also be nonintegral.

rnormal()
Range: c(mindouble) to c(maxdouble)
Description: returns standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1.
rnormal(m)

Domain m: $c(\text{mindouble})$ to $c(\text{maxdouble})$
Range: $c(\text{mindouble})$ to $c(\text{maxdouble})$
Description: returns $\text{normal}(m,1)$ (Gaussian) random variates, where m is the mean and the standard deviation is 1.

rnormal(m,s)

Domain m: $c(\text{mindouble})$ to $c(\text{maxdouble})$
Domain s: 0 to $c(\text{maxdouble})$
Range: $c(\text{mindouble})$ to $c(\text{maxdouble})$
Description: returns $\text{normal}(m,s)$ (Gaussian) random variates, where m is the mean and s is the standard deviation.

The methods for generating normal (Gaussian) random variates are taken from Knuth (1998, 122–128); Marsaglia, MacLaren, and Bray (1964); and Walker (1977).

rpoisson(m)

Domain m: $1e^{-6}$ to $1e+11$
Range: 0 to $2^{53} - 1$
Description: returns Poisson(m) random variates, where m is the distribution mean.

Poisson variates are generated using the probability integral transform methods of Kemp and Kemp (1990, 1991), as well as the method of Kachitvichyanukul (1982).

rt(df)

Domain df: 1 to $2^{53} - 1$
Range: $c(\text{mindouble})$ to $c(\text{maxdouble})$
Description: returns Student’s t random variates, where df is the degrees of freedom.

Student’s t variates are generated using the method of Kinderman and Monahan (1977, 1980).

Technical note

The uniform pseudorandom-number function, runiform(), is based on George Marsaglia’s (G. Marsaglia, 1994, pers. comm.) 32-bit pseudorandom-number generator KISS (keep it simple stupid). The KISS generator is composed of two 32-bit pseudorandom-number generators and two 16-bit generators (combined to make one 32-bit generator). The four generators are defined by the recursions

\begin{align*}
x_n &= 69069 x_{n-1} + 1234567 \mod 2^{32} \quad (1) \\
y_n &= y_{n-1}(I + L^{13})(I + R^{17})(I + L^{5}) \quad (2) \\
z_n &= 65184(z_{n-1} \mod 2^{16}) + \text{int}(z_{n-1}/2^{16}) \quad (3) \\
w_n &= 63663(w_{n-1} \mod 2^{16}) + \text{int}(w_{n-1}/2^{16}) \quad (4)
\end{align*}

In recursion (2), the 32-bit word y_n is viewed as a 1×32 binary vector; L is the 32×32 matrix that produces a left shift of one (L has 1s on the first left subdiagonal, 0s elsewhere); and R is L transpose, affecting a right shift by one. In recursions (3) and (4), $\text{int}(x)$ is the integer part of x.
The KISS generator produces the 32-bit random number

\[R_n = x_n + y_n + z_n + 2^{16} w_n \mod 2^{32} \]

`runiform()` takes the output from the KISS generator and divides it by \(2^{32}\) to produce a real number on the interval \([0, 1)\).

All the nonuniform random-number generators rely on uniform random numbers that are also generated using this KISS algorithm.

The recursions (1)–(4) have, respectively, the periods

\[
\begin{align*}
2^{32} & \quad (1) \\
2^{32} - 1 & \quad (2) \\
(65184 \cdot 2^{16} - 2)/2 & \approx 2^{31} \quad (3) \\
(63663 \cdot 2^{16} - 2)/2 & \approx 2^{31} \quad (4)
\end{align*}
\]

Thus the overall period for the KISS generator is

\[2^{32} \cdot (2^{32} - 1) \cdot (65184 \cdot 2^{15} - 1) \cdot (63663 \cdot 2^{15} - 1) \approx 2^{126} \]

When Stata first comes up, it initializes the four recursions in KISS by using the seeds

\[
\begin{align*}
x_0 &= 123456789 \quad (1) \\
y_0 &= 521288629 \quad (2) \\
z_0 &= 362436069 \quad (3) \\
w_0 &= 2262615 \quad (4)
\end{align*}
\]

Successive calls to `runiform()` then produce the sequence

\[
\frac{R_1}{2^{32}}, \frac{R_2}{2^{32}}, \frac{R_3}{2^{32}}, \ldots
\]

Hence, `runiform()` gives the same sequence of random numbers in every Stata session (measured from the start of the session) unless you reinitialize the seed. The full seed is the set of four numbers \((x, y, z, w)\), but you can reinitialize the seed by simply issuing the command

`. set seed #`

where \# is any integer between 0 and \(2^{31} - 1\), inclusive. When this command is issued, the initial value \(x_0\) is set equal to \#, and the other three recursions are restarted at the seeds \(y_0, z_0,\) and \(w_0\) given above. The first 100 random numbers are discarded, and successive calls to `runiform()` give the sequence

\[
\frac{R'_{101}}{2^{32}}, \frac{R'_{102}}{2^{32}}, \frac{R'_{103}}{2^{32}}, \ldots
\]
However, if the command

```
 . set seed 123456789
```

is given, the first 100 random numbers are not discarded, and you get the same sequence of random numbers that `runiform()` produces by default; also see `[R] set seed`.

Technical note

You may “capture” the current seed \((x, y, z, w)\) by coding

```
 . local curseed = \`c(seed)`
```

and, later in your code, reestablish that seed by coding

```
 . set seed \`curseed`
```

When the seed is set this way, the first 100 random numbers are not discarded.

`c(seed)` contains a 30-plus long character string similar to

```
X075bcd151f123bb5159a55e50022865746ad
```

The string contains an encoding of the four numbers \((x, y, z, w)\) along with checksums and redundancy to ensure that, at `set seed` time, it is valid.

String functions

Stata includes the following string functions. In the display below, `s` indicates a string subexpression (a string literal, a string variable, or another string expression), `n` indicates a numeric subexpression (a number, a numeric variable, or another numeric expression), and `re` indicates a regular expression based on Henry Spencer’s NFA algorithms and this is nearly identical to the POSIX.2 standard.

`abbrev(s,n)`

Domain `s`: strings
Domain `n`: 5 to 32
Range: strings
Description: returns name `s`, abbreviated to `n` characters.

If any of the characters of `s` are a period, “.”, and `n < 8`, then the value of `n` defaults to a value of 8. Otherwise, if `n < 5`, then `n` defaults to a value of 5.

If `n` is `missing`, `abbrev()` will return the entire string `s`. `abbrev()` is typically used with variable names and variable names with factor-variable or time-series operators (the period case). `abbrev("displacement",8)` is `displa-t`.

`char(n)`

Domain: integers 0 to 255
Range: ASCII characters
Description: returns the character corresponding to ASCII code `n`. returns "" if `n` is not in the domain.
indexnot(s_1, s_2)
 Domain s_1: strings (to be searched)
 Domain s_2: strings of individual characters (to search for)
 Range: integers ≥ 0
 Description: returns the position in s_1 of the first character of s_1 not found in s_2, or 0
 if all characters of s_1 are found in s_2.

itrim(s)
 Domain: strings
 Range: strings with no multiple, consecutive internal blanks
 Description: returns s with multiple, consecutive internal blanks collapsed to one blank.
 $\text{itrim("hello there") = "hello there"}$

length(s)
 Domain: strings
 Range: integers ≥ 0
 Description: returns the length of s. length("ab") = 2

lower(s)
 Domain: strings
 Range: strings with lowercased characters
 Description: returns the lowercased variant of s. $\text{lower("THIS") = "this"}$

ltrim(s)
 Domain: strings
 Range: strings without leading blanks
 Description: returns s without leading blanks. $\text{ltrim(" this") = "this"}$

plural(n, s) or plural(n, s_1, s_2)
 Domain n: real numbers
 Domain s: strings
 Domain s_1: strings
 Domain s_2: strings
 Range: strings
 Description: returns the plural of s, or s_1 in the 3-argument case, if $n \neq \pm 1$.
 The plural is formed by adding “s” to s if you called plural(n, s). If
 you called plural(n, s_1, s_2) and s_2 begins with the character “+”, the plural
 is formed by adding the remainder of s_2 to s_1. If s_2 begins with the character
 “-”, the plural is formed by subtracting the remainder of s_2 from s_1. If s_2
 begins with neither “+” nor “-”, then the plural is formed by returning s_2.
 returns s, or s_1 in the 3-argument case, if $n = \pm 1$.

 plural(1, "horse") = "horse"
 plural(2, "horse") = "horses"
 plural(2, "glass", "+es") = "glasses"
 plural(1, "mouse", "mice") = "mouse"
 plural(2, "mouse", "mice") = "mice"
 plural(2, "abcdefg", "+efg") = "ab"
proper(s)
 Domain: strings
 Range: strings
 Description: returns a string with the first letter capitalized, and capitalizes any other letters immediately following characters that are not letters; all other letters converted to lowercase.
 proper("mR. joHn a. sMitH") = "Mr. John A. Smith"
 proper("jack o’reilly") = "Jack O’Reilly"
 proper("2-cent’s worth") = "2-Cent’S Worth"

real(s)
 Domain: strings
 Range: $-8e+307$ to $8e+307$ and missing
 Description: returns s converted to numeric, or returns missing.
 real("5.2") + 1 = 6.2
 real("hello") = .

regexm(s, re)
 Domain s: strings
 Domain re: regular expression
 Range: strings
 Description: performs a match of a regular expression and evaluates to 1 if regular expression re is satisfied by the string s, otherwise returns 0.
 Regular expression syntax is based on Henry Spencer’s NFA algorithm, and this is nearly identical to the POSIX.2 standard. s and re may not contain binary 0 ($\0$).

regexr(s_1, re, s_2)
 Domain s_1: strings
 Domain re: regular expression
 Domain s_2: strings
 Range: strings
 Description: replaces the first substring within s_1 that matches re with s_2 and returns the resulting string. If s_1 contains no substring that matches re, the unaltered s_1 is returned. s_1 and the result of regexr() may be at most 1,100,000 characters long. s_1, re, and s_2 may not contain binary 0 ($\0$).

regexs(n)
 Domain: 0 to 9
 Range: strings
 Description: returns subexpression n from a previous regexm() match, where $0 \leq n < 10$. Subexpression 0 is reserved for the entire string that satisfied the regular expression. The returned subexpression may be at most 1,100,000 characters long.

reverse(s)
 Domain: strings
 Range: reversed strings
 Description: returns s reversed. reverse("hello") = "olleh"
rtrim(s)
Domain: strings
Range: strings without trailing blanks
Description: returns s without trailing blanks. \(\text{rtrim("this ")} = \text{"this"} \)

soundex(s)
Domain: strings
Range: strings
Description: returns the soundex code for a string, s. The soundex code consists of a letter followed by three numbers: the letter is the first letter of the name and the numbers encode the remaining consonants. Similar sounding consonants are encoded by the same number.

\[
\begin{align*}
\text{soundex("Ashcraft")} &= \text{"A226"} \\
\text{soundex("Robert")} &= \text{"R163"} \\
\text{soundex("Rupert")} &= \text{"R163"}
\end{align*}
\]

soundex_nara(s)
Domain: strings
Range: strings
Description: returns the U.S. Census soundex code for a string, s. The soundex code consists of a letter followed by three numbers: the letter is the first letter of the name and the numbers encode the remaining consonants. Similar sounding consonants are encoded by the same number.

\[
\text{soundex_nara("Ashcraft")} = \text{"A261"}
\]

strcat(s_1, s_2)
Domain \(s_1 \): strings
Domain \(s_2 \): strings
Range: strings
Description: There is no strcat() function. Instead the addition operator is used to concatenate strings:

\[
\begin{align*}
\text{"hello "} + \text{"world"} &= \text{"hello world"} \\
\text{"a"} + \text{"b"} &= \text{"ab"}
\end{align*}
\]

strdup(s_n)
Domain \(s \): strings
Domain \(n \): nonnegative integers 0, 1, 2, ...
Range: strings
Description: There is no strdup() function. Instead the multiplication operator is used to create multiple copies of strings:

\[
\begin{align*}
\text{"hello"} * 3 &= \text{"hellohellohello"} \\
3 * \text{"hello"} &= \text{"hellohellohello"} \\
0 * \text{"hello"} &= \text{""} \\
\text{"hello"} * 1 &= \text{"hello"}
\end{align*}
\]
string(n)
Domain: $-8e+307$ to $8e+307$ and missing
Range: strings
Description: returns n converted to a string.
\[
\begin{align*}
\text{string}(4) + \text{"F"} &= \text{"4F"} \\
\text{string}(1234567) &= \text{"1234567"} \\
\text{string}(12345678) &= \text{"1.23e+07"} \\
\text{string}(.) &= \text{"."}
\end{align*}
\]

string(n,s)
Domain n: $-8e+307$ to $8e+307$ and missing
Domain s: strings containing \%fmt numeric display format
Range: strings
Description: returns n converted to a string.
\[
\begin{align*}
\text{string}(4,\%9.2f) &= \text{"4.00"} \\
\text{string}(123456789,\%11.0g) &= \text{"123456789"} \\
\text{string}(123456789,\%13.0g) &= \text{"123,456,789"} \\
\text{string}(0,\%td) &= \text{"01jan1960"} \\
\text{string}(225,\%tq) &= \text{"2016q2"} \\
\text{string}(225,\text{"not a format"}) &= \text{""}
\end{align*}
\]

strlen(s) is a synonym for length(s).

strlower(x) is a synonym for lower(x).

strltrim(x) is a synonym for ltrim(x).

strmatch(s1,s2)
Domain s: strings
Range: 0 or 1
Description: returns 1 if s_1 matches the pattern s_2; otherwise, it returns 0.
\[
\text{strmatch("17.4","1??4") returns 1. In } s_2, \text{"?" means that one character goes here, and "*" means that zero or more characters go here. Also see regexm(), regexr(), and regexs().}
\]

strofreal(n) is a synonym for string(n).

strofreal(n,s) is a synonym for string(n,s).

strpos(s1,s2)
Domain s_1: strings (to be searched)
Domain s_2: strings (to search for)
Range: integers ≥ 0
Description: returns the position in s_1 at which s_2 is first found; otherwise, it returns 0.
\[
\text{strpos("this","is") = 3} \\
\text{strpos("this","it") = 0}
\]

strproper(x) is a synonym for proper(x).

strreverse(x) is a synonym for reverse(x).

strrtrim(x) is a synonym for rtrim(x).
strtoname(s,p)
Domain s: strings
Domain p: 0 or 1
Range: strings
Description: returns s translated into a Stata name. Each character in s that is not allowed in a Stata name is converted to an underscore character, _. If the first character in s is a numeric character and p is not 0, then the result is prefixed with an underscore. The result is truncated to 32 characters.

 strtoname("name",1) = "name"
 strtoname("a name",1) = "a_name"
 strtoname("5",1) = "_5"
 strtoname("5:30",1) = "_5_30"
 strtoname("5",0) = "5"
 strtoname("5:30",0) = "5_30"

strtoname(s)
Domain s: strings
Range: strings
Description: returns s translated into a Stata name. Each character in s that is not allowed in a Stata name is converted to an underscore character, _. If the first character in s is a numeric character, then the result is prefixed with an underscore. The result is truncated to 32 characters.

 strtoname("name") = "name"
 strtoname("a name") = "a_name"
 strtoname("5") = "_5"
 strtoname("5:30") = "_5_30"

strtrim(x) is a synonym for trim(x).

strupper(x) is a synonym for upper(x).

subinstr(s1,s2,s3,n)
Domain s1: strings (to be substituted into)
Domain s2: strings (to be substituted from)
Domain s3: strings (to be substituted with)
Domain n: integers ≥ 0 and missing
Range: strings
Description: returns s1, where the first n occurrences in s1 of s2 have been replaced with s3. If n is missing, all occurrences are replaced. Also see regexm(), regexr(), and regexs().

 subinstr("this is the day","is","X",1) = "thX is the day"
 subinstr("this is the hour","is","X",2) = "thX X the hour"
 subinstr("this is this","is","X",.) = "thX X thX"
subinword(s_1,s_2,s_3,n)
Domain s_1: strings (to be substituted for)
Domain s_2: strings (to be substituted from)
Domain s_3: strings (to be substituted with)
Domain n: integers ≥ 0 and missing
Range: strings
Description: returns s_1, where the first n occurrences in s_1 of s_2 as a word have been replaced with s_3. A word is defined as a space-separated token. A token at the beginning or end of s_1 is considered space-separated. If n is missing, all occurrences are replaced. Also see regexm(), regexr(), and regexs().

subinword("this is the day","is","X",1) = "this X the day"
subinword("this is the hour","is","X",.) = "this X the hour"
subinword("this is this","th","X",.) = "this is this"

substr(s,n_1,n_2)
Domain s: strings
Domain n_1: integers ≥ 1 and ≤ -1
Domain n_2: integers ≥ 1 and ≤ -1
Range: strings
Description: returns the substring of s, starting at column n_1, for a length of n_2. If $n_1 < 0$, n_1 is interpreted as distance from the end of the string; if $n_2 = .$ (missing), the remaining portion of the string is returned.

substr("abcdef",2,3) = "bcd"
substr("abcdef",-3,2) = "de"
substr("abcdef",2,.) = "bcdef"
substr("abcdef",-3,.) = "def"
substr("abcdef",2,0) = ""
substr("abcdef",15,2) = ""

trim(s)
Domain: strings
Range: strings without leading or trailing blanks
Description: returns s without leading and trailing blanks; equivalent to ltrim(rtrim(s)). trim(" this ") = "this"

upper(s)
Domain: strings
Range: strings with uppercased characters
Description: returns the uppercased variant of s. upper("this") = "THIS"

word(s, n)
Domain s: strings
Domain n: integers $\ldots,-2,-1,0,1,2,\ldots$
Range: strings
Description: returns the nth word in s. Positive numbers count words from the beginning of s, and negative numbers count words from the end of s. (1 is the first word in s, and -1 is the last word in s.) Returns missing (""") if n is missing.
wordcount(s)
 Domain: strings
 Range: nonnegative integers 0, 1, 2, ...
 Description: returns the number of words in s. A word is a set of characters that start and terminate with spaces, start with the beginning of the string, or terminate with the end of the string.

Programming functions

autocode(x, n, x0, x1)
 Domain x: $-8e+307$ to $8e+307$
 Domain n: integers 1 to $8e+307$
 Domain x0: $-8e+307$ to $8e+307$
 Domain x1: x_0 to $8e+307$
 Range: x_0 to x_1
 Description: partitions the interval from x_0 to x_1 into n equal-length intervals and returns the upper bound of the interval that contains x. This function is an automated version of recode() (see below).

The algorithm for autocode() is

if $(n \geq . \land x_0 \geq . \land x_1 \geq . \land n \leq 0 \land x_0 \geq x_1)$
 then return missing
 if $x \geq .$, then return x
 otherwise
 for $i = 1$ to $n - 1$
 $xmap = x_0 + i \times (x_1 - x_0)/n$
 if $x \leq xmap$ then return $xmap$
 end
 otherwise
 return x_1

byteorder()
 Range: 1 and 2
 Description: returns 1 if your computer stores numbers by using a hilo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order. Consider the number 1 written as a 2-byte integer. On some computers (called hilo), it is written as “00 01”, and on other computers (called lohi), it is written as “01 00” (with the least significant byte written first). There are similar issues for 4-byte integers, 4-byte floats, and 8-byte floats. Stata automatically handles byte-order differences for Stata-created files. Users need not be concerned about this issue. Programmers producing customary binary files can use byteorder() to determine the native byte ordering; see [P] file.
c(name)
- Domain: names
- Range: real values, strings, and missing
- Description: returns the value of the system or constant result c(name); see [P] creturn. Referencing c(name) will return an error if the result does not exist. returns a scalar if the result is scalar. returns a string of the result containing the first 2,045 characters.

_caller()
- Range: 1 to 13
- Description: returns version of the program or session that invoked the currently running program; see [P] version. The current version at the time of this writing is 13, so 13 is the upper end of this range. If Stata 13.1 were the current version, 13.1 would be the upper end of this range, and likewise, if Stata 14 were the current version, 14 would be the upper end of this range. This is a function for use by programmers.

chop(x, ϵ)
- Domain x: \(-8e+307 \text{ to } 8e+307\)
- Domain ϵ: \(-8e+307 \text{ to } 8e+307\)
- Range: \(-8e+307 \text{ to } 8e+307\)
- Description: returns \(\text{round}(x)\) if \(|x - \text{round}(x)| < ϵ\); otherwise, returns \(x\). returns \(x\) if \(x\) is missing.

clip(x,a,b)
- Domain x: \(-8e+307 \text{ to } 8e+307\)
- Domain a: \(-8e+307 \text{ to } 8e+307\)
- Domain b: \(-8e+307 \text{ to } 8e+307\)
- Range: \(-8e+307 \text{ to } 8e+307\)
- Description: returns \(x\) if \(a < x < b\), \(b\) if \(x \geq b\), \(a\) if \(x \leq a\), and missing if \(x\) is missing or if \(a > b\). If \(a\) or \(b\) is missing, this is interpreted as \(a = -\infty\) or \(b = +\infty\), respectively.
returns \(x\) if \(x\) is missing.
cond\(x, a, b, c\) or cond\(x, a, b\)

Domain \(x\): \(-8\times10^{307} \) to \(8\times10^{307}\) and missing; \(0 \Rightarrow false\), otherwise interpreted as true

Domain \(a\): numbers and strings

Domain \(b\): numbers if \(a\) is a number; strings if \(a\) is a string

Domain \(c\): numbers if \(a\) is a number; strings if \(a\) is a string

Range: \(a, b, \) and \(c\)

Description:
- returns \(a\) if \(x\) is true and nonmissing, \(b\) if \(x\) is false, and \(c\) if \(x\) is missing. returns \(a\) if \(c\) is not specified and \(x\) evaluates to missing.

Note that expressions such as \(x > 2\) will never evaluate to missing.

\[\text{cond}(x > 2, 50, 70)\] returns 50 if \(x > 2\) (includes \(x \geq 2\))

\[\text{cond}(x > 2, 50, 70)\] returns 70 if \(x \leq 2\)

If you need a case for missing values in the above examples, try

\[\text{cond} (\text{missing}(x), ., \text{cond}(x > 2, 50, 70))\] returns . if \(x\) is missing,

returns 50 if \(x > 2\), and returns 70 if \(x \leq 2\)

If the first argument is a scalar that may contain a missing value or a variable containing missing values, the fourth argument has an effect.

\[\text{cond}(\text{wage}, 1, 0, .)\] returns 1 if \(\text{wage}\) is not zero and not missing

\[\text{cond}(\text{wage}, 1, 0, .)\] returns 0 if \(\text{wage}\) is zero

\[\text{cond}(\text{wage}, 1, 0, .)\] returns . if \(\text{wage}\) is missing

Caution: If the first argument to cond() is a logical expression, that is, cond\(x > 2, 50, 70, .,\), the fourth argument is never reached.

e(\text{name})

Domain: names

Range: strings, scalars, matrices, and missing

Description:
- returns the value of stored result e(name);
- see [U] 18.8 Accessing results calculated by other programs

\[e(\text{name})\] = scalar missing if the stored result does not exist

\[e(\text{name})\] = specified matrix if the stored result is a matrix

\[e(\text{name})\] = scalar numeric value if the stored result is a scalar

\[e(\text{name})\] = a string containing the first 2,045 characters
 - if the stored result is a string

e(sample)

Range: 0 and 1

Description: returns 1 if the observation is in the estimation sample and 0 otherwise.

epsdouble()

Range: a double-precision number close to 0

Description:
- returns the machine precision of a double-precision number. If \(d < \text{epsdouble()}\) and (double) \(x = 1\), then \(x + d = (\text{double}) 1\). This function takes no arguments, but the parentheses must be included.
epsfloat()

Range: a floating-point number close to 0
Description: returns the machine precision of a floating-point number. If $d < \text{epsfloat()}$ and $(\text{float}) x = 1$, then $x + d = (\text{float}) 1$. This function takes no arguments, but the parentheses must be included.

fileexists(f)

Domain: filenames
Range: 0 and 1
Description: returns 1 if the file specified by f exists; returns 0 otherwise.

If the file exists but is not readable, \texttt{fileexists()} will still return 1, because it does exist. If the “file” is a directory, \texttt{fileexists()} will return 0.

fileread(f)

Domain: filenames
Range: strings
Description: returns the contents of the file specified by f.

If the file does not exist or an I/O error occurs while reading the file, then “\texttt{fileread()} error #” is returned, where # is a standard Stata error return code.

filereaderror(f)

Domain: strings
Range: integers
Description: returns 0 or positive integer, said value having the interpretation of a return code.

It is used like this

\begin{verbatim}
. generate strL s = fileread(filename) if fileexists(filename)
. assert filereaderror(s)==0
\end{verbatim}

or this

\begin{verbatim}
. generate strL s = fileread(filename) if fileexists(filename)
. generate rc = filereaderror(s)
\end{verbatim}

That is, \texttt{filereaderror(s)} is used on the result returned by \texttt{fileread(filename)} to determine whether an I/O error occurred.

In the example, we only \texttt{fileread()} files that \texttt{fileexist()}. That is not required. If the file does not exist, that will be detected by \texttt{filereaderror()} as an error. The way we showed the example, we did not want to read missing files as errors. If we wanted to treat missing files as errors, we would have coded

\begin{verbatim}
. generate strL s = fileread(filename)
. assert filereaderror(s)==0
\end{verbatim}

or

\begin{verbatim}
. generate strL s = fileread(filename)
. generate rc = filereaderror(s)
\end{verbatim}
functions — Functions

filewrite(f, s[, r])

- **Domain** \(f \): filenames
- **Domain** \(s \): strings
- **Domain** \(r \): integers 1 or 2
- **Range**: integers
- **Description**: writes the string specified by \(s \) to the file specified by \(f \) and returns the number of bytes in the resulting file.

If the optional argument \(r \) is specified as 1, the file specified by \(f \) will be replaced if it exists. If \(r \) is specified as 2, the file specified by \(f \) will be appended to if it exists. Any other values of \(r \) are treated as if \(r \) were not specified; that is, \(f \) will only be written to if it does not already exist.

When the file \(f \) is freshly created or is replaced, the value returned by filewrite() is the number of bytes written to the file, strlen(s). If \(r \) is specified as 2, and thus filewrite() is appending to an existing file, the value returned is the total number of bytes in the resulting file; that is, the value is the sum of the number of the bytes in the file as it existed before filewrite() was called and the number of bytes newly written to it, strlen(s).

If the file exists and \(r \) is not specified as 1 or 2, or an error occurs while writing to the file, then a negative number (#) is returned, where abs(#) is a standard Stata error return code.

float(x)

- **Domain**: \(-1e+38 \text{ to } 1e+38\)
- **Range**: \(-1e+38 \text{ to } 1e+38\)
- **Description**: returns the value of \(x \) rounded to float precision.

Although you may store your numeric variables as byte, int, long, float, or double, Stata converts all numbers to double before performing any calculations. Consequently, difficulties can arise in comparing numbers that have no finite binary representation.

For example, if the variable \(x \) is stored as a float and contains the value 1.1 (a repeating “decimal” in binary), the expression \(x==1.1 \) will evaluate to false because the literal 1.1 is the double representation of 1.1, which is different from the float representation stored in \(x \). (They differ by \(2.384 \times 10^{-8} \).) The expression \(x==\text{float}(1.1) \) will evaluate to true because the float() function converts the literal 1.1 to its float representation before it is compared with \(x \). (See [U] 13.11 Precision and problems therein for more information.)

fmtwidth(fmtstr)

- **Range**: strings
- **Description**: returns the output length of the \%fmt contained in fmtstr.

returns missing if fmtstr does not contain a valid \%fmt. For example,

```
fmtwidth("%9.2f") returns 9 and fmtwidth("%tc") returns 18.
```

has_eprop(name)

- **Domain**: names
- **Range**: 0 or 1
- **Description**: returns 1 if name appears as a word in e(properties); otherwise, returns 0.
inlist\((z,a,b,...)\)
Domain: all reals or all strings
Range: 0 or 1
Description: returns 1 if \(z\) is a member of the remaining arguments; otherwise, returns 0.
All arguments must be reals or all must be strings. The number of arguments is between 2 and 255 for reals and between 2 and 10 for strings.

inrange\((z,a,b)\)
Domain: all reals or all strings
Range: 0 or 1
Description: returns 1 if it is known that \(a \leq z \leq b\); otherwise, returns 0.
The following ordered rules apply:
\[z \geq . \] returns 0.
\[a \geq . \text{ and } b = . \] returns 1.
\[a \geq . \text{ returns 1 if } z \leq b; \text{ otherwise, it returns } 0. \]
\[b \geq . \text{ returns 1 if } a \leq z; \text{ otherwise, it returns } 0. \]
Otherwise, 1 is returned if \(a \leq z \leq b\).
If the arguments are strings, “.” is interpreted as “”.

irecode\((x,x_1,x_2,x_3,...,x_n)\)
Domain \(x\): \(-8e+307\) to \(8e+307\)
Domain \(x_i\): \(-8e+307\) to \(8e+307\)
Range: nonnegative integers
Description: returns \textit{missing} if \(x\) is missing or \(x,\ldots,x_n\) is not weakly increasing.
returns 0 if \(x \leq x_1\).
returns 1 if \(x_1 < x \leq x_2\).
returns 2 if \(x_2 < x \leq x_3\).
\[\ldots\]
returns \(n\) if \(x > x_n\).

Also see \texttt{autocode()} and \texttt{recode()} for other styles of recode functions.

\[
\text{irecode}(3, -10, -5, -3, -3, 0, 15, .) = 5
\]

matrix\((\textit{exp})\)
Domain: any valid expression
Range: evaluation of \textit{exp}
Description: restricts name interpretation to scalars and matrices; see \texttt{scalar()} function below.

maxbyte()
Range: one integer number
Description: returns the largest value that can be stored in storage type \texttt{byte}. This function takes no arguments, but the parentheses must be included.

maxdouble()
Range: one double-precision number
Description: returns the largest value that can be stored in storage type \texttt{double}. This function takes no arguments, but the parentheses must be included.

maxfloat()
Range: one floating-point number
Description: returns the largest value that can be stored in storage type \texttt{float}. This function takes no arguments, but the parentheses must be included.
maxint()
Range: one integer number
Description: returns the largest value that can be stored in storage type int. This function takes no arguments, but the parentheses must be included.

maxlong()
Range: one integer number
Description: returns the largest value that can be stored in storage type long. This function takes no arguments, but the parentheses must be included.

mi(x_1, x_2, ..., x_n) is a synonym for missing(x_1, x_2, ..., x_n).

minbyte()
Range: one integer number
Description: returns the smallest value that can be stored in storage type byte. This function takes no arguments, but the parentheses must be included.

mindouble()
Range: one double-precision number
Description: returns the smallest value that can be stored in storage type double. This function takes no arguments, but the parentheses must be included.

minfloat()
Range: one floating-point number
Description: returns the smallest value that can be stored in storage type float. This function takes no arguments, but the parentheses must be included.

minint()
Range: one integer number
Description: returns the smallest value that can be stored in storage type int. This function takes no arguments, but the parentheses must be included.

minlong()
Range: one integer number
Description: returns the smallest value that can be stored in storage type long. This function takes no arguments, but the parentheses must be included.

missing(x_1, x_2, ..., x_n)
Domain x_i: any string or numeric expression
Range: 0 and 1
Description: returns 1 if any x_i evaluates to missing; otherwise, returns 0.

Stata has two concepts of missing values: a numeric missing value (., .a, .b,z) and a string missing value (" "). missing() returns 1 (meaning true) if any expression x_i evaluates to missing. If x is numeric, missing(x) is equivalent to $x \geq .$. If x is string, missing(x) is equivalent to $x==""$.
r(name)

Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of the stored result \(r(name) \);

\[
\begin{align*}
r(name) &= \text{scalar missing if the stored result does not exist} \\
r(name) &= \text{specified matrix if the stored result is a matrix} \\
r(name) &= \text{scalar numeric value if the stored result is a scalar} \\
&\quad \quad \quad \quad \text{that can be interpreted as a number} \\
r(name) &= \text{a string containing the first 2,045 characters} \\
&\quad \quad \quad \quad \text{if the stored result is a string}
\end{align*}
\]

recode(x,x_1,x_2,\ldots,x_n)

Domain: \(x \): \(-8e+307 \) to \(8e+307 \) and missing
Domain: \(x_1 \): \(-8e+307 \) to \(8e+307 \)
Domain: \(x_2 \): \(x_1 \) to \(8e+307 \)
\ldots
Domain: \(x_n \): \(x_{n-1} \) to \(8e+307 \)
Range: \(x_1, x_2, \ldots, x_n \) and missing
Description: returns missing if \(x_1, \ldots, x_n \) is not weakly increasing.
returns \(x \) if \(x \) is missing.
returns \(x_1 \) if \(x \leq x_1 \); \(x_2 \) if \(x \leq x_2, \ldots \); otherwise,
\(x_n \) if \(x > x_1, x_2, \ldots, x_{n-1} \).
\(x_i \geq . \) is interpreted as \(x_i = +\infty \).

Also see **autocode()** and **irecode()** for other styles of recode functions.

replay()

Range: integers 0 and 1, meaning false and true, respectively
Description: returns 1 if the first nonblank character of local macro ‘0’ is a comma,
or if ‘0’ is empty. This is a function for use by programmers writing
estimation commands; see [P] **ereturn**.

return(name)

Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of the to-be-stored result \(r(name) \);

\[
\begin{align*}
\text{return}(name) &= \text{scalar missing if the stored result does not exist} \\
\text{return}(name) &= \text{specified matrix if the stored result is a matrix} \\
\text{return}(name) &= \text{scalar numeric value if the stored result is a scalar} \\
&\quad \quad \quad \quad \text{if the stored result is a string}
\end{align*}
\]

s(name)

Domain: names
Range: strings and missing
Description: returns the value of stored result \(s(name) \);

\[
\begin{align*}
s(name) &= . \text{ if the stored result does not exist} \\
s(name) &= \text{a string containing the first 2,045 characters} \\
&\quad \quad \quad \quad \text{if the stored result is a string}
\end{align*}
\]
scalar(*exp*)

Domain: any valid expression

Range: evaluation of *exp*

Description: restricts name interpretation to scalars and matrices.

Names in expressions can refer to names of variables in the dataset, names of matrices, or names of scalars. Matrices and scalars can have the same names as variables in the dataset. If names conflict, Stata assumes that you are referring to the name of the variable in the dataset.

matrix() and **scalar()** explicitly state that you are referring to matrices and scalars. **matrix()** and **scalar()** are the same function; scalars and matrices may not have the same names and so cannot be confused. Typing **scalar(x)** makes it clear that you are referring to the scalar or matrix named *x* and not the variable named *x*, should there happen to be a variable of that name.

smallestdouble()

Range: a double-precision number close to 0

Description: returns the smallest double-precision number greater than zero. If $0 < d < \text{smallestdouble}()$, then *d* does not have full double precision; these are called the denormalized numbers. This function takes no arguments, but the parentheses must be included.

Date and time functions

Stata’s **date and time functions** are described with examples in [U] 24 Working with dates and times and [D] datetime. What follows is a technical description. We use the following notation:

- eb \(\%tb \) business calendar date (days)
- etc \(\%tc \) encoded datetime (ms. since 01jan1960 00:00:00.000)
- $etcC$ \(\%tC \) encoded datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
- ed \(\%td \) encoded date (days since 01jan1960)
- ew \(\%tw \) encoded weekly date (weeks since 1960w1)
- em \(\%tm \) encoded monthly date (months since 1960m1)
- eq \(\%tq \) encoded quarterly date (quarters since 1960q1)
- eh \(\%th \) encoded half-yearly date (half-years since 1960h1)
- ey \(\%ty \) encoded yearly date (years)
- M month, 1–12
- D day of month, 1–31
- Y year, 0100–9999
- h hour, 0–23
- m minute, 0–59
- s second, 0–59 or 60 if leap seconds
- W week number, 1–52
- Q quarter number, 1–4
- H half-year number, 1 or 2

The date and time functions, where integer arguments are required, allow noninteger values and use the **floor()** of the value.
A Stata date-and-time (\%t) variable is recorded as the milliseconds, days, weeks, etc., depending upon the units from 01jan1960; negative values indicate dates and times before 01jan1960. Allowable dates and times are those between 01jan0100 and 31dec9999, inclusive, but all functions are based on the Gregorian calendar, and values do not correspond to historical dates before Friday, 15oct1582.

\texttt{bofd("cal", e_d)}

- **Domain** \texttt{cal}: business calendar names and formats
- **Domain** \texttt{e_d}: \%td as defined by business calendar named \texttt{cal}
- **Range**: as defined by business calendar named \texttt{cal}
- **Description**: returns the \texttt{e_b} business date corresponding to \texttt{e_d}.

\texttt{Cdhms(e_d, h, m, s)}

- **Domain** \texttt{e_d}: \%td dates 01jan0100 to 31dec9999 (integers \(-679,350\) to \(2,936,549\))
- **Domain** \texttt{h}: integers 0 to 23
- **Domain** \texttt{m}: integers 0 to 59
- **Domain** \texttt{s}: reals 0.000 to 60.999
- **Range**: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
- **Description**: returns the \texttt{e_tC} datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
 corresponding to \texttt{e_d}, \texttt{h}, \texttt{m}, \texttt{s}.

\texttt{Chms(h, m, s)}

- **Domain** \texttt{h}: integers 0 to 23
- **Domain** \texttt{m}: integers 0 to 59
- **Domain** \texttt{s}: reals 0.000 to 60.999
- **Range**: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
- **Description**: returns the \texttt{e_tC} datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
 corresponding to \texttt{h}, \texttt{m}, \texttt{s} on 01jan1960.

\texttt{Clock(s_1, s_2[, Y])}

- **Domain** \texttt{s_1}: strings
- **Domain** \texttt{s_2}: strings
- **Domain** \texttt{Y}: integers 1000 to 9998 (but probably 2001 to 2099)
- **Range**: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
- **Description**: returns the \texttt{e_tC} datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
 corresponding to \texttt{s_1} based on \texttt{s_2} and \texttt{Y}.

Function \texttt{Clock()} works the same as function \texttt{clock()} except that \texttt{Clock()} returns a leap second–adjusted \%tc \texttt{value rather than an unadjusted \%tc value}. Use \texttt{Clock()} only if original time values have been adjusted for leap seconds.
\texttt{\textbf{clock}(s_1,s_2[,Y])}

Domain \texttt{s_1:} strings
Domain \texttt{s_2:} strings
Domain \texttt{Y:} integers 1000 to 9998 (but probably 2001 to 2099)

Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(253,717,919,999,999\)) and \texttt{missing}

Description: returns the \texttt{etC} datetime (ms. since 01jan1960 00:00:00.000) corresponding to \texttt{s_1} based on \texttt{s_2} and \texttt{Y}.

\texttt{s_1} contains the date, time, or both, recorded as a string, in virtually any format. Months can be spelled out, abbreviated (to three characters), or indicated as numbers; years can include or exclude the century; blanks and punctuation are allowed.

\texttt{s_2} is any permutation of \texttt{M, D, [##]Y, h, m, and s}, with their order defining the order that month, day, year, hour, minute, and second occur (and whether they occur) in \texttt{s_1}. \texttt{##}, if specified, indicates the default century for two-digit years in \texttt{s_1}. For instance, \texttt{s_2 = "MD19Y hm"} would translate \texttt{s_1 = "11/15/91 21:14"} as 15nov1991 21:14. The space in \texttt{"MD19Y hm"} was not significant and the string would have translated just as well with \texttt{"MD19Yhm"}.

\texttt{Y} provides an alternate way of handling two-digit years. \texttt{Y} specifies the largest year that is to be returned when a two-digit year is encountered; see function \texttt{date()} below. If neither \texttt{##} nor \texttt{Y} is specified, \texttt{clock()} returns \texttt{missing} when it encounters a two-digit year.

\texttt{Cmdyhms(M, D, Y, h, m, s)}

Domain \texttt{M:} integers 1 to 12
Domain \texttt{D:} integers 1 to 31
Domain \texttt{Y:} integers 0100 to 9999 (but probably 1800 to 2100)
Domain \texttt{h:} integers 0 to 23
Domain \texttt{m:} integers 0 to 59
Domain \texttt{s:} reals 0.000 to 60.999

Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(253,717,919,999,999\)) and \texttt{missing}

Description: returns the \texttt{etC} datetime (ms. without leap seconds since 01jan1960 00:00:00.000) corresponding to \texttt{M, D, Y, h, m, s}.

\texttt{Cofc(etC)}

Domain \texttt{etC:} datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(253,717,919,999,999\))

Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(253,717,919,999,999\))

Description: returns the \texttt{etC} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of \texttt{etC} (ms. without leap seconds since 01jan1960 00:00:00.000).

\texttt{cofC(etC)}

Domain \texttt{etC:} datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(253,717,919,999,999\))

Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(253,717,919,999,999\))

Description: returns the \texttt{etC} datetime (ms. without leap seconds since 01jan1960 00:00:00.000) of \texttt{etC} (ms. with leap seconds since 01jan1960 00:00:00.000).
Cofd\((e_d)\)

Domain \(e_d\): \(\%td\) dates 01jan0100 to 31dec9999 (integers \(-679,350\) to \(2,936,549\))

Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(>253,717,919,999,999\))

Description: returns the \(e_{tc}\) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of date \(e_d\) at time 00:00:00.000.

cofd\((e_d)\)

Domain \(e_d\): \(\%td\) dates 01jan0100 to 31dec9999 (integers \(-679,350\) to \(2,936,549\))

Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(253,717,919,999,999\))

Description: returns the \(e_{tc}\) datetime (ms. since 01jan1960 00:00:00.000) of date \(e_d\) at time 00:00:00.000.

daily\((s_1,s_2[\text{,}Y])\) is a synonym for date\((s_1,s_2[\text{,}Y])\).

date\((s_1,s_2[,Y])\)

Domain \(s_1\): strings
Domain \(s_2\): strings
Domain \(Y\): integers 1000 to 9998 (but probably 2001 to 2099)

Range: \(\%td\) dates 01jan0100 to 31dec9999 (integers \(-679,350\) to \(2,936,549\)) and \textit{missing}

Description: returns the \(e_d\) date (days since 01jan1960) corresponding to \(s_1\) based on \(s_2\) and \(Y\).

\(s_1\) contains the date, recorded as a string, in virtually any format. Months can be spelled out, abbreviated (to three characters), or indicated as numbers; years can include or exclude the century; blanks and punctuation are allowed.

\(s_2\) is any permutation of \(M, D, \text{[##]}Y\), with their order defining the order that month, day, and year occur in \(s_1\). \(##\), if specified, indicates the default century for two-digit years in \(s_1\). For instance, \(s_2 = "MD19Y"\) would translate \(s_1 = "11/15/91"\) as 15nov1991.

\(Y\) provides an alternate way of handling two-digit years. When a two-digit year is encountered, the largest year, \textit{topyear}, that does not exceed \(Y\) is returned.

\[
\begin{align*}
date("1/15/08","MDY",1999) &= 15jan1908 \\
date("1/15/08","MDY",2019) &= 15jan2008 \\
date("1/15/51","MDY",2000) &= 15jan1951 \\
date("1/15/50","MDY",2000) &= 15jan1950 \\
date("1/15/49","MDY",2000) &= 15jan1949 \\
date("1/15/01","MDY",2050) &= 15jan2001 \\
date("1/15/00","MDY",2050) &= 15jan2000 \\
\end{align*}
\]

If neither \(##\) nor \(Y\) is specified, \textit{date()} returns \textit{missing} when it encounters a two-digit year. See \textit{Working with two-digit years} in [D] \textit{datetime translation} for more information.

day\((e_d)\)

Domain \(e_d\): \(\%td\) dates 01jan0100 to 31dec9999 (integers \(-679,350\) to \(2,936,549\))

Range: integers 1 to 31 and \textit{missing}

Description: returns the numeric day of the month corresponding to \(e_d\).
\textbf{functions} — Functions 49

\textbf{dhms}(e_d, h, m, s)

- **Domain** e_d: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
- **Domain** h: integers 0 to 23
- **Domain** m: integers 0 to 59
- **Domain** s: reals 0.000 to 59.999
- **Range**: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers $-58,695,840,000,000$ to $253,717,919,999,999$) and missing
- **Description**: returns the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to e_d, h, m, and s.

\textbf{dofb}(e_b, "cal")

- **Domain** e_b: as defined by business calendar named cal
- **Domain** cal: business calendar names and formats
- **Range**: as defined by business calendar named cal
- **Description**: returns the e_d datetime corresponding to e_b.

\textbf{dofC}(e_{tC})

- **Domain** e_{tC}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers $-58,695,840,000,000$ to $253,717,919,999,999$)
- **Range**: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
- **Description**: returns the e_d date (days since 01jan1960) of datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000).

\textbf{dofc}(e_{tc})

- **Domain** e_{tc}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers $-58,695,840,000,000$ to $253,717,919,999,999$)
- **Range**: %td dates 01jan0100 to 01jul9999 (integers $-679,350$ to $2,936,366$)
- **Description**: returns the e_d date (days since 01jan1960) of the start of half-year e_{h}.

\textbf{dofh}(e_h)

- **Domain** e_h: %th dates 0100h1 to 9999h2 (integers $-3,720$ to 16,079)
- **Range**: %td dates 01jan0100 to 01jul9999 (integers $-679,350$ to $2,936,366$)
- **Description**: returns the e_d date (days since 01jan1960) of the start of half-year e_{h}.

\textbf{dofm}(e_m)

- **Domain** e_m: %tm dates 0100m1 to 9999m12 (integers $-22,320$ to 96,479)
- **Range**: %td dates 01jan0100 to 01dec9999 (integers $-679,350$ to $2,936,519$)
- **Description**: returns the e_d date (days since 01jan1960) of the start of month e_{m}.

\textbf{dofq}(e_q)

- **Domain** e_q: %tq dates 0100q1 to 9999q4 (integers $-7,440$ to 32,159)
- **Range**: %td dates 01jan0100 to 01oct9999 (integers $-679,350$ to $2,936,458$)
- **Description**: returns the e_d date (days since 01jan1960) of the start of quarter e_{q}.

\textbf{dofw}(e_w)

- **Domain** e_w: %tw dates 0100w1 to 9999w52 (integers $-96,720$ to 418,079)
- **Range**: %td dates 01jan0100 to 24dec9999 (integers $-679,350$ to $2,936,542$)
- **Description**: returns the e_d date (days since 01jan1960) of the start of week e_{w}.

\textbf{dofy}(e_y)

- **Domain** e_y: %ty dates 0100 to 9999 (integers 0100 to 9999)
- **Range**: %td dates 01jan0100 to 01jan9999 (integers $-679,350$ to $2,936,185$)
- **Description**: returns the e_d date (days since 01jan1960) of 01jan in year e_{y}.
50 functions — Functions

dow(\textit{ed})
\begin{itemize}
 \item Domain \textit{ed}: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
 \item Range: integers 0 to 6 and \textit{missing}
 \item Description: returns the numeric day of the week corresponding to date \textit{ed};
 \begin{itemize}
 \item 0 = Sunday, 1 = Monday, \ldots, 6 = Saturday.
 \end{itemize}
\end{itemize}

doy(\textit{ed})
\begin{itemize}
 \item Domain \textit{ed}: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
 \item Range: integers 1 to 366 and \textit{missing}
 \item Description: returns the numeric day of the year corresponding to date \textit{ed}.
\end{itemize}

halfyear(\textit{ed})
\begin{itemize}
 \item Domain \textit{ed}: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
 \item Range: integers 1, 2, and \textit{missing}
 \item Description: returns the numeric half of the year corresponding to date \textit{ed}.
\end{itemize}

halfyearly(\textit{s1}, \textit{s2}[, \textit{Y}])
\begin{itemize}
 \item Domain \textit{s1}: strings
 \item Domain \textit{s2}: strings "HY" and "YH"; \textit{Y} may be prefixed with ##
 \item Domain \textit{Y}: integers 1000 to 9999 (but probably 2001 to 2099)
 \item Range: %th dates 0100h1 to 9999h2 (integers $-3,720$ to 16,079) and \textit{missing}
 \item Description: returns the \textit{eh} half-yearly date (half-years since 1960h1) corresponding to \textit{s1} based on \textit{s2} and \textit{Y}; \textit{Y} specifies topyear; see \texttt{date()}.\end{itemize}

hh(\textit{etc})
\begin{itemize}
 \item Domain \textit{etc}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
 (integers $-58,695,840,000,000$ to $253,717,919,999,999$)
 \item Range: integers 0 through 23, \textit{missing}
 \item Description: returns the hour corresponding to datetime \textit{etc} (ms. since 01jan1960 00:00:00.000).
\end{itemize}

hhC(\textit{etC})
\begin{itemize}
 \item Domain \textit{etC}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
 (integers $-58,695,840,000,000$ to $> 253,717,919,999,999$)
 \item Range: integers 0 through 23, \textit{missing}
 \item Description: returns the hour corresponding to datetime \textit{etC} (ms. with leap seconds since 01jan1960 00:00:00.000).
\end{itemize}

hms(\textit{h}, \textit{m}, \textit{s})
\begin{itemize}
 \item Domain \textit{h}: integers 0 to 23
 \item Domain \textit{m}: integers 0 to 59
 \item Domain \textit{s}: reals 0.000 to 59.999
 \item Range: datetimes 01jan1960 00:00:00.000 to 01jan1960 23:59:59.999
 (integers 0 to 86,399,999 and \textit{missing})
 \item Description: returns the \textit{etc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to \textit{h}, \textit{m}, \textit{s} on 01jan1960.
\end{itemize}

hofd(\textit{ed})
\begin{itemize}
 \item Domain \textit{ed}: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
 \item Range: %th dates 0100h1 to 9999h2 (integers $-3,720$ to 16,079)
 \item Description: returns the \textit{eh} half-yearly date (half years since 1960h1) containing date \textit{ed}.
\end{itemize}

hours(\textit{ms})
\begin{itemize}
 \item Domain \textit{ms}: real; milliseconds
 \item Range: real and \textit{missing}
 \item Description: returns \textit{ms}/3,600,000.
mdy(M, D, Y)
Domain M: integers 1 to 12
Domain D: integers 1 to 31
Domain Y: integers 0100 to 9999 (but probably 1800 to 2100)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549) and missing
Description: returns the \(e_d \) date (days since 01jan1960) corresponding to \(M, D, Y \).

mdyhms(M, D, Y, h, m, s)
Domain M: integers 1 to 12
Domain D: integers 1 to 31
Domain Y: integers 0100 to 9999 (but probably 1800 to 2100)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers −58,695,840,000,000 to 253,717,919,999,999) and missing
Description: returns the \(e_{tc} \) datetime (ms. since 01jan1960 00:00:00.000) corresponding to \(M, D, Y, h, m, s \).

minutes(ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns ms/60,000.

mm(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: integers 0 through 59, missing
Description: returns the minute corresponding to datetime \(e_{tc} \) (ms. since 01jan1960 00:00:00.000).

mmC(etC)
Domain etC: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers −58,695,840,000,000 to > 253,717,919,999,999)
Range: integers 0 through 59, missing
Description: returns the minute corresponding to datetime \(e_{tC} \) (ms. with leap seconds since 01jan1960 00:00:00.000).

mofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479)
Description: returns the \(e_m \) monthly date (months since 1960m1) containing date \(e_d \).

month(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 12 and missing
Description: returns the numeric month corresponding to date \(e_d \).

monthly(s1, s2 [, Y])
Domain s1: strings
Domain s2: strings "MY" and "YM"; Y may be prefixed with ##
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479) and missing
Description: returns the \(e_m \) monthly date (months since 1960m1) corresponding to \(s_1 \) based on \(s_2 \) and \(Y \); \(Y \) specifies topyear; see date().
msofhours(h)
Domain h: real; hours
Range: real and missing; milliseconds
Description: returns $h \times 3,600,000$.

msofminutes(m)
Domain m: real; minutes
Range: real and missing; milliseconds
Description: returns $m \times 60,000$.

msofseconds(s)
Domain s: real; seconds
Range: real and missing; milliseconds
Description: returns $s \times 1,000$.

qofd(e_d)
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: %tq dates 0100q1 to 9999q4 (integers $-7,440$ to $32,159$)
Description: returns the e_q quarterly date (quarters since 1960q1) containing date e_d.

quarter(e_d)
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: integers 1 to 4 and missing
Description: returns the numeric quarter of the year corresponding to date e_d.

quarterly(s_1, s_2[, Y])
Domain s_1: strings
Domain s_2: strings "QY" and "YQ"; Y may be prefixed with ##
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tq dates 0100q1 to 9999q4 (integers $-7,440$ to $32,159$) and missing
Description: returns the e_q quarterly date (quarters since 1960q1) corresponding to s_1 based on s_2 and Y; Y specifies toyear; see date().

seconds(ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns $ms/1,000$.

ss(e_{tc})
Domain e_{tc}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: real 0.000 through 59.999, missing
Description: returns the second corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000).

ssC(e_{tC})
Domain e_{tC}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
Range: real 0.000 through 60.999, missing
Description: returns the second corresponding to datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000).
\(tC(l)\)
- **Domain**: datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
- **Range**: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
- **Description**: convenience function to make typing dates and times in expressions easier; same as \(tc()\), except returns leap second–adjusted values; for example, typing \(tC(29\text{nov}2007 \ 9:15)\) is equivalent to typing 1511946900000, whereas \(tc(29\text{nov}2007 \ 9:15)\) is 1511946923000.

\(tc(l)\)
- **Domain**: datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
- **Range**: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers $-58,695,840,000,000$ to $253,717,919,999,999$)
- **Description**: convenience function to make typing dates and times in expressions easier; for example, typing \(tc(2\text{jan}1960 \ 13:42)\) is equivalent to typing 135720000; the date but not the time may be omitted, and then 01jan1960 is assumed; the seconds portion of the time may be omitted and is assumed to be 0.000; \(tc(11:02)\) is equivalent to typing 39720000.

\(td(l)\)
- **Domain**: date literal strings 01jan0100 to 31dec9999
- **Range**: %\(td\) dates 01jan0100 to 31dec9999 (integers $-679,350$ to 2,936,549)
- **Description**: convenience function to make typing dates in expressions easier; for example, typing \(td(2\text{jan}1960)\) is equivalent to typing 1.

\(th(l)\)
- **Domain**: half-year literal strings 0100h1 to 9999h2
- **Range**: %\(th\) dates 0100h1 to 9999h2 (integers $-3,720$ to 16,079)
- **Description**: convenience function to make typing half-yearly dates in expressions easier; for example, typing \(th(1960h2)\) is equivalent to typing 1.

\(tm(l)\)
- **Domain**: month literal strings 0100m1 to 9999m12
- **Range**: %\(tm\) dates 0100m1 to 9999m12 (integers $-22,320$ to 96,479)
- **Description**: convenience function to make typing monthly dates in expressions easier; for example, typing \(tm(1960m2)\) is equivalent to typing 1.

\(tq(l)\)
- **Domain**: quarter literal strings 0100q1 to 9999q4
- **Range**: %\(tq\) dates 0100q1 to 9999q4 (integers $-7,440$ to 32,159)
- **Description**: convenience function to make typing quarterly dates in expressions easier; for example, typing \(tq(1960q2)\) is equivalent to typing 1.

\(tw(l)\)
- **Domain**: week literal strings 0100w1 to 9999w52
- **Range**: %\(tw\) dates 0100w1 to 9999w52 (integers $-96,720$ to 418,079)
- **Description**: convenience function to make typing weekly dates in expressions easier; for example, typing \(tw(1960w2)\) is equivalent to typing 1.

\(\text{week}(e_d)\)
- **Domain** \(e_d\): %\(td\) dates 01jan0100 to 31dec9999 (integers $-679,350$ to 2,936,549)
- **Range**: integers 1 to 52 and missing
- **Description**: returns the numeric week of the year corresponding to date \(e_d\), the %\(td\) encoded date (days since 01jan1960). Note: The first week of a year is the first 7-day period of the year.
weekly\((s_1, s_2[, Y]) \)
 Domain \(s_1 \): strings
 Domain \(s_2 \): strings "WY" and "YW"; \(Y \) may be prefixed with ####
 Domain \(Y \): integers 1000 to 9998 (but probably 2001 to 2099)
 Range: \%tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079) and missing
 Description: returns the \(e_w \) weekly date (weeks since 1960w1) corresponding to \(s_1 \) based on \(s_2 \) and \(Y \); \(Y \) specifies topyear; see date().

wofd\((e_d) \)
 Domain \(e_d \): \%td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
 Range: \%tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079)
 Description: returns the \(e_w \) weekly date (weeks since 1960w1) containing date \(e_d \).

year\((e_d) \)
 Domain \(e_d \): \%td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
 Range: integers 0100 to 9999 (but probably 1800 to 2100)
 Description: returns the numeric year corresponding to date \(e_d \).

yearly\((s_1, s_2[, Y]) \)
 Domain \(s_1 \): strings
 Domain \(s_2 \): string "Y"; \(Y \) may be prefixed with ####
 Domain \(Y \): integers 1000 to 9998 (but probably 2001 to 2099)
 Range: \%ty dates 0100 to 9999 (integers 0100 to 9999) and missing
 Description: returns the \(e_y \) yearly date (year) corresponding to \(s_1 \) based on \(s_2 \) and \(Y \); \(Y \) specifies topyear; see date().

yh\((Y , H) \)
 Domain \(Y \): integers 1000 to 9999 (but probably 1800 to 2100)
 Domain \(H \): integers 1, 2
 Range: \%th dates 1000h1 to 9999h2 (integers −1,920 to 16,079)
 Description: returns the \(e_h \) half-yearly date (half-years since 1960h1) corresponding to year \(Y \), half-year \(H \).

ym\((Y , M) \)
 Domain \(Y \): integers 1000 to 9999 (but probably 1800 to 2100)
 Domain \(M \): integers 1 to 12
 Range: \%tm dates 1000m1 to 9999m12 (integers −11,520 to 96,479)
 Description: returns the \(e_m \) monthly date (months since 1960m1) corresponding to year \(Y \), month \(M \).

yofd\((e_d) \)
 Domain \(e_d \): \%td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
 Range: \%ty dates 0100 to 9999 (integers 0100 to 9999)
 Description: returns the \(e_y \) yearly date (year) containing date \(e_d \).

yq\((Y , Q) \)
 Domain \(Y \): integers 1000 to 9999 (but probably 1800 to 2100)
 Domain \(Q \): integers 1 to 4
 Range: \%tq dates 1000q1 to 9999q4 (integers −3,840 to 32,159)
 Description: returns the \(e_q \) quarterly date (quarters since 1960q1) corresponding to year \(Y \), quarter \(Q \).
yw(Y,W)
Domain Y: integers 1000 to 9999 (but probably 1800 to 2100)
Domain W: integers 1 to 52
Range: \(1000w1\) to \(9999w52\) (integers \(-49,920\) to \(418,079\))
Description: returns the \(e_w\) weekly date (weeks since 1960w1) corresponding to year \(Y\), week \(W\).

Selecting time spans

tin\((d_1, d_2)\)
Domain \(d_1\): date or time literals recorded in units of \(t\) previously \(t\)sset
Domain \(d_2\): date or time literals recorded in units of \(t\) previously \(t\)sset
Range: \(0\) and \(1\), \(1 \Rightarrow true\)
Description: \(true\) if \(d_1 \leq t \leq d_2\), where \(t\) is the time variable previously \(t\)sset.

You must have previously \(t\)sset the data to use \(t\)in(); see \([TS] t\)sset. When you \(t\)sset the data, you specify a time variable, \(t\), and the format on \(t\) states how it is recorded. You type \(d_1\) and \(d_2\) according to that format.

If \(t\) has a \(\%tc\) format, you could type \(t\)in(5jan1992 11:15, 14apr2002 12:25).

If \(t\) has a \(\%td\) format, you could type \(t\)in(5jan1992, 14apr2002).

If \(t\) has a \(\%tw\) format, you could type \(t\)in(1985w1, 2002w15).

If \(t\) has a \(\%tm\) format, you could type \(t\)in(1985m1, 2002m4).

If \(t\) has a \(\%tq\) format, you could type \(t\)in(1985q1, 2002q2).

If \(t\) has a \(\%th\) format, you could type \(t\)in(1985h1, 2002h1).

If \(t\) has a \(\%ty\) format, you could type \(t\)in(1985, 2002).

Otherwise, \(t\) is just a set of integers, and you could type \(t\)in(12, 38).

The details of the \(\%t\) format do not matter. If your \(t\) is formatted \(\%tdnn/dd/yy\) so that 5jan1992 displays as 1/5/92, you would still type the date in day–month–year order: \(t\)in(5jan1992, 14apr2002).

\(t\)within\((d_1, d_2)\)
Domain \(d_1\): date or time literals recorded in units of \(t\) previously \(t\)sset
Domain \(d_2\): date or time literals recorded in units of \(t\) previously \(t\)sset
Range: \(0\) and \(1\), \(1 \Rightarrow true\)
Description: \(true\) if \(d_1 < t < d_2\), where \(t\) is the time variable previously \(t\)sset; see the \(t\)in() function above; \(t\)within() is similar, except the range is exclusive.
Matrix functions returning a matrix

In addition to the functions listed below, see [P] matrix svd for singular value decomposition, [P] matrix symeigen for eigenvalues and eigenvectors of symmetric matrices, and [P] matrix eigenvalues for eigenvalues of nonsymmetric matrices.

cholesky(M)
Domain: $n \times n$, positive-definite, symmetric matrices
Range: $n \times n$ lower-triangular matrices
Description: returns the Cholesky decomposition of the matrix:
$RR^T = S$.
R^T indicates the transpose of R.
Row and column names are obtained from M.

corr(M)
Domain: $n \times n$ symmetric variance matrices
Range: $n \times n$ symmetric correlation matrices
Description: returns the correlation matrix of the variance matrix.
Row and column names are obtained from M.

diag(v)
Domain: $1 \times n$ and $n \times 1$ vectors
Range: $n \times n$ diagonal matrices
Description: returns the square, diagonal matrix created from the row or column vector.
Row and column names are obtained from the column names of M if M is a row vector or from the row names of M if M is a column vector.

get($systemname$)
Domain: existing names of system matrices
Range: matrices
Description: returns a copy of Stata internal system matrix $systemname$.
This function is included for backward compatibility with previous versions of Stata.

hadamard(M, N)
Domain M: $m \times n$ matrices
Domain N: $m \times n$ matrices
Range: $m \times n$ matrices
Description: returns a matrix whose i, j element is $M[i, j] \cdot N[i, j]$ (if M and N
are not the same size, this function reports a conformability error).

I(n)
Domain: real scalars 1 to matsize
Range: identity matrices
Description: returns an $n \times n$ identity matrix if n is an integer; otherwise, this function returns the round(n)\timesround(n) identity matrix.
inv(M)
- **Domain:** $n \times n$ nonsingular matrices
- **Range:** $n \times n$ matrices
- **Description:** returns the inverse of the matrix M. If M is singular, this will result in an error.

The function `invsym()` should be used in preference to `inv()` because `invsym()` is more accurate. The row names of the result are obtained from the column names of M, and the column names of the result are obtained from the row names of M.

invsym(M)
- **Domain:** $n \times n$ symmetric matrices
- **Range:** $n \times n$ symmetric matrices
- **Description:** returns the inverse of M if M is positive definite. If M is not positive definite, rows will be inverted until the diagonal terms are zero or negative; the rows and columns corresponding to these terms will be set to 0, producing a g2 inverse. The row names of the result are obtained from the column names of M, and the column names of the result are obtained from the row names of M.

J(r,c,z)
- **Domain r:** integer scalars 1 to `matsize`
- **Domain c:** integer scalars 1 to `matsize`
- **Domain z:** scalars $-8e+307$ to $8e+307$
- **Range:** $r \times c$ matrices
- **Description:** returns the $r \times c$ matrix containing elements z.

matuniform(r,c)
- **Domain r:** integer scalars 1 to `matsize`
- **Domain c:** integer scalars 1 to `matsize`
- **Range:** $r \times c$ matrices
- **Description:** returns the $r \times c$ matrices containing uniformly distributed pseudorandom numbers on the interval $[0, 1)$.
nullmat(matname)

Domain: matrix names, existing and nonexisting
Range: matrices including null if matname does not exist
Description: nullmat() is for use with the row-join (,) and column-join (\) operators in programming situations. Consider the following code fragment, which is an attempt to create the vector (1,2,3,4):

```
forvalues i = 1/4 {
    mat v = (v, 'i')
}
```

The above program will not work because, the first time through the loop, v will not yet exist, and thus forming (v, ‘i’) makes no sense. nullmat() relaxes that restriction:

```
forvalues i = 1/4 {
    mat v = (nullmat(v), 'i')
}
```

The nullmat() function informs Stata that if v does not exist, the function row-join is to be generalized. Joining nothing with ‘i’ results in (‘i’). Thus the first time through the loop, v = (1) is formed. The second time through, v does exist, so v = (1,2) is formed, and so on.

nullmat() can be used only with the , and \ operators.

sweep(M, i)

Domain M: n × n matrices
Domain i: integer scalars 1 to n
Range: n × n matrices
Description: returns matrix M with ith row/column swept. The row and column names of the resultant matrix are obtained from M, except that the nth row and column names are interchanged. If B = sweep(A,k), then

\[
B_{kk} = \frac{1}{A_{kk}} \\
B_{ik} = -\frac{A_{ik}}{A_{kk}}, \quad i \neq k \\
B_{kj} = \frac{A_{kj}}{A_{kk}}, \quad j \neq k \\
B_{ij} = A_{ij} - \frac{A_{ik}A_{kj}}{A_{kk}}, \quad i \neq k, j \neq k
\]

vec(M)

Domain: matrices
Range: column vectors (n × 1 matrices)
Description: returns a column vector formed by listing the elements of M, starting with the first column and proceeding column by column.
vecdiag(M)
Domain: $n \times n$ matrices
Range: $1 \times n$ vectors
Description: returns the row vector containing the diagonal of matrix M.
vecdiag() is the opposite of diag(). The row name is set to r1; the column names are obtained from the column names of M.

Matrix functions returning a scalar

colnumb(M,s)
Domain M: matrices
Domain s: strings
Range: integer scalars 1 to matsize and missing
Description: returns the column number of M associated with column name s. returns missing if the column cannot be found.

colsof(M)
Domain: matrices
Range: integer scalars 1 to matsize
Description: returns the number of columns of M.

det(M)
Domain: $n \times n$ (square) matrices
Range: scalars $-8e+307$ to $8e+307$
Description: returns the determinant of matrix M.

diag0cnt(M)
Domain: $n \times n$ (square) matrices
Range: integer scalars 0 to n
Description: returns the number of zeros on the diagonal of M.

e1(s,i,j)
Domain s: strings containing matrix name
Domain i: scalars 1 to matsize
Domain j: scalars 1 to matsize
Range: scalars $-8e+307$ to $8e+307$ and missing
Description: returns $s[floor(i),floor(j)]$, the i,j element of the matrix named s. returns missing if i or j are out of range or if matrix s does not exist.

issymmetric(M)
Domain M: matrices
Range: integers 0 and 1
Description: returns 1 if the matrix is symmetric; otherwise, returns 0.

matmissing(M)
Domain M: matrices
Range: integers 0 and 1
Description: returns 1 if any elements of the matrix are missing; otherwise, returns 0.

mreldif(X,Y)
Domain X: matrices
Domain Y: matrices with same number of rows and columns as X
Range: scalars $-8e+307$ to $8e+307$
Description: returns the relative difference of X and Y, where the relative difference is defined as $\max_{i,j} \left(\frac{|x_{ij} - y_{ij}|}{(|y_{ij}| + 1)} \right)$.
rownumb(\(M, s\))
- **Domain** \(M\): matrices
- **Domain** \(s\): strings
- **Range**: integer scalars 1 to matsize and missing
- **Description**: returns the row number of \(M\) associated with row name \(s\).
 - returns missing if the row cannot be found.

rowsof(\(M\))
- **Domain**: matrices
- **Range**: integer scalars 1 to matsize
- **Description**: returns the number of rows of \(M\).

trace(\(M\))
- **Domain**: \(n \times n\) (square) matrices
- **Range**: scalars \(-8e+307\) to \(8e+307\)
- **Description**: returns the trace of matrix \(M\).

Acknowledgments

We thank George Marsaglia of Florida State University for providing his KISS (keep it simple stupid) random-number generator.

We thank John R. Gleason of Syracuse University (retired) for directing our attention to Wichura (1988) for calculating the cumulative normal density accurately, for sharing his experiences about techniques with us, and for providing C code to make the calculations.

Jacques Salomon Hadamard (1865–1963) was born in Versailles, France. He studied at the Ecole Normale Supérieure in Paris and obtained a doctorate in 1892 for a thesis on functions defined by Taylor series. Hadamard taught at Bordeaux for 4 years and in a productive period published an outstanding theorem on prime numbers, proved independently by Charles de la Vallée Poussin, and worked on what are now called Hadamard matrices. In 1897, he returned to Paris, where he held a series of prominent posts. In his later career, his interests extended from pure mathematics toward mathematical physics. Hadamard produced papers and books in many different areas. He campaigned actively against anti-Semitism at the time of the Dreyfus affair. After the fall of France in 1940, he spent some time in the United States and then Great Britain.

References

—. 2006. Stata tip 39: In a list or out? In a range or out? *Stata Journal* 6: 593–595.

Also see

[D] egen — Extensions to generate

[M-5] intro — Mata functions

[U] 13.3 Functions

[U] 14.8 Matrix functions