Title stata.com

assert — Verify truth of claim

Syntax Description Options Remarks and examples Also see

Syntax

assert exp [L_'f} [tn} [, rcO null iast]

by is allowed; see [D] by.

Description

assert verifies that exp is true. If it is true, the command produces no output. If it is not true,
assert informs you that the “assertion is false” and issues a return code of 9; see [U] 8 Error
messages and return codes.

Options
rcO forces a return code of 0, even if the assertion is false.

null forces a return code of 8 on null assertions.

fast forces the command to exit at the first occurrence that exp evaluates to false.

Remarks and examples stata.com

assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate
to look for evidence of errors in the dataset. These commands, however, require you to review the
output to spot the error. assert is useful because it tells Stata not only what to do but also what
you can expect to find. Groups of assertions are often combined in a do-file to certify data. If the
do-file runs all the way through without complaining, every assertion in the file is true.

. do myassert

. use trans, clear
(xplant data)

. assert sex=="m" | sex=="f"

. assert packs==0 if !smoker

. assert packs>0 if smoker

. sort patient date

. by patient: assert sex==sex[_n-1] if _n>1

. by patient: assert abs(bp-bp[_n-1]) < 20 if bp< . & bp[_n-1]< .
. by patient: assert died==0 if _n!=_N

. by patient: assert died==0 | died==1 if _n==_

. by patient: assert n_xplant==0 | n_xplant==1 if _n==_

. assert inval==int(inval)

end of do-file

http://stata.com
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/dby.pdf#dby
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u8.pdf#u8Errormessagesandreturncodes
http://www.stata.com/manuals13/u8.pdf#u8Errormessagesandreturncodes
http://stata.com

2 assert — Verify truth of claim

> Example 1

You receive data from Bob, a coworker. He has been working on the dataset for some time, and
it has now been delivered to you for analysis. Before analyzing the data, you (smartly) verify that
the data are as Bob claims. In Bob’s memo, he claims that 1) the dataset reflects the earnings of 522
employees, 2) the earnings are only for full-time employees, 3) the variable female is coded 1 for
female and O otherwise, and 4) the variable exp contains the number of years, or fraction thereof, on
the job. You assemble the following do-file:

use frombob, clear

assert _N==522

assert sal>=6000 & sal<=125000
assert female==1 | female==
gen work=sum(female==1)

assert work[_N]>0

replace work=sum(female==0)
assert work[_N]>0

drop work

assert exp>=0 & exp<=40

Let’s go through these assertions one by one. After using the data, you assert that _N equals 522.
Remember, _N reflects the total number of observations in the dataset; see [U] 13.4 System variables
(—variables). Bob said it was 522, so you check it. Bob’s second claim was that the data are for only
full-time employees. You know that everybody in your company makes a salary between $6,000 and
$125,000, so you check that the salary figures are within this range. Bob’s third assertion was that
the female variable was coded zero or one.

You add something more. You know that your company employs both males and females, so you
check that there are some of each. You create a variable called work equal to the running sum of
female observations and then verify that the last observation of this variable is greater than zero.
You then repeat the process for males and discard the work variable. Finally, you verify that the exp
variable is never negative and is never larger than 40.

You save the above file as check.do, and here is what happens when you run it:

. do check

. use frombob, clear

(5/21 data)

. assert _N==522

. assert sal>6000 & sal<=125000

14 contradictions in 522 observations

assertion is false
r(9);

end of do-file
r(9);

Everything went fine until you checked the salary variable, when Stata told you that there were 14
contradictions to your assertion and stopped the do-file. Seeing this, you now interactively summarize
the sal variable and discover that 14 people have missing salaries. You dash off a memo to Bob
asking him why these data are missing.

4

http://www.stata.com/manuals13/u13.pdf#u13.4Systemvariables(_variables)
http://www.stata.com/manuals13/u13.pdf#u13.4Systemvariables(_variables)
http://www.stata.com/manuals13/perror.pdf#perrorRemarksandexamplesr(9)
http://www.stata.com/manuals13/perror.pdf#perrorRemarksandexamplesr(9)

assert — Verify truth of claim 3

> Example 2

Bob responds quickly. There was a mistake in reading the salaries for the consumer relations
division. He says it’s fixed. You believe him but check with your do-file again. This time you type
run instead of do, suppressing all the output:

. run check

Even though you suppressed the output, if there had been any contradictions, the messages would
have printed. check.do ran fine, so all its assertions are true.

N

Q Technical note

assert is especially useful when you are processing large amounts of data in a do-file and wish to
verify that all is going as expected. The error here may not be in the data but in the do-file itself. For
instance, your do-file is rolling along, and it has just merged two datasets that it created by subsetting
some other data. If everything has gone right so far, every observation should have merged. Include
the line

assert _merge==
to verify the correctness of the merge. If all the observations did not merge, the assertion will be
false, and your do-file will stop.

As another example, you are combining data from many sources, and you know that after the first
two datasets are combined, every individual’s sex should be defined. So, you include the line

assert sex< .

in your do-file. Experienced Stata users include many assertions in their do-files when they process
data.
a

Q Technical note

assert is smart in how it evaluates expressions. When you type something like assert _N==522
or assert work[_N]>0, assert knows that the expression needs to be evaluated only once. When
you type assert female==1 | female==0, assert knows that the expression needs to be evaluated
once for each observation in the dataset.

Here are some more examples demonstrating assert’s intelligence.

by female: assert _N==100

asserts that there should be 100 observations for every unique value of female. The expression is
evaluated once per by-group.

by female: assert work[_N]>0

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated
once per by-group.

4 assert — Verify truth of claim

by female: assert work>0

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to
assert work>0.
Q

Also see
[P] capture — Capture return code
[P] confirm — Argument verification
[U] 16 Do-files

http://www.stata.com/manuals13/pcapture.pdf#pcapture
http://www.stata.com/manuals13/pconfirm.pdf#pconfirm
http://www.stata.com/manuals13/u16.pdf#u16Do-files

