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Description
xtunitroot performs a variety of tests for unit roots (or stationarity) in panel datasets. The

Levin–Lin–Chu (2002), Harris–Tzavalis (1999), Breitung (2000; Breitung andDas 2005), Im–Pesaran–Shin

(2003), and Fisher-type (Choi 2001) tests have as the null hypothesis that all the panels contain a unit

root. The Hadri (2000) Lagrange multiplier (LM) test has as the null hypothesis that all the panels are

(trend) stationary. The top of the output for each test makes explicit the null and alternative hypotheses.

Options allow you to include panel-specific means (fixed effects) and time trends in the model of the

data-generating process.

Quick start
Levin–Lin–Chu test that each series y within panels contains a unit root using xtset data

xtunitroot llc y

Same as above, but specify 4 lags for the augmented Dickey–Fuller regressions

xtunitroot llc y, lags(4)

Harris–Tzavalis unit-root test including a time trend

xtunitroot ht y, trend

Breitung unit-root test with 4 lags to prewhiten the series

xtunitroot breitung y, lags(4)

Im–Pesaran–Shin unit-root test for the demeaned series y
xtunitroot ips y, demean

Philips–Perron unit-root test of y with 1 lag for prewhitening

xtunitroot fisher y, pperron lags(1)

Hadri Lagrange multiplier stationarity test using Bartlett’s kernel with 1 lag to estimate long-run variance

xtunitroot hadri y, kernel(bartlett)

Menu
Statistics > Longitudinal/panel data > Unit-root tests
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Syntax
Levin–Lin–Chu test

xtunitroot llc varname [ if ] [ in ] [ , LLC options ]

Harris–Tzavalis test

xtunitroot ht varname [ if ] [ in ] [ , HT options ]

Breitung test

xtunitroot breitung varname [ if ] [ in ] [ , Breitung options ]

Im–Pesaran–Shin test

xtunitroot ips varname [ if ] [ in ] [ , IPS options ]

Fisher-type tests (combining p-values)

xtunitroot fisher varname [ if ] [ in ], {dfuller | pperron} lags(#)

[Fisher options ]

Hadri Lagrange multiplier stationarity test

xtunitroot hadri varname [ if ] [ in ] [ , Hadri options ]

LLC options Description

trend include a time trend

noconstant suppress panel-specific means

demean subtract cross-sectional means

lags(lag spec) specify lag structure for augmented Dickey–Fuller (ADF) regressions

kernel(kernel spec) specify method to estimate long-run variance

lag spec is either a nonnegative integer or one of aic, bic, or hqic followed by a positive integer.

kernel spec takes the form kernel maxlags, where kernel is one of bartlett, parzen, or quadraticspectral
and maxlags is either a positive number or one of nwest or llc.

HT options Description

trend include a time trend

noconstant suppress panel-specific means

demean subtract cross-sectional means

altt make small-sample adjustment to 𝑇

Breitung options Description

trend include a time trend

noconstant suppress panel-specific means

demean subtract cross-sectional means

robust allow for cross-sectional dependence

lags(#) specify lag structure for prewhitening

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootSyntaxLLC_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootSyntaxHT_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootSyntaxBreitung_options
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https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootSyntaxHadri_options
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IPS options Description

trend include a time trend

demean subtract cross-sectional means

lags(lag spec) specify lag structure for ADF regressions

lag spec is either a nonnegative integer or one of aic, bic, or hqic followed by a positive integer.

Fisher options Description

∗ dfuller use ADF unit-root tests
∗ pperron use Phillips–Perron unit-root tests
∗ lags(#) specify lag structure for prewhitening

demean subtract cross-sectional means

dfuller opts any options allowed by the dfuller command

pperron opts any options allowed by the pperron command

∗Either dfuller or pperron is required.
∗lags(#) is required.

Hadri options Description

trend include a time trend

demean subtract cross-sectional means

robust allow for cross-sectional dependence

kernel(kernel spec) specify method to estimate long-run variance

kernel spec takes the form kernel [ # ], where kernel is one of bartlett, parzen, or quadraticspectral
and # is a positive number.

varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

collect is allowed with all xtunitroot tests; see [U] 11.1.10 Prefix commands.

Options

LLC options
trend includes a linear time trend in themodel that describes the process bywhich the series is generated.

noconstant suppresses the panel-specific mean term in the model that describes the process by which

the series is generated. Specifying noconstant imposes the assumption that the series has a mean of

zero for all panels.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When spec-

ified, for each time period xtunitroot computes the mean of the series across panels and subtracts

this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the impact of cross-

sectional dependence.

lags(lag spec) specifies the lag structure to use for the ADF regressions performed in computing the

test statistic.

Specifying lags(#) requests that # lags of the series be used in the ADF regressions. The default is

lags(1).

https://www.stata.com/manuals/tsdfuller.pdf#tsdfuller
https://www.stata.com/manuals/tspperron.pdf#tspperron
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Specifying lags(aic #) requests that the number of lags of the series be chosen such that theAkaike

information criterion (AIC) for the regression is minimized. xtunitroot llc will fitADF regressions

with 1 to # lags and choose the regression for which the AIC is minimized. This process is done for

each panel so that different panels may use ADF regressions with different numbers of lags.

Specifying lags(bic #) is just like specifying lags(aic #), except that the Bayesian information

criterion (BIC) is used instead of the AIC.

Specifying lags(hqic #) is just like specifying lags(aic #), except that the Hannan–Quinn infor-
mation criterion is used instead of the AIC.

kernel(kernel spec) specifies the method used to estimate the long-run variance of each panel’s

series. kernel spec takes the form kernel maxlags. kernel is one of bartlett, parzen, or

quadraticspectral. maxlags is a number, nwest to request the Newey andWest (1994) bandwidth

selection algorithm, or llc to request the lag truncation algorithm in Levin, Lin, and Chu (2002).

Specifying, for example, kernel(bartlett 3) requests the Bartlett kernel with 3 lags.

Specifying kernel(bartlett nwest) requests the Bartlett kernel with the maximum number of lags

determined by the Newey and West bandwidth selection algorithm.

Specifying kernel(bartlett llc) requests the Bartlett kernel with a maximum lag determined by

the method proposed in Levin, Lin, and Chu’s (2002) article:

maxlags = int (3.21𝑇 1/3)

where 𝑇 is the number of observations per panel. This is the default.

HT options
trend includes a linear time trend in themodel that describes the process bywhich the series is generated.

noconstant suppresses the panel-specific mean term in the model that describes the process by which

the series is generated. Specifying noconstant imposes the assumption that the series has a mean of

zero for all panels.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When spec-

ified, for each time period xtunitroot computes the mean of the series across panels and subtracts

this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the impact of cross-

sectional dependence.

altt requests that xtunitroot use 𝑇 − 1 instead of 𝑇 in the formulas for the mean and variance of the

test statistic under the null hypothesis. When the number of time periods, 𝑇, is small (less than 10

or 15), the test suffers from severe size distortions when fixed effects or time trends are included; in

these cases, using altt results in much improved size properties at the expense of significantly less

power.

Breitung options
trend includes a linear time trend in themodel that describes the process bywhich the series is generated.

noconstant suppresses the panel-specific mean term in the model that describes the process by which

the series is generated. Specifying noconstant imposes the assumption that the series has a mean of

zero for all panels.
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demean requests that xtunitroot first subtract the cross-sectional averages from the series. When spec-

ified, for each time period xtunitroot computes the mean of the series across panels and subtracts

this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the impact of cross-

sectional dependence.

robust requests a variant of the test that is robust to cross-sectional dependence.

lags(#) specifies the number of lags used to remove higher-order autoregressive components of the se-

ries. The Breitung test assumes the data are generated by anAR(1) process; for higher-order processes,

the first-differenced and lagged-level data are replaced by the residuals from regressions of those two

series on the first # lags of the first-differenced data. The default is to not perform this prewhitening

step.

IPS options
trend includes a linear time trend in themodel that describes the process bywhich the series is generated.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When spec-

ified, for each time period xtunitroot computes the mean of the series across panels and subtracts

this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the impact of cross-

sectional dependence.

lags(lag spec) specifies the lag structure to use for the ADF regressions performed in computing the

test statistic. With this option, xtunitroot reports Im, Pesaran, and Shin’s (2003) 𝑊𝑡-𝑏𝑎𝑟 statistic

that is predicated on 𝑇 going to infinity first, followed by 𝑁 going to infinity. By default, no lags

are included, and xtunitroot instead reports Im, Pesaran, and Shin’s ̃𝑡-𝑏𝑎𝑟 and 𝑍 ̃𝑡-𝑏𝑎𝑟 statistics that

assume 𝑇 is fixed while 𝑁 goes to infinity, as well as the 𝑡-𝑏𝑎𝑟 statistic and exact critical values that
assume both 𝑁 and 𝑇 are fixed.

Specifying lags(#) requests that # lags of the series be used in the ADF regressions. By default, no

lags are included.

Specifying lags(aic #) requests that the number of lags of the series be chosen such that theAIC for

the regression is minimized. xtunitroot llc will fit ADF regressions with 1 to # lags and choose

the regression for which the AIC is minimized. This process is done for each panel so that different

panels may use ADF regressions with different numbers of lags.

Specifying lags(bic #) is just like specifying lags(aic #), except that the BIC is used instead of

the AIC.

Specifying lags(hqic #) is just like specifying lags(aic #), except that the Hannan–Quinn infor-
mation criterion is used instead of the AIC.

If you specify lags(0), then xtunitroot reports the 𝑊𝑡-𝑏𝑎𝑟 statistic instead of the 𝑍𝑡-𝑏𝑎𝑟, 𝑍 ̃𝑡-𝑏𝑎𝑟,

and 𝑡-𝑏𝑎𝑟 statistics.

Fisher options
dfuller requests that xtunitroot conduct ADF unit-root tests on each panel by using the dfuller

command. You must specify either the dfuller or the pperron option.

pperron requests that xtunitroot conduct Phillips–Perron unit-root tests on each panel by using the

pperron command. You must specify either the pperron or the dfuller option.
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lags(#) specifies the number of lags used to remove higher-order autoregressive components of the

series. The Fisher test assumes the data are generated by anAR(1) process; for higher-order processes,

the first-differenced and lagged-level data are replaced by the residuals from regressions of those two

series on the first # lags of the first-differenced data. lags(#) is required.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When spec-

ified, for each time period xtunitroot computes the mean of the series across panels and subtracts

this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the impact of cross-

sectional dependence.

dfuller opts are any options accepted by the dfuller command, including noconstant, trend, drift,
and lags(). Because xtunitroot calls dfuller quietly, the dfuller option regress has no

effect. See [TS] dfuller.

pperron opts are any options accepted by the pperron command, including noconstant, trend, and
lags(). Because xtunitroot calls pperron quietly, the pperron option regress has no effect.

See [TS] pperron.

Hadri options
trend includes a linear time trend in themodel that describes the process bywhich the series is generated.

demean requests that xtunitroot first subtract the cross-sectional averages from the series. When spec-

ified, for each time period xtunitroot computes the mean of the series across panels and subtracts

this mean from the series. Levin, Lin, and Chu suggest this procedure to mitigate the impact of cross-

sectional dependence.

robust requests a variant of the test statistic that is robust to heteroskedasticity across panels.

kernel(kernel spec) requests a variant of the test statistic that is robust to serially correlated er-

rors. kernel spec specifies the method used to estimate the long-run variance of each panel’s se-

ries. kernel spec takes the form kernel [ # ]. Three kernels are supported: bartlett, parzen, and
quadraticspectral.

Specifying, for example, kernel(bartlett 3) requests the Bartlett kernel with 3 lags.

If # is not specified, then 1 lag is used.

Remarks and examples
Remarks are presented under the following headings:

Overview
Levin–Lin–Chu test
Harris–Tsavalis test
Breitung test
Im–Pesaran–Shin test
Fisher-type tests
Hadri LM test

https://www.stata.com/manuals/tsdfuller.pdf#tsdfuller
https://www.stata.com/manuals/tspperron.pdf#tspperron
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Overview
We consider a simple panel-data model with a first-order autoregressive component:

𝑦𝑖𝑡 = 𝜌𝑖𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 + 𝜖𝑖𝑡 (1)

where 𝑖 = 1, . . . , 𝑁 indexes panels; 𝑡 = 1, . . . , 𝑇𝑖 indexes time; 𝑦𝑖𝑡 is the variable being tested; and 𝜖𝑖𝑡 is

a stationary error term. The z𝑖𝑡 term can represent panel-specific means, panel-specific means and a time

trend, or nothing, depending on the options specified to xtunitroot. By default, z𝑖𝑡 = 1, so that the

term z′
𝑖𝑡𝛄𝑖 represents panel-specific means (fixed effects). If trend is specified, z′

𝑖𝑡 = (1, 𝑡) so that z′
𝑖𝑡𝛄𝑖

represents panel-specific means and linear time trends. For tests that allow it, specifying noconstant
omits the z′

𝑖𝑡𝛄𝑖 term. The Im–Pesaran–Shin (xtunitroot ips) and Fisher-type (xtunitroot fisher)
tests allow unbalanced panels, while the remaining tests require balanced panels so that 𝑇𝑖 = 𝑇 for all 𝑖.

Panel unit-root tests are used to test the null hypothesis 𝐻0 ∶ 𝜌𝑖 = 1 for all 𝑖 versus the alternative
𝐻𝑎 ∶ 𝜌𝑖 < 1. Depending on the test, 𝐻𝑎 may hold, for one 𝑖, a fraction of all 𝑖 or all 𝑖; the output of the
respective test precisely states the alternative hypothesis. Equation (1) is often written as

Δ𝑦𝑖𝑡 = 𝜙𝑖𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 + 𝜖𝑖𝑡 (1′)

so that the null hypothesis is then 𝐻0 ∶ 𝜙𝑖 = 0 for all 𝑖 versus the alternative 𝐻𝑎 ∶ 𝜙𝑖 < 0.

The Hadri LM test for panel stationarity instead assumes the null hypothesis that all panels are station-

ary versus the alternative that at least some of the panels contain unit roots. We discuss the Hadri LM test

in detail later, though for now our remarks focus on tests whose null hypothesis is that the panels contain

unit roots.

The various panel unit-root tests implemented by xtunitroot differ in several key aspects. First,

the Levin–Lin–Chu (xtunitroot llc), Harris–Tsavalis (xtunitroot ht), and Breitung (xtunitroot
breitung) tests make the simplifying assumption that all panels share the same autoregressive parameter
so that 𝜌𝑖 = 𝜌 for all 𝑖. The other tests implemented by xtunitroot, however, allow the autoregressive

parameter to be panel specific. Maddala andWu (1999) provide an example of testing whether countries’

economic growth rates converge to a long-run value. Imposing the restriction that 𝜌𝑖 = 𝜌 for all 𝑖 implies
that the rate of convergence would be the same for all countries, an implication that is too restrictive in

practice.

Second, the various tests make differing assumptions about the rates at which the number of panels,

𝑁, and the number of time periods, 𝑇, tend to infinity or whether 𝑁 or 𝑇 is fixed. For microeconomic

panels of firms, for example, increasing the sample size would involve gathering data onmore firmswhile

holding the number of time periods fixed; here𝑁 tends to infinity whereas 𝑇 is fixed. In amacroeconomic

analysis of OECD countries, one would typically assume that 𝑁 is fixed whereas 𝑇 tends to infinity.

Related to the previous point, the size of one’s sample will in large part determine which test is most

appropriate in a given situation. If a dataset has a small number of panels and a large number of time

periods, then a panel unit-root test that assumes that 𝑁 is fixed or that 𝑁 tends to infinity at a slower rate

than 𝑇 will likely perform better than one that is designed for cases where 𝑁 is large.

Hlouskova andWagner (2006) provide a good overview of the types of panel unit-root tests available

with xtunitroot, and they present exhaustive Monte Carlo simulations examining the tests’ perfor-

mance. Baltagi (2013, chap. 12) also concisely discusses the tests implemented by xtunitroot.

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1
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The following table summarizes some of the key differences among the various tests:

Test Options Asymptotics 𝜌 under 𝐻𝑎 Panels

LLC noconstant
√

𝑁/𝑇 → 0 common balanced

LLC 𝑁/𝑇 → 0 common balanced

LLC trend 𝑁/𝑇 → 0 common balanced

HT noconstant 𝑁 → ∞, 𝑇 fixed common balanced

HT 𝑁 → ∞, 𝑇 fixed common balanced

HT trend 𝑁 → ∞, 𝑇 fixed common balanced

Breitung noconstant (𝑇 , 𝑁) →seq ∞ common balanced

Breitung (𝑇 , 𝑁) →seq ∞ common balanced

Breitung trend (𝑇 , 𝑁) →seq ∞ common balanced

IPS 𝑁 → ∞, 𝑇 fixed panel-specific unbalanced

or 𝑁 and 𝑇 fixed

IPS trend 𝑁 → ∞, 𝑇 fixed panel-specific unbalanced

or 𝑁 and 𝑇 fixed

IPS lags() (𝑇 , 𝑁) →seq ∞ panel-specific unbalanced

IPS trend lags() (𝑇 , 𝑁) →seq ∞ panel-specific unbalanced

Fisher-type 𝑇 → ∞, 𝑁 finite panel-specific unbalanced

or infinite

Hadri LM (𝑇 , 𝑁) →seq ∞ (not applicable) balanced

Hadri LM trend (𝑇 , 𝑁) →seq ∞ (not applicable) balanced

The first column identifies the test procedure, where we use LLC to denote the Levin–Lin–Chu test,

HT to denote the Harris–Tsavalis test, and IPS to denote the Im–Pesaran–Shin test. The second column

indicates the deterministic components included in (1) or (1′). The column labeled “Asymptotics” indi-

cates the behavior of the number of panels, 𝑁, and time periods, 𝑇, required for the test statistic to have a
well-defined asymptotic distribution. For example, the LLC test without the noconstant option requires

that 𝑇 grow at a faster rate than 𝑁 so that 𝑁/𝑇 approaches zero; with the noconstant option, we need

only for 𝑇 to grow faster than the square root of 𝑁 (so 𝑇 could grow more slowly than 𝑁).

The HT tests and the IPS tests without accommodations for serial correlation assume that the number

of time periods, 𝑇, is fixed, whereas 𝑁 tends to infinity; xtunitroot also reports critical values for the

IPS tests that are valid in finite samples (where 𝑁 and 𝑇 are fixed).

Many of the tests are justified using sequential limit theory, which we denote as (𝑇 , 𝑁) →seq ∞.

First, the time dimension goes to infinity, and then the number of panels goes to infinity. As a practical

matter, these tests work best with “large” 𝑇 and at least “moderate” 𝑁. See Phillips and Moon (2000) for

an introduction to asymptotics that depend on both 𝑁 and 𝑇 and their relation to nonstationary panels.

Phillips and Moon (1999) contains a more technical discussion of “multi-indexed” asymptotics.

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1a
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The fourth column refers to the parameter 𝜌𝑖 in (1) and 𝜙𝑖 in (1
′). As we mentioned previously, some

tests assume that all panels have the same autoregressive parameter under the alternative hypothesis

of stationarity (denoted “common” in the table), while others allow for panel-specific autoregressive

parameters (denoted “panel-specific” in the table). The Hadri LM tests are not framed in terms of an

equation like (1) or (1′), so the distinction based on 𝜌 is not applicable.

The final column indicates whether the panel dataset must be strongly balanced, meaning each panel

has the same number of observations covering the same time span. Except for the Fisher tests, all the

tests require that there be no gaps in any panel’s series.

We now discuss each test in turn.

Levin–Lin–Chu test
The starting point for the Levin–Lin–Chu (LLC) test is (1′) with the restriction that all panels share

a common autoregressive parameter. In a regression model like (1), 𝜖𝑖𝑡 is likely to be plagued by serial

correlation, so to mitigate this problem, LLC augment the model with additional lags of the dependent

variable:

Δ𝑦𝑖𝑡 = 𝜙𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 +

𝑝

∑
𝑗=1

𝜃𝑖𝑗Δ𝑦𝑖,𝑡−𝑗 + 𝑢𝑖𝑡 (2)

The number of lags, 𝑝, can be specified using the lags() option, or you can have xtunitroot llc
select the number of lags that minimizes one of several information criteria. The LLC test assumes that

𝜖𝑖𝑡 is independently distributed across panels and follows a stationary invertible autoregressive moving-

average process for each panel. By including sufficient lags of Δ𝑦𝑖,𝑡 in (2), 𝑢𝑖𝑡 will be white noise; the

test does not require 𝑢𝑖𝑡 to have the same variance across panels.

Under the null hypothesis of a unit root, 𝑦𝑖𝑡 is nonstationary, so a standard OLS regression 𝑡 statistic for
𝜙 will have a nonstandard distribution that depends in part on the specification of the z𝑖𝑡 term. Moreover,

the inclusion of a fixed-effect term in a dynamic model like (2) causes the OLS estimate of 𝜙 to be biased

toward zero; see Nickell (1981). The LLC method produces a bias-adjusted 𝑡 statistic, which the authors
denote as 𝑡∗

𝛿, that has an asymptotically normal distribution.

The LLC test without panel-specific intercepts or time trends, requested by specifying the noconstant
option with xtunitroot llc, is justified asymptotically if

√
𝑁/𝑇 → 0, allowing the time dimension 𝑇

to grow more slowly than the cross-sectional dimension 𝑁; LLC (2002) mention that this assumption is

particularly relevant for panel datasets typically encountered in microeconomic applications.

If model (2) includes panel-specific means (the default for xtunitroot llc) or time trends (requested
with the trend option), then youmust assume that𝑁/𝑇 → 0 for the 𝑡∗

𝛿 statistic to have an asymptotically

standard normal distribution. This implies that the time dimension, 𝑇, must grow faster than the cross-

sectional dimension, 𝑁, a situation more plausible with macroeconomic datasets.

LLC (2002) recommend using their test with panels of “moderate” size, which they describe as having

between 10 and 250 panels and 25 to 250 observations per panel. Baltagi (2013, sec. 12.2.3) mentions

that the requirement 𝑁/𝑇 → 0 implies that 𝑁 should be small relative to 𝑇.

Technical note
Panel unit-root tests have frequently been used to test the purchasing power parity (PPP) hypothesis.

We use a PPP dataset to illustrate the xtunitroot command, but understanding PPP is not required to

understand how these tests are applied. Here we outline PPP and explain how to test it using panel unit-

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1a
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1a
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1a
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
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root tests; uninterested readers can skip the remainder of this technical note. Our discussion and examples

are motivated by those in Oh (1996) and Patterson (2000, chap. 13). Also see Rogoff (1996) for a broader

introduction to PPP.

The PPP hypothesis is based on the Law of One Price, which stipulates that the price of a tradable

good will be the same everywhere. Absolute PPP stipulates that the nominal exchange rate, 𝐸, is

𝐸 = 𝑃
𝑃 ∗

where 𝑃 is the price of a basket of goods in the home country and 𝑃 ∗ is the price of the same basket

in the foreign country. The exchange rate, 𝐸, indicates the price of a foreign currency in terms of our

“home” currency or, equivalently, how many units of the home currency are needed to buy one unit of

the foreign currency.

Now consider the real exchange rate, 𝜆, which tells us the prices of goods and services—things we

actually consume—in a foreign country relative to their prices at home. We have

𝜆 = 𝐸𝑃 ∗

𝑃
(3)

𝜆 in general does not equal unity for many reasons, including the fact that not all goods are tradable across

countries (haircuts being the textbook example), trade barriers such as tariffs and quotas, differences

among countries in how price indices are constructed, and the Harrod–Balassa–Samuelson effect, which

links productivity and price levels; see Obstfeld and Rogoff (1996, 210–216).

Taking logs of both sides of (3), we have

𝑦 ≡ ln𝜆 = ln𝐸 + ln𝑃 ∗ − ln𝑃

PPP holds only if the real exchange rate reverts to its equilibrium value over time. Thus, to test for PPP,

we test whether 𝑦 contains a unit root. If 𝑦 does contain a unit root, we reject PPP.

The dataset pennxrate.dta contains real exchange-rate data based on the PennWorld Table version

6.2 (Heston, Summers, and Aten 2006). The data are a balanced panel consisting of 151 countries ob-

served over 34 years, from 1970 through 2003. The United States was treated as the domestic country

and is therefore not included. The variable lnrxrate contains the log of the real exchange rate and is

the variable on which we conduct panel unit-root tests in the examples.

Two indicator variables are included in the dataset as well. The variable oecd flags 27 countries aside

from the United States that are members of the Organisation for Economic Co-operation and Develop-

ment (OECD). (The Czech Republic and the Slovak Republic are excluded because they did not become

independent countries until 1993.) The variable g7 flags the six countries aside from the United States

that are members of the Group of Seven (G7) nations.

Example 1
The dataset pennxrate.dta contains real exchange-rate data for a panel of countries observed over

34 years. Here we use the LLC test to determine whether the series lnrxrate, the log of real exchange
rates, contains a unit root for six nations that are currently in the G7 group of advanced economies. We do

not have any reason to believe lnrxrate should exhibit a global trend, so we do not include the trend
option.
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Looking at (2), we have no a priori knowledge of the number of lags, 𝑝, needed to ensure that 𝑢𝑖𝑡
is white noise, so we let xtunitroot choose the number of lags for each panel by minimizing the AIC,

subject to a maximum of 10 lags.

We type

. use https://www.stata-press.com/data/r19/pennxrate

. xtunitroot llc lnrxrate if g7, lags(aic 10)
Levin--Lin--Chu unit-root test for lnrxrate

H0: Panels contain unit roots Number of panels = 6
Ha: Panels are stationary Number of periods = 34
AR parameter: Common Asymptotics: N/T -> 0
Panel means: Included
Time trend: Not included
ADF regressions: 1.00 lags average (chosen by AIC)
LR variance: Bartlett kernel, 10.00 lags average (chosen by LLC)

Statistic p-value

Unadjusted t -6.7538
Adjusted t* -4.0277 0.0000

The header of the output summarizes the exact specification of the test and dataset. Because we did

not specify the noconstant option, the test allowed for panel-specific means. On average, 𝑝 = 1 lag of

the dependent variable of (2) were included as regressors in theADF regressions. By default, xtunitroot
estimated the long-run variance of Δlnrxrate𝑖𝑡 by using a Bartlett kernel with an average of 10 lags.

The LLC bias-adjusted test statistic 𝑡∗
𝛿 = −4.0277 is significantly less than zero (𝑝 < 0.00005), so

we reject the null hypothesis of a unit-root [that is, that 𝜙 = 0 in (2)] in favor of the alternative that

lnrxrate is stationary (that is, that 𝜙 < 0). This conclusion supports the PPP hypothesis.

Labeled “Unadjusted t” in the output is a conventional 𝑡 statistic for testing 𝐻0 ∶ 𝜙 = 0. When the

model does not include panel-specific means or trends, this test statistic has a standard normal limiting

distribution and its 𝑝-value is shown in the output; the unadjusted statistic, 𝑡𝛿, diverges to negative infinity

if trends or panel-specific constants are included, so a 𝑝-value is not displayed in those cases.
Because the G7 economies have many similarities, our results could be affected by cross-sectional

correlation in real exchange rates; O’Connell’s (1998) results showed that the LLC test exhibits severe

size distortions in the presence of cross-sectional correlation. LLC (2002) suggested removing cross-

sectional averages from the data to help control for this correlation. We can do this by specifying the

demean option to xtunitroot:

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
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. xtunitroot llc lnrxrate if g7, lags(aic 10) demean
Levin--Lin--Chu unit-root test for lnrxrate

H0: Panels contain unit roots Number of panels = 6
Ha: Panels are stationary Number of periods = 34
AR parameter: Common Asymptotics: N/T -> 0
Panel means: Included
Time trend: Not included Cross-sectional means removed
ADF regressions: 1.50 lags average (chosen by AIC)
LR variance: Bartlett kernel, 10.00 lags average (chosen by LLC)

Statistic p-value

Unadjusted t -5.5473
Adjusted t* -2.0813 0.0187

Once we control for cross-sectional correlation by removing cross-sectional means, we can no longer

reject the null hypothesis of a unit root at the 1% significance level, though we can reject at the 5% level.

Here we chose the number of lags based on theAIC criterion in an admission that we do not know the

true number of lags to include in (2). However, the test statistics are derived under the assumption that

the lag order, 𝑝, is known. If we happen to choose the wrong number of lags, then the distribution of the
test statistic will depart from its expected distribution that assumes 𝑝 is known.

Harris–Tsavalis test
In many datasets, particularly in microeconomics, the time dimension, 𝑇, is small, so tests whose

asymptotic properties are established by assuming that 𝑇 tends to infinity can lead to incorrect inference.

HT (1999) derived a unit-root test that assumes that the time dimension, 𝑇, is fixed. Their simulation
results suggest that the test has favorable size and power properties for 𝑁 greater than 25, and they report

(p. 213) that power improves faster as 𝑇 increases for a given 𝑁 than when 𝑁 increases for a given 𝑇.
The HT test statistic is based on the OLS estimator, 𝜌, in the regression model

𝑦𝑖𝑡 = 𝜌𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 + 𝜖𝑖𝑡 (4)

where the term z′
𝑖𝑡𝛄𝑖 allows for panel-specific means and trends and was discussed in Overview. Har-

ris and Tsavalis assume that 𝜖𝑖𝑡 is independent and identically distributed (i.i.d.) normal with constant

variance across panels. Because of the bias induced by the inclusion of the panel means and time trends

in this model, the expected value of the OLS estimator is not equal to unity under the null hypothesis.

Harris and Tsavalis derived the mean and standard error of ̂𝜌 for (4) under the null hypothesis 𝐻0 ∶ 𝜌 = 1

when neither panel-specific means nor time trends are included (requested with the noconstant option),
when only panel-specific means are included (the default), and when both panel-specific means and time

trends are included (requested with the trend option). The asymptotic distribution of the test statistic is

justified as 𝑁 → ∞, so you should have a relatively large number of panels when using this test. Notice

that, like the LLC test, the HT test assumes that all panels share the same autoregressive parameter.

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexamplesOverview
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Example 2
Because the HT test is designed for cases where 𝑁 is relatively large, here we test whether the series

lnrxrate contains a unit root using all 151 countries in our dataset. Wewill again remove cross-sectional

means to help control for contemporaneous correlation. We type

. xtunitroot ht lnrxrate, demean
Harris-Tzavalis unit-root test for lnrxrate

H0: Panels contain unit roots Number of panels = 151
Ha: Panels are stationary Number of periods = 34
AR parameter: Common Asymptotics: N -> Infinity
Panel means: Included T Fixed
Time trend: Not included Cross-sectional means removed

Statistic z p-value

rho 0.8184 -13.1239 0.0000

Here we strongly reject the null hypothesis of a unit root, again finding support for PPP. The point

estimate of 𝜌 in (4) is 0.8184, and the 𝑧 statistic is −13.12.

Can we directly compare the results from the LLC and HT tests? We used a subset of the data for the

LLC test but used all the data for the HT test. That leads to the obvious answer that no, our results are not

entirely comparable. However, a more subtle issue regarding the asymptotic properties of the tests also

warrants caution when comparing results.

The LLC test assumes that 𝑁/𝑇 → 0, so 𝑁 should be small relative to 𝑇. Moreover, with our

exchange-rate dataset, we are much more likely to be able to add more years of data rather than add

more countries, because the number of countries in the world is for the most part fixed. Hence, assuming

𝑇 grows faster than 𝑁 is certainly plausible.

On the other hand, the HT test assumes that 𝑇 is fixed whereas 𝑁 goes to infinity. Is that assumption

plausible for our dataset? As we just mentioned, 𝑇 likely grows faster than 𝑁 here, so using a test that

assumes 𝑇 is fixed whereas 𝑁 grows is hard to justify with our dataset.

In short, when selecting a panel unit-root test, you must consider the relative sizes of 𝑁 and 𝑇 and the

relative speeds at which they tend to infinity or whether either 𝑁 or 𝑇 is fixed.

Breitung test
Both the LLC and HT tests take the approach of first fitting a regression model and subsequently

adjusting the autoregressive parameter or its 𝑡 statistic to compensate for the bias induced by having

a dynamic regressor and fixed effects in the model. The Breitung (2000; Breitung and Das 2005) test

takes a different tact, adjusting the data before fitting a regression model so that bias adjustments are not

needed.

In the LLC test, additional lags of the dependent variable could be included in (2) to control for serial

correlation. The Breitung procedure instead allows for a prewhitening of the series before computing

the test. If the trend option is not specified, we regress Δ𝑦𝑖𝑡 and 𝑦𝑖,𝑡−1 on Δ𝑦𝑖,𝑡−1, . . . , Δ𝑦𝑖,𝑡−𝑝 and

use the residuals from those regressions in place of Δ𝑦𝑖,𝑡 and 𝑦𝑖,𝑡−1 in computing the test. You specify

the number of lags, 𝑝, to use by specifying lags(#). If the trend option is specified, then the Breitung

method uses a different prewhitening procedure that involves fitting only one (instead of two) preliminary

regressions; see Methods and formulas for details.

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq4
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootMethodsandformulas
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Monte Carlo simulations by Breitung (2000) show that bias-corrected statistics such as LLC’s 𝑡∗
𝛿 suffer

from low power, particularly against alternative hypotheses with autoregressive parameters near one and

when panel-specific effects are included. In contrast, the Breitung (2000) test statistic exhibits much

higher power in these cases. Moreover, the Breitung test has good power even with small datasets (𝑁 =
25, 𝑇 = 25), though the power of the test appears to deteriorate when 𝑇 is fixed and 𝑁 is increased.

The Breitung test assumes that the error term 𝜖𝑖𝑡 is uncorrelated across both 𝑖 and 𝑡. xtunitroot
breitung optionally also reports a version of the statistic based on Breitung and Das (2005) that is

robust to cross-sectional correlation.

Example 3
Here we test whether lnrxrate contains a unit root for the subset of 27 OECD countries in our dataset.

We will use the robust option to obtain a test statistic that is robust to cross-sectional correlation, so we

will not subtract the cross-sectional means via the demean option. We type

. xtunitroot breitung lnrxrate if oecd, robust
Breitung unit-root test for lnrxrate

H0: Panels contain unit roots Number of panels = 27
Ha: Panels are stationary Number of periods = 34
AR parameter: Common Asymptotics: T,N -> Infinity
Panel means: Included sequentially
Time trend: Not included Prewhitening: Not performed

Statistic p-value

lambda* -1.6794 0.0465

* Lambda robust to cross-sectional correlation

We can reject the null of a unit root at the 5% level but not at the 1% level.

Im–Pesaran–Shin test
All the tests we have discussed thus far assume that all panels share a common autoregressive param-

eter, 𝜌. Cultural, institutional, and other factors make such an assumption tenuous for both macro- and
microeconometric panel datasets. IPS (2003) developed a set of tests that relax the assumption of a com-

mon autoregressive parameter. Moreover, the IPS test does not require balanced datasets, though there

cannot be gaps within a panel. The starting point for the IPS test is a set of Dickey–Fuller regressions of

the form

Δ𝑦𝑖𝑡 = 𝜙𝑖𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 + 𝜖𝑖𝑡 (5)

Notice that here 𝜙 is panel-specific, indexed by 𝑖, whereas in (2), 𝜙 is constant. Im, Pesaran, and Shin

assume that 𝜖𝑖𝑡 is independently distributed normal for all 𝑖 and 𝑡, and they allow 𝜖𝑖𝑡 to have heterogeneous

variances 𝜎2
𝑖 across panels.

As described byMaddala andWu (1999), one way to view the key difference between the IPS and LLC

tests is that here we fit (5) to each panel separately and average the resulting 𝑡 statistics, whereas in the
LLC test we pool the data before fitting an equation such as (2) (thus we impose a common autoregressive

parameter) and compute a test statistic based on the pooled regression results.

Under the null hypothesis that all panels contain a unit root, we have 𝜙𝑖 = 0 for all 𝑖. The alternative
is that the fraction of panels that follow stationary processes is nonzero; that is, as 𝑁 tends to infinity, the

fraction 𝑁1/𝑁 converges to a nonzero value, where 𝑁1 is the number of panels that are stationary.

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq5
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq2
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Whether you allow for serially correlated errors determines the test statistics produced, and because

there are substantive differences in the output, we consider the serially uncorrelated and serially correlated

cases separately. First, we consider the serially uncorrelated case, which xtunitroot assumes when you
do not specify the lags() option.

The IPS test allowing for heterogeneous panels with serially uncorrelated errors assumes that the num-

ber of time periods, 𝑇, is fixed; xtunitroot ips produces statistics both for the case where 𝑁 is fixed

and for the case where 𝑁 → ∞. Under the null hypothesis of a unit root, the usual 𝑡 statistic, 𝑡𝑖, for

testing 𝐻0 ∶ 𝜙𝑖 = 0 in (5) does not have a mean of zero. For the case where 𝑁 is fixed, IPS used simu-

lation to tabulate “exact” critical values for the average of the 𝑡𝑖 statistics when the dataset is balanced;

these critical values are not available with unbalanced datasets. The critical values are “exact” only when

the error term is normally distributed and when 𝑇 corresponds to one of the sample sizes used in their

simulation studies. For other values of 𝑇, xtunitroot ips linearly interpolates the values in IPS (2003,

table 2).

For the case where 𝑁 → ∞, they used simulation to tabulate the mean and variance of 𝑡𝑖 for various

values of 𝑇 under the null hypothesis and showed that a bias-adjusted average of the 𝑡𝑖’s has a standard

normal limiting distribution. We illustrate the test with an example.

Example 4
Here we test whether lnrxrate contains a unit root for the subset of OECD countries. We type

. xtunitroot ips lnrxrate if oecd, demean
Im--Pesaran--Shin unit-root test for lnrxrate

H0: All panels contain unit roots Number of panels = 27
Ha: Some panels are stationary Number of periods = 34
AR parameter: Panel-specific Asymptotics: T,N -> Infinity
Panel means: Included sequentially
Time trend: Not included Cross-sectional means removed
ADF regressions: No lags included

Fixed-N exact critical values
Statistic p-value 1% 5% 10%

t-bar -3.1327 -1.810 -1.730 -1.680
t-tilde-bar -2.5771
Z-t-tilde-bar -7.3911 0.0000

As with the other unit-root tests available with xtunitroot, the header of the output contains a summary
of the dataset’s dimensions and the null and alternative hypotheses. First, consider the statistic labeled

t-bar, which IPS denote as 𝑡-𝑏𝑎𝑟𝑁𝑇. This statistic is appropriate when you assume that both 𝑁 and 𝑇
fixed; exact critical values reported in IPS (2003) are reported immediately to its right. Here, because

𝑡-𝑏𝑎𝑟𝑁𝑇 is less than even its 1% critical value, we strongly reject the null hypothesis that all series contain

a unit root in favor of the alternative that a nonzero fraction of the panels represent stationary processes.

The statistic labeled t-tilde-bar is IPS’s ̃𝑡-𝑏𝑎𝑟𝑁𝑇 statistic and is similar to the 𝑡-𝑏𝑎𝑟𝑁𝑇 statistic,

except that a different estimator of the Dickey–Fuller regression error variance is used. A standardized

version of this statistic, 𝑍 ̃𝑡-𝑏𝑎𝑟, is labeled Z-t-tilde-bar in the output and has an asymptotic stan-

dard normal distribution. Here the 𝑝-value corresponding to Z-t-tilde-bar is essentially zero, so we

strongly reject the null that all series contain a unit root.

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq5
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Technical note
Just as the 𝑍 ̃𝑡-𝑏𝑎𝑟 statistic corresponds to ̃𝑡-𝑏𝑎𝑟𝑁𝑇, IPS present a 𝑍𝑡-𝑏𝑎𝑟 statistic corresponding to

𝑡-𝑏𝑎𝑟𝑁𝑇. However, the 𝑍𝑡-𝑏𝑎𝑟 statistic does not have an asymptotic normal distribution, and so it is not

presented in the output. 𝑍𝑡-𝑏𝑎𝑟 is available in the stored results as r(zt).

When serial correlation is present, we augment the Dickey–Fuller regression with further lags of the

dependent variable:

Δ𝑦𝑖𝑡 = 𝜙𝑖𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 +

𝑝

∑
𝑗=1

Δ𝑦𝑖,𝑡−𝑗 + 𝜖𝑖𝑡 (6)

where the number of lags, 𝑝, is specified using the lags() option, and if the trend option is specified, we
also include a time trend with panel-specific slope. You can either specify a number or have xtunitroot
choose the number of lags for each panel by minimizing an information criterion. Here xtunitroot
produces the IPS 𝑊𝑡-𝑏𝑎𝑟 statistic, which has an asymptotically standard normal distribution as 𝑇 → ∞
followed by 𝑁 → ∞. As a practical matter, this means you should have a reasonably large number of

both time periods and panels to use this test.

Part of the computation of the 𝑊𝑡-𝑏𝑎𝑟 statistic involves retrieving expected values and variances of

the 𝑡 statistic for 𝛽𝑖 in (6) in table 3 of IPS (2003). Because expected values have not been computed

beyond 𝑝 = 8 lags in (6), you cannot request more than 8 lags in the lags() option.

Example 5
We again test whether lnrxrate contains a unit root for the subset ofOECD countries, except we allow

for serially correlated errors. We will choose the number of lags for the ADF regressions by minimizing

the AIC criterion, subject to a maximum of 8 lags. We type

. xtunitroot ips lnrxrate if oecd, lags(aic 8) demean
Im--Pesaran--Shin unit-root test for lnrxrate

H0: All panels contain unit roots Number of panels = 27
Ha: Some panels are stationary Number of periods = 34
AR parameter: Panel-specific Asymptotics: T,N -> Infinity
Panel means: Included sequentially
Time trend: Not included Cross-sectional means removed
ADF regressions: 1.48 lags average (chosen by AIC)

Statistic p-value

W-t-bar -7.3075 0.0000

Fisher-type tests
In our discussion of the IPS test, we intimated that the test statistics could be viewed as averages of

bias-adjusted 𝑡 statistics for each panel. As Maddala andWu (1999, 635) describe the IPS test, “. . . the IPS

test is a way of combining the evidence on the unit-root hypothesis from the 𝑁 unit-root tests performed

on the 𝑁 cross-section units.” Fisher-type panel unit-root tests make this approach explicit.
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Meta-analysis, frequently used in biostatistics andmedical sciences, is the combination of results from

multiple studies designed to test a similar hypothesis to yield a more decisive conclusion. One type of

meta-analysis, first proposed by R. A. Fisher, combines the 𝑝-values from independent tests to obtain

an overall test statistic and is frequently called a Fisher-type test. See Whitehead (2002, sec. 9.8) for

an introduction. In the context of panel data unit-root tests, we perform a unit-root test on each panel’s

series separately, then combine the 𝑝-values to obtain an overall test of whether the panel series contains
a unit root.

xtunitroot fisher performs eitherADF or Phillips–Perron unit-root tests on each panel depending

on whether you specify the dfuller or pperron option. The actual tests are conducted by the dfuller
and pperron commands, and you can specify to xtunitroot fisher any options those commands take;
see [TS] dfuller and [TS] pperron.

xtunitroot fisher combines the 𝑝-values from the panel-specific unit-root tests using the four

methods proposed by Choi (2001). Three of the methods differ in whether they use the inverse 𝜒2,

inverse-normal, or inverse-logit transformation of 𝑝-values, and the fourth is a modification of the inverse
𝜒2 transformation that is suitable for when 𝑁 tends to infinity. The inverse-normal and inverse-logit

transformations can be used whether 𝑁 is finite or infinite.

The null hypothesis being tested by xtunitroot fisher is that all panels contain a unit root. For a

finite number of panels, the alternative is that at least one panel is stationary. As 𝑁 tends to infinity, the

number of panels that do not have a unit root should grow at the same rate as 𝑁 under the alternative

hypothesis.

Example 6
Here we test for a unit root in lnrxrate using all 151 countries in our sample. We will use the ADF

test. As before, we do not include a trend in real exchange rates and will therefore not specify the trend
option. However, because the mean real exchange rate for any country is nonzero, we will specify the

drift option. We will use two lags in the ADF regressions, and we will remove cross-sectional means

by using demean. We type

https://www.stata.com/manuals/tsdfuller.pdf#tsdfuller
https://www.stata.com/manuals/tspperron.pdf#tspperron
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. xtunitroot fisher lnrxrate, dfuller drift lags(2) demean
Fisher-type unit-root test for lnrxrate
Based on augmented Dickey--Fuller tests

H0: All panels contain unit roots Number of panels = 151
Ha: At least one panel is stationary Number of periods = 34
AR parameter: Panel-specific Asymptotics: T -> Infinity
Panel means: Included
Time trend: Not included Cross-sectional means removed
Drift term: Included ADF regressions: 2 lags

Statistic p-value

Inverse chi-squared(302) P 975.9130 0.0000
Inverse normal Z -19.6183 0.0000
Inverse logit t(759) L* -20.9768 0.0000
Modified inv. chi-squared Pm 27.4211 0.0000

P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.

All four of the tests strongly reject the null hypothesis that all the panels contain unit roots. Choi’s

(2001) simulation results suggest that the inverse normal 𝑍 statistic offers the best tradeoff between size

and power, and he recommends using it in applications. We have observed that the inverse logit 𝐿∗ test

typically agrees with the 𝑍 test. Under the null hypothesis, 𝑍 has a standard normal distribution and 𝐿∗

has a 𝑡 distribution with 5𝑁 + 4 degrees of freedom. Low values of 𝑍 and 𝐿∗ cast doubt on the null

hypothesis.

When the number of panels is finite, the inverse 𝜒2 𝑃 test is applicable; this statistic has a 𝜒2 dis-

tribution with 2𝑁 degrees of freedom, and large values are cause to reject the null hypothesis. Under

the null hypothesis, as 𝑇 → ∞ followed by 𝑁 → ∞, 𝑃 tends to infinity so that 𝑃 has a degenerate

limiting distribution. For large panels, Choi (2001) therefore proposes the modified inverse 𝜒2 𝑃𝑚 test

which converges to a standard normal distribution; a large value of𝑃𝑚 casts doubt on the null hypothesis.

Choi’s simulation results do not reveal a specific value of 𝑁 over which 𝑃𝑚 should be preferred to 𝑃,
though he mentions that 𝑁 = 100 is still too small for 𝑃𝑚 to have an approximately normal distribution.

Hadri LM test
All the tests we have discussed so far take as the null hypothesis that the series contains a unit root.

Classical statistical methods are designed to reject the null hypothesis only when the evidence against

the null is sufficiently overwhelming. However, because unit-root tests typically are not very powerful

against alternative hypotheses of somewhat persistent but stationary processes, reversing roles and testing

the null hypothesis of stationarity against the alternative of a unit root is appealing. For pure time series,

the KPSS test of Kwiatkowski et al. (1992) is one such test.

The Hadri (2000) LM test uses panel data to test the null hypothesis that the data are stationary versus

the alternative that at least one panel contains a unit root. The test is designed for cases with large 𝑇 and

moderate 𝑁. The motivation for the test is straightforward. Suppose we include a panel-specific time

trend (using the trend option with xtunitroot hadri) and write our series, 𝑦𝑖𝑡, as

𝑦𝑖𝑡 = 𝑟𝑖𝑡 + 𝛽𝑖𝑡 + 𝜖𝑖𝑡

where 𝑟𝑖𝑡 is a random walk,

𝑟𝑖𝑡 = 𝑟𝑖,𝑡−1 + 𝑢𝑖𝑡
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and 𝜖𝑖𝑡 and 𝑢𝑖𝑡 are zero-mean i.i.d. normal errors. If the variance of 𝑢𝑖𝑡 were zero, then 𝑟𝑖𝑡 would

collapse to a constant; 𝑦𝑖𝑡 would therefore be trend stationary. Using this logic, the Hadri LM test tests

the hypothesis

𝐻0 ∶ 𝜆 = 𝜎2
𝑢

𝜎2
𝜖

= 0 versus 𝐻𝑎 ∶ 𝜆 > 0

Two options to xtunitroot hadri allow you to relax the assumption that 𝜖𝑖𝑡 is i.i.d., though nor-

mality is still required. You can specify the robust option to obtain a variant of the test that is robust to

heteroskedasticity across panels, or you can specify kernel() to obtain a variant that is robust to serial

correlation and heteroskedasticity. Asymptotically, the Hadri LM test is justified as 𝑇 → ∞ followed by

𝑁 → ∞. As a practical matter, Hadri (2000) recommends this test for “large” 𝑇 and “moderate” 𝑁.

Example 7
We now test the null hypothesis that lnrxrate is stationary for the subset of OECD countries. To

control for serial correlation, we will use a Bartlett kernel with 5 lags. We type

. xtunitroot hadri lnrxrate if oecd, kernel(bartlett 5) demean
Hadri LM test for lnrxrate

H0: All panels are stationary Number of panels = 27
Ha: Some panels contain unit roots Number of periods = 34
Time trend: Not included Asymptotics: T, N -> Infinity
Heteroskedasticity: Robust sequentially
LR variance: Bartlett kernel, 5 lags Cross-sectional means removed

Statistic p-value

z 9.6473 0.0000

We strongly reject the null hypothesis that all panels’ series are stationary in favor of the alternative

that at least one of them contains a unit root. In contrast, the previous examples generally rejected

the null hypothesis that all series contain unit roots in favor of the alternative that at least some are

stationary. For cautionary remarks on the use of panel unit-root tests in the examination of PPP, see, for

example, Banerjee, Marcellino, and Osbat (2005). In short, our results are qualitatively quite similar to

those reported in the literature, though Banerjee, Marcellino, and Osbat argue that because of cross-unit

cointegration and long-run relationships among countries, panel unit-root tests quite often reject the null

hypothesis even when true.

Stored results
xtunitroot llc stores the following in r():

Scalars

r(N) number of observations

r(N g) number of groups

r(N t) number of time periods

r(sig adj) standard deviation adjustment

r(mu adj) mean adjustment

r(delta) pooled estimate of 𝛿
r(se delta) pooled standard error of ̂𝛿
r(Var ep) variance of whitened differenced series
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r(sbar) mean of ratio of long-run to innovation standard deviations

r(ttilde) observations per panel after lagging and differencing

r(td) unadjusted 𝑡𝛿 statistic

r(p td) 𝑝-value for 𝑡𝛿
r(tds) adjusted 𝑡∗

𝛿 statistic

r(p tds) 𝑝-value for 𝑡∗
𝛿

r(hac lags) lags used in HAC variance estimator

r(hac lagm) average lags used in HAC variance estimator

r(adf lags) lags used inADF regressions

r(adf lagm) average lags used inADF regressions

Macros

r(test) llc
r(hac kernel) kernel used in HAC variance estimator

r(hac method) HAC lag-selection algorithm

r(adf method) ADF regression lag-selection criterion

r(demean) demean, if the data were demeaned
r(deterministics) noconstant, constant, or trend

xtunitroot ht stores the following in r():

Scalars

r(N) number of observations

r(N g) number of groups

r(N t) number of time periods

r(rho) estimated 𝜌
r(Var rho) variance of 𝜌 under 𝐻0
r(mean rho) mean of 𝜌 under 𝐻0
r(z) 𝑧 statistic

r(p) 𝑝-value
Macros

r(test) ht
r(demean) demean, if the data were demeaned
r(deterministics) noconstant, constant, or trend
r(altt) altt, if altt was specified

xtunitroot breitung stores the following in r():

Scalars

r(N) number of observations

r(N g) number of groups

r(N t) number of time periods

r(lambda) test statistic 𝜆
r(lrobust) robust test statistic 𝜆𝑅
r(p) 𝑝-value for 𝜆
r(p lrobust) 𝑝-value for 𝜆𝑅
r(lags) lags used for prewhitening

Macros

r(test) breitung
r(demean) demean, if the data were demeaned
r(robust) robust, if specified
r(deterministics) noconstant, constant, or trend
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xtunitroot ips stores the following in r():

Scalars

r(N) number of observations

r(N g) number of groups

r(N t) number of time periods

r(tbar) test statistic 𝑡-𝑏𝑎𝑟𝑁𝑇
r(cv 10) exact 10% critical value for 𝑡-𝑏𝑎𝑟𝑁𝑇
r(cv 5) exact 5% critical value for 𝑡-𝑏𝑎𝑟𝑁𝑇
r(cv 1) exact 1% critical value for 𝑡-𝑏𝑎𝑟𝑁𝑇
r(zt) test statistic 𝑍𝑡-𝑏𝑎𝑟
r(ttildebar) test statistic ̃𝑡-𝑏𝑎𝑟𝑁𝑇
r(zttildebar) test statistic 𝑍 ̃𝑡-𝑏𝑎𝑟
r(p zttildebar) 𝑝-value for 𝑍 ̃𝑡-𝑏𝑎𝑟
r(wtbar) test statistic 𝑊𝑡-𝑏𝑎𝑟
r(p wtbar) 𝑝-value for 𝑊𝑡-𝑏𝑎𝑟
r(lags) lags used inADF regressions

r(lagm) average lags used inADF regressions

Macros

r(test) ips
r(demean) demean, if the data were demeaned
r(adf method) ADF regression lag-selection criterion

r(deterministics) constant or trend

xtunitroot fisher stores the following in r():

Scalars

r(N) number of observations

r(N g) number of groups

r(N t) number of time periods

r(P) inverse 𝜒2 𝑃 statistic

r(df P) 𝑃 statistic degrees of freedom

r(p P) 𝑝-value for 𝑃 statistic

r(L) inverse logit 𝐿 statistic

r(df L) 𝐿 statistic degrees of freedom

r(p L) 𝑝-value for 𝐿 statistic

r(Z) inverse normal 𝑍 statistic

r(p Z) 𝑝-value for 𝑍 statistic

r(Pm) modified inverse 𝜒2 𝑃𝑚 statistic

r(p Pm) 𝑝-value for 𝑃𝑚 statistic

Macros

r(test) fisher
r(urtest) dfuller or pperron
r(options) options passed to dfuller or pperron
r(demean) demean, if the data were demeaned

xtunitroot hadri stores the following in r():

Scalars

r(N) number of observations

r(N g) number of groups

r(N t) number of time periods

r(var) variance of 𝑧 under 𝐻0
r(mu) mean of 𝑧 under 𝐻0
r(z) test statistic 𝑧
r(p) 𝑝-value for 𝑧
r(lags) lags used for HAC variance
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Macros

r(test) hadri
r(demean) demean, if the data were demeaned
r(robust) robust, if specified
r(kernel) kernel used for HAC variance

r(deterministics) constant or trend

Methods and formulas
Methods and formulas are presented under the following headings:

Levin–Lin–Chu test
Harris–Tsavalis test
Breitung test

Breitung test without trend
Breitung test with trend

Im–Pesaran–Shin test
Fisher-type tests
Hadri LM test

We consider a simple panel-data model with a first-order autoregressive component:

𝑦𝑖𝑡 = 𝜌𝑖𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 + 𝜖𝑖𝑡

where 𝑖 = 1, . . . , 𝑁 indexes panels and 𝑡 = 1, . . . , 𝑇 indexes time. For the IPS, Fisher-type, and Hadri

LM tests, we instead have 𝑡 = 1, . . . , 𝑇𝑖, because they do not require balanced panels. 𝜖𝑖𝑡 is a zero-mean

error term; we discuss the assumptions about 𝜖𝑖𝑡 for each test below. Here we use𝑁 to denote the number

of panels, not the total number of observations. By default, z𝑖𝑡 = 1, so that the term z′
𝑖𝑡𝛄𝑖 represents

panel-specific means (fixed effects). If noconstant is specified, z′
𝑖𝑡𝛄𝑖 vanishes. If trend is specified,

z′
𝑖𝑡 = (1, 𝑡) so that z′

𝑖𝑡𝛄𝑖 represents panel-specific means and linear time trends.

Levin–Lin–Chu test
The starting point for the LLC test is the regression model

Δ𝑦𝑖𝑡 = 𝜙𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 +

𝑝𝑖

∑
𝑗=1

𝜃𝑖𝑗Δ𝑦𝑖,𝑡−𝑗 + 𝑢𝑖𝑡 (7)

In (1′), LLC assume 𝜖𝑖𝑡 is independently distributed across panels and follows a stationary invertible

process so that with sufficient lags of Δ𝑦𝑖𝑡 included in (7), 𝑢𝑖𝑡 will be white noise with potentially

heterogeneous variance across panels. If lags(#) is specified with xtunitroot llc, then we set 𝑝𝑖 = #

for all panels 𝑖 = 1, . . . , 𝑁. Otherwise, we fit (7) for each panel individually for lags 1 . . . 𝑝max and choose

the lag length, 𝑝𝑖, that minimizes the information criterion requested by the user. During this step, we

restrict estimation to the subset of observations that are valid when 𝑝max lags are included. Information

criteria are defined as follows:

AIC = (−2 ln𝐿 + 2𝑘)/𝑀
BIC = (−2 ln𝐿 + 𝑘 ln𝑀)/𝑀

HQIC = (−2 ln𝐿 + 2𝑘 ln ln𝑀)/𝑀

where ln𝐿 is the log likelihood assuming Gaussian errors, 𝑀 = 𝑇 − 𝑝max − 2, and 𝑘 is the number of

parameters in (7).

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq1a
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With the lag orders, 𝑝𝑖, in hand, the test proceeds in three main steps, the first of which is to use

panel-by-panel OLS regressions to obtain the orthogonalized residuals

̂𝑒𝑖𝑡 = Δ𝑦𝑖𝑡 −
𝑝𝑖

∑
𝑗=1

̂𝜃𝑖𝑗Δ𝑦𝑖𝑗 − z′
𝑖𝑡�̂�𝑖 (8)

and

̂𝑣𝑖,𝑡−1 = 𝑦𝑖,𝑡−1 −
𝑝𝑖

∑
𝑗=1

̃𝜃𝑖𝑗Δ𝑦𝑖𝑗 − z𝑖𝑡 ̃𝛾𝑖 (9)

To control for panel-level heterogeneity, compute

̃𝑒𝑖𝑡 = ̂𝑒𝑖𝑡/�̂�𝜖𝑖 and ̃𝑣𝑖,𝑡−1 = ̂𝑣𝑖,𝑡−1/�̂�𝜖𝑖

where

�̂�2
𝜖𝑖 = 1

𝑇 − 𝑝𝑖 − 1

𝑇
∑
𝑡=𝑝𝑖

( ̂𝑒𝑖𝑡 − ̂𝛿𝑖 ̂𝑣𝑖,𝑡−1)
2

and ̂𝛿𝑖 is the OLS coefficient from a regression of ̂𝑒𝑖𝑡 on ̂𝑣𝑖,𝑡−1. If time trends are included (by specifying

the trend option), then a linear time trend is included in regressions (7), (8), and (9).

In the second step, we estimate the ratio of long-run to short-run variances. Under the null hypothesis

of a unit root, the long-run variance of the model without panel-specific intercepts or time trends (𝑧𝑖𝑡 =
{∅}) can be estimated as

�̂�2
𝑦𝑖 = 1

𝑇 − 1

𝑇
∑
𝑡=2

Δ𝑦2
𝑖𝑡 + 2

𝑇 − 1

𝑚
∑
𝑗=1

𝐾(𝑗, 𝑚) (
𝑇

∑
𝑡=𝑗+2

Δ𝑦𝑖𝑡Δ𝑦𝑖,𝑡−𝑗)

where 𝑚 is the maximum number of lags and 𝐾(𝑗, 𝑚) is the kernel weight function. Define 𝑧 =
𝑗/(𝑚 + 1). If kernel is bartlett, then

𝐾(𝑗, 𝑚) = {1 − 𝑧 0 ≤ 𝑧 ≤ 1
0 otherwise

If kernel is parzen, then

𝐾(𝑗, 𝑚) =
⎧{
⎨{⎩

1 − 6𝑧2 + 6𝑧3 0 ≤ 𝑧 ≤ 0.5
2(1 − 𝑧)3 0.5 < 𝑧 ≤ 1
0 otherwise

If kernel is quadraticspectral, then

𝐾(𝑗, 𝑚) = {1 𝑧 = 0
3{sin(𝜃)/𝜃 − cos(𝜃)}/𝜃2 otherwise

where 𝜃 = 6𝜋𝑧/5. If the user requests automatic bandwidth (lag) selection using the Newey–West

algorithm, then we use the method documented in Methods and formulas of [R] ivregress with z𝑖 = h =
1. If automatic lag selection with the LLC algorithm is chosen, then 𝑚 = int(3.21𝑇 1/3).

If panel-specific intercepts are included (by not specifying noconstant), then in the formula for

�̂�2
𝑦𝑖 we replace Δ𝑦𝑖𝑡 with Δ𝑦𝑖𝑡 − Δ𝑦𝑖𝑡, where Δ𝑦𝑖𝑡 is the panel-level mean of Δ𝑦𝑖𝑡 for panel 𝑖. Let

̂𝑠𝑖 = �̂�𝑦𝑖/�̂�𝜖𝑖, and denote
̂𝑆𝑁 = 𝑁−1 ∑𝑖 ̂𝑠𝑖.

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootMethodsandformulaseq7
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootMethodsandformulaseq8
https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootMethodsandformulaseq9
https://www.stata.com/manuals/rivregress.pdf#rivregressMethodsandformulas
https://www.stata.com/manuals/rivregress.pdf#rivregress
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In the third step, we run the OLS regression

̃𝑒𝑖𝑡 = 𝛿 ̃𝑣𝑖,𝑡−1 + ̃𝜖𝑖𝑡

Called the “Basic test statistic” in the output of xtunitroot llc is the standard 𝑡 statistic for 𝛿 computed
as

𝑡𝛿 = ̂𝛿/se( ̂𝛿)

where

se( ̂𝛿) = �̂� ̃𝜖 (
𝑁

∑
𝑖=1

𝑇
∑

𝑡=𝑝𝑖+2
̃𝑣2
𝑖,𝑡−1)

−1/2

�̂�2
̃𝜖 = 1

𝑁 ̃𝑇

𝑁
∑
𝑖=1

∑
𝑡=𝑝𝑖+2

( ̃𝑒𝑖𝑡 − 𝛿 ̃𝑣𝑖,𝑡−1)2

and ̃𝑇 = 𝑇 − 𝑝 − 1 with 𝑝 the average of 𝑝1, . . . , 𝑝𝑁.

The adjusted test statistic is then computed as

𝑡∗
𝛿 =

𝑡𝛿 − 𝑁 ̃𝑇 ̂𝑆𝑁se( ̂𝛿)𝜇
∗
𝑇

𝜎∗
𝑇

where 𝜇∗
𝑇
and 𝜎∗

𝑇
are obtained by linearly interpolating the values in LLC (2002, table 2). 𝑡∗

𝛿 is asymp-

totically 𝑁(0, 1), with very negative values casting doubt on 𝐻0. If noconstant is specified, then the

asymptotic properties hold as
√

𝑁/𝑇 → ∞. Otherwise, 𝑇 must grow at a faster rate so that 𝑁/𝑇 → ∞.

Harris–Tsavalis test
The starting point for the HT test is (4), where 𝜖𝑖𝑡 is assumed to be i.i.d. normal with constant variance

across panels. Denote by ̂𝜌 the least-squares estimate of 𝜌.

HT show that
√

𝑁( ̂𝜌 − 𝜇)
𝐷
→ 𝑁(0, 𝜎2) as 𝑁 → ∞ with 𝑇 fixed, where 𝜇 and 𝜎2 depend on the

specification of the deterministic component:

Option 𝜇 𝜎2

noconstant 1 2
𝑇 (𝑇 −1)

none 1 − 3
𝑇 +1

3(17𝑇 2−20𝑇 +17)
5(𝑇 −1)(𝑇 +1)3

trend 1 − 15
2(𝑇 +2)

15(193𝑇 2−728𝑇 +1147)
112(𝑇 +2)3(𝑇 −2)

Breitung test
Suppose the data are generated by an AR(1) process so that we can express 𝑦𝑖𝑡 as

𝑦𝑖𝑡 = z′
𝑖𝑡𝛄𝑖 + 𝑥𝑖𝑡

where

𝑥𝑖𝑡 = 𝛼1𝑥𝑖,𝑡−1 + 𝛼2𝑥𝑖,𝑡−2 + 𝜖𝑖𝑡

https://www.stata.com/manuals/xtxtunitroot.pdf#xtxtunitrootRemarksandexampleseq4
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where 𝜖𝑖𝑡 is an error term. Aprewhitening step is available to correct for serial correlation. The nonrobust

version assumes that 𝜖𝑖𝑡 is uncorrelated across panels, whereas the robust version allows for the panels

to be contemporaneously correlated with covariance matrix 𝛀.

Under the null hypothesis that 𝑦𝑖𝑡 contains a unit root, that is, that 𝑦𝑖𝑡 is difference stationary, 𝛼1 +
𝛼2 = 1. Under the alternative that 𝑦𝑖𝑡 is stationary,𝛼1+𝛼2 < 1. Some of the time indices and summation

limits of the formulas below appear more complex than those in Breitung (2000) and Breitung and Das

(2005) because our formulas make explicit the loss of observations because of the prewhitening step.

Breitung test without trend

Let 𝑦ℓ
𝑖,𝑡 = 𝑦𝑖,𝑡−1 − 𝑦𝑖,𝑝+1 unless noconstant is specified, in which case let 𝑦ℓ

𝑖,𝑡 = 𝑦𝑖,𝑡−1. If the

lags() option is specified with xtunitroot breitung, then we replace Δ𝑦𝑖𝑡 and 𝑦ℓ
𝑖,𝑡 in the following

description with the residuals from running regressions of Δ𝑦𝑖𝑡 and 𝑦ℓ
𝑖,𝑡 on Δ𝑦𝑖,𝑡−1, . . . , Δ𝑦𝑖,𝑡−𝑝, where

𝑝 is the lag order specified in lags().

Define

𝜎2
𝑖 = 1

𝑇 − 𝑝 − 2

𝑇
∑

𝑡=𝑝+2
(Δ𝑦𝑖𝑡)2

Then

𝜆 =
∑𝑁

𝑖=1 ∑𝑇
𝑡=𝑝+2 𝑦ℓ

𝑖𝑡 ⋅ Δ𝑦𝑖𝑡/𝜎2
𝑖

√∑𝑁
𝑖=1 ∑𝑇

𝑡=𝑝+2(𝑦ℓ
𝑖𝑡)2/𝜎2

𝑖

𝜆 is asymptotically distributed 𝑁(0, 1) as 𝑇 → ∞ followed by 𝑁 → ∞; small values of 𝜆 cast doubt

on 𝐻0.

For the robust version of the test statistic, let

𝜙 =
∑𝑁

𝑖=1 ∑𝑇
𝑡=𝑝+2 𝑦ℓ

𝑖𝑡 ⋅ Δ𝑦𝑖𝑡/𝜎2
𝑖

∑𝑁
𝑖=1 ∑𝑇

𝑡=𝑝+2(𝑦ℓ
𝑖𝑡)2/𝜎2

𝑖

and define 𝑢𝑖𝑡 = Δ𝑦𝑖𝑡 − 𝜙𝑦ℓ
𝑖𝑡. Let u𝑖 = (𝑢𝑖,𝑝+2, . . . , 𝑢𝑖𝑇)′ and let the 𝑁 × 𝑁 matrix 𝛀 have typical

element u′
𝑖u𝑗/(𝑇 − 𝑝 − 2). Let Δy𝑡 = (Δ𝑦1𝑡, . . . , Δ𝑦𝑁𝑡)′ and yℓ

𝑡 = (𝑦1,𝑡−1, . . . , 𝑦𝑁,𝑡−1)′. Then

𝜆robust =
∑𝑇

𝑡=𝑝+2(Δy𝑡)′yℓ
𝑡

∑𝑇
𝑡=𝑝+2(yℓ

𝑡)′𝛀yℓ
𝑡

For 𝛀 to be positive definite, we must have 𝑇 − 𝑝 − 1 ≥ 𝑁. As a practical matter, for 𝛀 to have good

finite-sample properties, we need 𝑇 ≫ 𝑁. 𝜆robust is asymptotically distributed 𝑁(0, 1) as 𝑇 → ∞
followed by 𝑁 → ∞; very negative values of 𝜆robust cast doubt on 𝐻0.



xtunitroot — Panel-data unit-root tests 26

Breitung test with trend

Let 𝑝 denote the number of lags requested in the lags() option. We fit the regression

Δ𝑦𝑖𝑡 = 𝛼𝑖0 +
𝑝

∑
𝑗=1

𝛼𝑖𝑗Δ𝑦𝑖,𝑡−𝑗 + 𝜈𝑖𝑡

and compute the 1 × (𝑇 − 𝑝 − 1) vectors Δu𝑖 and u
ℓ
𝑖 with typical elements

Δ𝑢𝑖𝑠 = Δ𝑦𝑖𝑠 −
𝑝

∑
𝑗=1

̂𝛼𝑖𝑗Δ𝑦𝑖,𝑠−𝑗

and

𝑢ℓ
𝑖𝑠 = 𝑦𝑖,𝑠−1 −

𝑝

∑
𝑗=1

̂𝛼𝑖𝑗𝑦𝑖,𝑠−𝑗−1

for 𝑠 = 1, . . . , 𝑇 − 𝑝 − 1. Let

𝜎2
𝑖 = 1

𝑇 − 𝑝 − 2

𝑇 −𝑝−1

∑
𝑠=1

(Δ𝑢𝑖𝑠 − Δ𝑢𝑖) Δ𝑢𝑖𝑠

where Δ𝑢𝑖 is the mean of Δ𝑢𝑖𝑠 over 𝑠. Let Δv𝑖 and v
ℓ
𝑖 denote 1 × (𝑇 − 𝑝 − 1) vectors with typical

elements

Δ𝑣𝑖𝑠 = √𝑇 − 𝑝 − 𝑠 − 1
𝑇 − 𝑝 − 𝑠

(Δ𝑢𝑖𝑠 − 1
𝑇 − 𝑝 − 𝑠 − 1

𝑇 −𝑝−1

∑
𝑗=𝑠+1

Δ𝑢𝑖𝑗)

and

𝑣ℓ
𝑖𝑠 = 𝑢ℓ

𝑖𝑠 − 𝑢ℓ
𝑖1 − (𝑇 − 𝑝 − 1)Δ𝑢𝑖

Now

𝜆 =
∑𝑁

𝑖=1 ∑𝑇 −𝑝−1
𝑠=1 𝑣ℓ

𝑖𝑠Δ𝑣𝑖𝑠/𝜎2
𝑖

√∑𝑁
𝑖=1 ∑𝑇 −𝑝−1

𝑠=1 (𝑣ℓ
𝑖𝑠)2/𝜎2

𝑖

𝜆 is asymptotically distributed 𝑁(0, 1) as 𝑇 → ∞ followed by 𝑁 → ∞; very negative values of 𝜆 cast

doubt on 𝐻0. The computation of the robust form of the statistic proceeds in a fashion entirely analogous

to the case without trend.

Im–Pesaran–Shin test
Write the model as

Δ𝑦𝑖𝑡 = 𝜙𝑖𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 + 𝜖𝑖𝑡

where 𝜖𝑖𝑡 is independently distributed normal for all 𝑖 and 𝑡 with panel-specific variance 𝜎2
𝑖 . Denote

Δy𝑖 = (Δ𝑦𝑖2, . . . , Δ𝑦𝑖𝑇)′ and y𝑖,−1 = (𝑦𝑖1, . . . , 𝑦𝑖,𝑇 −1)′. Note that to be consistent with the notation

used in the rest of this documentation, we start the time index at 𝑡 = 1 instead of 𝑡 = 0 as in IPS

(2003). Also let 𝜏𝑇 be a conformable vector of ones, M𝜏 = I − 𝜏𝑇(𝜏 ′
𝑇𝜏𝑇)−1𝜏 ′

𝑇, X𝑖 = (𝜏𝑇, y𝑖,−1), and
M𝑋𝑖

= I− X𝑖(X′
𝑖X𝑖)−1X′

𝑖.

First, we consider the case of no serial correlation, where the user does not specify the lags() option.

Then

̃𝑡-𝑏𝑎𝑟𝑁𝑇 = 1
𝑁

𝑁
∑
𝑖=1

̃𝑡𝑖𝑇
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where

̃𝑡𝑖𝑇 =
𝚫y′

𝑖M𝜏y𝑖,−1

�̃�𝑖𝑇 (y′
𝑖,−1M𝜏y𝑖,−1)

1/2

and

�̃�2
𝑖𝑇 = 𝚫y′

𝑖M𝜏𝚫y𝑖
𝑇 − 1

Also

𝑡-𝑏𝑎𝑟𝑁𝑇 = 1
𝑁

𝑁
∑
𝑖=1

𝑡𝑖𝑇

where

𝑡𝑖𝑇 =
𝚫y′

𝑖M𝜏y𝑖,−1

�̂�𝑖𝑇 (y′
𝑖,−1M𝜏y𝑖,−1)

1/2

and

�̃�2
𝑖𝑇 =

𝚫y′
𝑖M𝑋𝑖

𝚫y𝑖

𝑇 − 1
Now

𝑍 ̃𝑡-𝑏𝑎𝑟 =

√
𝑁 { ̃𝑡-𝑏𝑎𝑟𝑁𝑇 − 𝑁−1 ∑𝑁

𝑖=1 𝐸( ̃𝑡𝑇𝑖
)}

√𝑁−1 ∑𝑖 Var( ̃𝑡𝑇𝑖
)

where 𝐸( ̃𝑡𝑇𝑖
) and Var( ̃𝑡𝑇𝑖

) are obtained by linearly interpolating the values shown in IPS (2003, table

1). 𝑍 ̃𝑡-𝑏𝑎𝑟 has a standard normal limiting distribution for fixed 𝑇 and 𝑁 → ∞; very negative values cast

doubt on 𝐻0. Similarly,

𝑍𝑡-𝑏𝑎𝑟 =

√
𝑁 {𝑡-𝑏𝑎𝑟𝑁𝑇 − 𝑁−1 ∑𝑖 𝐸(𝑡𝑇𝑖

)}

√𝑁−1 ∑𝑖 Var(𝑡𝑇𝑖
)

If the lags() option is specified, then we fit the ADF regressions

Δ𝑦𝑖𝑡 = 𝜙𝑖𝑦𝑖,𝑡−1 + z′
𝑖𝑡𝛄𝑖 +

𝑝𝑖

∑
𝑗=1

𝜌𝑖𝑗Δ𝑦𝑖,𝑡−𝑗 + 𝜖𝑖𝑡

In matrix form, we can write this more compactly as

Δy𝑖 = 𝜙𝑖y𝑖,−1 +Q𝑖θ𝑖 + 𝜖𝑖

where Q𝑖 = (𝜏𝑡, Δy𝑖,−1, . . . , Δy𝑖,−𝑝𝑖
) and θ𝑖 = (𝛼𝑖, 𝜌𝑖1, . . . , 𝜌𝑖𝑝𝑖

)′. Then

𝑡-𝑏𝑎𝑟𝑁𝑇 = 1
𝑁

𝑁
∑
𝑖=1

𝑡𝑖𝑇(𝑝𝑖)

where

𝑡𝑖𝑇(𝑝𝑖) =
√𝑇 − 𝑝𝑖 − 2(y′

𝑖,−1M𝑄𝑖
Δy𝑖)

(y′
𝑖,−1M𝑄𝑖

y𝑖,−1)1/2(Δy′
𝑖,−1M𝑄𝑖

Δy𝑖,−1)1/2

whereM𝑄𝑖
= I−Q𝑖(Q′

𝑖Q𝑖)−1Q′
𝑖,M𝑋𝑖

= I− X𝑖(X′
𝑖X𝑖)−1X′

𝑖, and X𝑖 = (y𝑖,−1,Q𝑖). Finally,

W𝑡-𝑏𝑎𝑟(𝑝) =

√
𝑁 [𝑡-𝑏𝑎𝑟𝑁𝑇 − 𝑁−1 ∑𝑁

𝑖=1 𝐸 {𝑡𝑖𝑇(𝑝𝑖)}]

√𝑁−1 ∑𝑁
𝑖=1 Var {𝑡𝑖𝑇(𝑝𝑖)}
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where𝐸 {𝑡𝑖𝑇(𝑝𝑖)} and Var {𝑡𝑖𝑇(𝑝𝑖)} are obtained by linearly interpolating the values shown in IPS (2003,

table 3). W𝑡-𝑏𝑎𝑟(𝑝) has a standard normal limiting distribution as 𝑇 → ∞ followed by 𝑁 → ∞; very

negative values cast doubt on 𝐻0.

Fisher-type tests
We use dfuller or pperron to perform unit-root tests on each panel; denote the 𝑝-value for the

respective test on the 𝑖th panel as 𝑝𝑖. All of these tests are predicated on 𝑇 → ∞ so that the unit-root

test for each panel is consistent. The 𝑃 test is for finite 𝑁; the other tests are valid whether 𝑁 is finite or

infinite. Then

𝑃 = −2
𝑁

∑
𝑖=1

ln(𝑝𝑖)

𝑃 ∼ 𝜒2(2𝑁) and large values cast doubt on 𝐻0.

𝑍 = 1√
𝑁

𝑁
∑
𝑖=1

Φ−1(𝑝𝑖)

where Φ−1( ) is the inverse of the standard normal cumulative distribution function. 𝑍 ∼ 𝑁(0, 1); very
negative values of 𝑍 cast doubt on 𝐻0.

𝐿 =
𝑁

∑
𝑖=1

ln( 𝑝𝑖
1 − 𝑝𝑖

)

𝐿∗ =
√

𝑘𝐿 ∼ 𝑡(5𝑁 + 4) where

𝑘 = 3(5𝑁 + 4)
𝜋2𝑁(5𝑁 + 2)

Very negative values of 𝐿∗ cast doubt on 𝐻0. Finally,

𝑃𝑚 = − 1√
𝑁

𝑁
∑
𝑖=1

{ ln(𝑝𝑖) + 1}

𝑃𝑚 ∼ 𝑁(0, 1); very positive values of 𝑃𝑚 cast doubt on 𝐻0.

Hadri LM test
As discussed in the main text, the Hadri LM test can be viewed as a test of 𝐻0 ∶ 𝜎2

𝑢/𝜎2
𝜖 = 0, where

both 𝑢𝑖𝑡 and 𝜖𝑖𝑡 are normally distributed random errors.

Let ̂𝜖𝑖𝑡 denote the residuals from a regression of 𝑦𝑖𝑡 on a panel-specific intercept or a panel-specific

intercept and time trend if trend is specified. Then

L̂M =
1
𝑁 ∑𝑖

1
𝑇 2 ∑𝑡 𝑆2

𝑖𝑡

�̂�2
𝜖

(10)

where

𝑆𝑖𝑡 =
𝑡

∑
𝑗=1

̂𝜖𝑖𝑗
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and

�̂�2
𝜖 = 1

𝑁𝑇 ′

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

̂𝜖2
𝑖𝑡

where 𝑇 ′ = 𝑇 − 2 if trend is specified and 𝑇 ′ = 𝑇 − 1 otherwise. Then

𝑍 =
√

𝑁 (L̂M − 𝜇)
𝜎

where 𝜇 = 1/15 and 𝜎2 = 11/6300 if trend is specified and 𝜇 = 1/6 and 𝜎2 = 1/45 otherwise.

𝑍 ∼ 𝑁(0, 1) asymptotically as 𝑇 → ∞ followed by 𝑁 → ∞. Very positive values of 𝑍 cast doubt on

𝐻0. If robust is specified, then we instead use

L̂M = 1
𝑁

𝑁
∑
𝑖=1

(
∑𝑇

𝑡=1 𝑆2
𝑖𝑡

𝑇 2�̂�2
𝜖,𝑖

)

where we calculate �̂�2
𝜖,𝑖 individually for each panel:

�̂�2
𝜖,𝑖 = 1

𝑇 ′

𝑇
∑
𝑡=1

̂𝜖2
𝑖𝑡

If kernel() is specified, then we use (10) with

�̂�2
𝜖 = 1

𝑁

𝑁
∑
𝑖=1

{ 1
𝑇

𝑇
∑

𝑡=𝑝+1
̂𝜖2
𝑖𝑡 + 2

𝑇

𝑚
∑
𝑗=1

𝐾(𝑗, 𝑚)
𝑇

∑
𝑡=𝑗+1

̂𝜖𝑖𝑡 ̂𝜖𝑖,𝑡−𝑗}

where 𝑚 is the maximum number of lags and 𝐾(. , .) is the kernel function defined previously.
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Also see
[XT] xtcointtest — Panel-data cointegration tests

[TS] dfgls — DF-GLS unit-root test

[TS] dfuller —Augmented Dickey–Fuller unit-root test

[TS] pperron — Phillips–Perron unit-root test
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