
xtset — Declare data to be panel data

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
xtset manages the panel settings of a dataset. You must xtset your data before you can use the

other xt commands. xtset panelvar declares the data in memory to be a panel in which the order of

observations is irrelevant. xtset panelvar timevar declares the data to be a panel in which the order of

observations is relevant. When you specify timevar, you can then use Stata’s time-series operators and

analyze your data with the ts commands without having to tsset your data.

xtsetwithout arguments displays how the data are currently xtset. If the data are set with a panelvar
and a timevar, xtset also sorts the data by panelvar timevar if a timevar was specified. If the data are

set with a panelvar only, the sort order is not changed.

xtset, clear is a rarely used programmer’s command to declare that the data are no longer to be

considered a panel.

Quick start
Declare dataset to be panel data with panel identifier pvar

xtset pvar

Indicate that observations are ordered by year, stored in tvar1
xtset pvar tvar1

Same as above, but indicate that observations are instead made every 2 years

xtset pvar tvar1, delta(2)

Indicate that observations are made monthly; tvar2 is not formatted

xtset pvar tvar2, monthly

Same as above, and apply %tm format to tvar2
xtset pvar tvar2, format(%tm)

Menu
Statistics > Longitudinal/panel data > Setup and utilities > Declare dataset to be panel data

1

https://www.stata.com/manuals/u11.pdf#u11.4.3.6Usingfactorvariableswithtime-seriesoperators
https://www.stata.com/manuals/tstsset.pdf#tstsset

xtset — Declare data to be panel data 2

Syntax
Declare data to be panel

xtset panelvar

xtset panelvar timevar [, tsoptions]

Display how data are currently xtset

xtset

Clear xt settings

xtset, clear

In the declare syntax, panelvar identifies the panels and the optional timevar identifies the times within

panels. tsoptions concern timevar.

tsoptions Description

unitoptions specify units of timevar

deltaoption specify length of period of timevar

noquery suppress summary calculations and output

collect is allowed; see [U] 11.1.10 Prefix commands.

noquery is not shown in the dialog box.

unitoptions Description

(default) timevar’s units from timevar’s display format

clocktime timevar is %tc: 0 = 1jan1960 00:00:00.000, 1 = 1jan1960 00:00:00.001, . . .

daily timevar is %td: 0 = 1jan1960, 1 = 2jan1960, . . .

weekly timevar is %tw: 0 = 1960w1, 1 = 1960w2, . . .

monthly timevar is %tm: 0 = 1960m1, 1 = 1960m2, . . .

quarterly timevar is %tq: 0 = 1960q1, 1 = 1960q2,. . .

halfyearly timevar is %th: 0 = 1960h1, 1 = 1960h2,. . .

yearly timevar is %ty: 1960 = 1960, 1961 = 1961, . . .

generic timevar is %tg: 0 = ?, 1 = ?, . . .

format(% fmt) specify timevar’s format and then apply default rule

In all cases, negative timevar values are allowed.

https://www.stata.com/manuals/xtxtset.pdf#xtxtsetSyntaxunitoptions
https://www.stata.com/manuals/xtxtset.pdf#xtxtsetSyntaxdeltaoption
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/d.pdf#dformat

xtset — Declare data to be panel data 3

deltaoption specifies the period between observations in timevar units and may be specified as

deltaoption Example

delta(#) delta(1) or delta(2)
delta((exp)) delta((7*24))
delta(# units) delta(7 days) or delta(15 minutes) or delta(7 days 15 minutes)
delta((exp) units) delta((2+3) weeks)

Allowed units for %tc and %tC timevars are

seconds second secs sec
minutes minute mins min
hours hour
days day
weeks week

and for all other %t timevars are
days day
weeks week

Options
unitoptions clocktime, daily, weekly, monthly, quarterly, halfyearly, yearly, generic, and

format(% fmt) specify the units in which timevar is recorded.

timevar will usually be a variable that counts 1, 2, . . . , and is to be interpreted as first year of survey,

second year, . . . , or first month of treatment, second month, In these cases, you do not need to

specify a unitoption.

In other cases, timevarwill be a year variable or the like such as 2001, 2002, . . . , and is to be interpreted

as year of survey or the like. In those cases, you do not need to specify a unitoption.

In other, more complicated cases, timevar will be a full-blown %t variable; see [D] Datetime. If

timevar already has a %t display format assigned to it, you do not need to specify a unitoption; xtset
will obtain the units from the format. If you have not yet bothered to assign the appropriate %t format

to the %t variable, however, you can use the unitoptions to tell xtset the units. Then xtset will set

timevar’s display format for you. Thus, the unitoptions are convenience options; they allow you to

skip formatting the time variable. The following all have the same net result:

Alternative 1 Alternative 2 Alternative 3

format t %td (t not formatted) (t not formatted)
xtset pid t xtset pid t, daily xtset pid t, format(%td)

timevar is not required to be a %t variable; it can be any variable of your own concocting so long as it

takes on only integer values. When you xtset a time variable that is not %t, the display format does
not change unless you specify the unitoption generic or use the format() option.

delta() specifies the period between observations in timevar and is commonly used when timevar is

%tc. delta() is only sometimes used with the other %t formats or with generic time variables.

If delta() is not specified, delta(1) is assumed. This means that at timevar = 5, the previous time

is timevar = 5− 1 = 4 and the next time would be timevar = 5+ 1 = 6. Lag and lead operators, for

instance, would work this way. This would be assumed regardless of the units of timevar.

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/ddatetime.pdf#dDatetime

xtset — Declare data to be panel data 4

If you specified delta(2), then at timevar = 5, the previous time would be timevar = 5 − 2 = 3

and the next time would be timevar = 5+2 = 7. Lag and lead operators would work this way. In the

observation with timevar = 5, L.income would be the value of income in the observation for which

timevar = 3 and F.income would be the value of income in the observation for which timevar = 7.

If you then add an observation with timevar = 4, the operators will still work appropriately; that is,

at timevar = 5, L.income will still have the value of income at timevar = 3.

There are two aspects of timevar: its units and its length of period. The unitoptions set the units.

delta() sets the length of period. You are not required to specify one to specify the other. You might

have a generic timevar but it counts in 12: 0, 12, 24, You would skip specifying unitoptions but

would specify delta(12).

We mentioned that delta() is commonly used with %tc timevars because Stata’s %tc variables have

units of milliseconds. If delta() is not specified and in some model you refer to L.bp, you will

be referring to the value of bp 1 ms ago. Few people have data with periodicity of a millisec-

ond. Perhaps your data are hourly. You could specify delta(3600000). Or you could specify

delta((60*60*1000)), because delta() will allow expressions if you include an extra pair of

parentheses. Or you could specify delta(1 hour). They all mean the same thing: timevar has pe-

riodicity of 3,600,000 ms. In an observation for which timevar = 1,489,572,000,000 (corresponding

to 15mar2007 10:00:00), L.bp would be the observation for which timevar = 1,489,572,000,000 −
3,600,000 = 1,489,568,400,000 (corresponding to 15mar2007 9:00:00).

When you xtset the data and specify delta(), xtset verifies that all the observations follow the

specified periodicity. For instance, if you specified delta(2), then timevar could contain any sub-

set of {. . ., −4, −2, 0, 2, 4, . . .} or it could contain any subset of {. . ., −3, −1, 1, 3, . . .}. If timevar

contained a mix of values, xtset would issue an error message. The check is made on each panel

independently, so one panel might contain timevar values from one set and the next, another, and that

would be fine.

clear—used in xtset, clear—makes Stata forget that the data ever were xtset. This is a rarely used
programmer’s option.

The following option is available with xtset but is not shown in the dialog box:

noquery prevents xtset from performing most of its summary calculations and suppresses output. With

this option, only the following results are posted:

r(tdelta) r(tsfmt)
r(panelvar) r(unit)
r(timevar) r(unit1)

Remarks and examples
xtset declares the dataset in memory to be panel data. You need to do this before you can use the

other xt commands. The storage types of both panelvar and timevarmust be numeric, and both variables

must contain integers only.

There are two syntaxes for setting the data:

xtset panelvar

xtset panelvar timevar

xtset — Declare data to be panel data 5

In the first syntax—xtset panelvar—the data are set to be a panel and the order of the observations

within panel is considered to be irrelevant. For instance, panelvarmight be country and the observations

within might be city.

In the second syntax—xtset panelvar timevar—the data are to be a panel and the order of obser-

vations within panel are considered ordered by timevar. For instance, in data collected from repeated

surveying of the same people over various years, panelvarmight be person and timevar, year. When you

specify timevar, you may then use Stata’s time-series operators such as L. and F. (lag and lead) in other

commands. The operators will be interpreted as lagged and lead values within panel.

The storage types of both panelvar and timevar must be numeric, and both variables must contain

integers only.

Technical note
In previous versions of Stata there was no xtset command. The other xt commands instead had the

i(panelvar) and t(timevar) options. Older commands still have those options, but they are no longer

documented and, if you specify them, they just perform the xtset for you. Thus, do-files that you

previously wrote will continue to work. Modern usage, however, is to xtset the data first.

Technical note
xtset is related to the tsset command, which declares data to be time series. One of the syntaxes of

tsset is tsset panelvar timevar, which is identical to one of xtset’s syntaxes, namely, xtset panelvar

timevar. Here they are in fact the same command, meaning that xtsetting your data is sufficient to allow
you to use the ts commands and tssetting your data is sufficient to allow you to use the xt commands.

You do not need to set both, but it will not matter if you do.

xtset and tsset are different, however, when you set just a panelvar—you type xtset panelvar—or

when you set just a timevar—you type tsset timevar.

If you save your data after xtset, the data will be remembered to be a panel and you will not have
to xtset again.

Example 1: Panel data without a time variable
Many panel datasets contain a variable identifying panels but do not contain a time variable. For

example, you may have a dataset where each panel is a family, and the observations within panel are

family members, or you may have a dataset in which each person made a decision multiple times but

the ordering of those decisions is unimportant and perhaps unknown. In this latter case, if the time of

the decision were known, we would advise you to xtset it. The other xt statistical commands do not

do something different because timevar has been set—they will ignore timevar if timevar is irrelevant to

the statistical method that you are using. You should always set everything that is true about the data.

xtset — Declare data to be panel data 6

In any case, let’s consider the case where there is no timevar. We have data on US states and cities

within states:

. list state city in 1/10, sepby(state)

state city

1. Alabama Birmingham
2. Alabama Mobile
3. Alabama Montgomery
4. Alabama Huntsville

5. Alaska Anchorage
6. Alaska Fairbanks

7. Arizona Phoenix
8. Arizona Tucson

9. Arkansas Fayetteville
10. Arkansas Fort Smith

Here we do not type xtset state city because city is not a time variable. Instead, we type xtset
state:

. xtset state
string variables not allowed in varlist;
state is a string variable
r(109);

You cannot xtset a string variable. We must make a numeric variable from our string variable and

xtset that. One alternative is

. egen statenum = group(state)

. list state statenum in 1/10, sepby(state)

state statenum

1. Alabama 1
2. Alabama 1
3. Alabama 1
4. Alabama 1

5. Alaska 2
6. Alaska 2

7. Arizona 3
8. Arizona 3

9. Arkansas 4
10. Arkansas 4

. xtset statenum
Panel variable: statenum (unbalanced)

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(109)

xtset — Declare data to be panel data 7

Perhaps a better alternative is

. encode state, gen(st)

. list state st in 1/10, sepby(state)

state st

1. Alabama Alabama
2. Alabama Alabama
3. Alabama Alabama
4. Alabama Alabama

5. Alaska Alaska
6. Alaska Alaska

7. Arizona Arizona
8. Arizona Arizona

9. Arkansas Arkansas
10. Arkansas Arkansas

encode (see [D] encode) produces a numeric variable with a value label, so when we list the result, new

variable st looks just like our original. It is, however, numeric:

. list state st in 1/10, nolabel sepby(state)

state st

1. Alabama 1
2. Alabama 1
3. Alabama 1
4. Alabama 1

5. Alaska 2
6. Alaska 2

7. Arizona 3
8. Arizona 3

9. Arkansas 4
10. Arkansas 4

We can xtset new variable st:

. xtset st
Panel variable: st (unbalanced)

https://www.stata.com/manuals/dencode.pdf#dencode

xtset — Declare data to be panel data 8

Example 2: Panel data with a time variable
Some panel datasets do contain a time variable. Dataset abdata.dta contains labor demand data

from a panel of firms in the United Kingdom. Here are wage data for the first two firms in the dataset:

. use https://www.stata-press.com/data/r19/abdata, clear

. list id year wage if id==1 | id==2, sepby(id)

id year wage

1. 1 1977 13.1516
2. 1 1978 12.3018
3. 1 1979 12.8395
4. 1 1980 13.8039
5. 1 1981 14.2897
6. 1 1982 14.8681
7. 1 1983 13.7784

8. 2 1977 14.7909
9. 2 1978 14.1036

10. 2 1979 14.9534
11. 2 1980 15.491
12. 2 1981 16.1969
13. 2 1982 16.1314
14. 2 1983 16.3051

To declare this dataset as a panel dataset, you type

. xtset id year, yearly
Panel variable: id (unbalanced)
Time variable: year, 1976 to 1984

Delta: 1 year

The output from list shows that the last observations for these two firms are for 1983, but xtset
shows that for some firms data are available for 1984 as well. If one or more panels contain data for

nonconsecutive periods, xtset will report that gaps exist in the time variable. For example, if we did

not have data for firm 1 for 1980 but did have data for 1979 and 1981, xtset would indicate that our

data have a gap.

For yearly data, we could omit the yearly option and just type xtset id year because years are

stored and listed just like regular integers.

xtset — Declare data to be panel data 9

Having declared our data to be a panel dataset, we can use time-series operators to obtain lags:

. list id year wage L.wage if id==1 | id==2, sepby(id)

L.
id year wage wage

1. 1 1977 13.1516 .
2. 1 1978 12.3018 13.1516
3. 1 1979 12.8395 12.3018
4. 1 1980 13.8039 12.8395
5. 1 1981 14.2897 13.8039
6. 1 1982 14.8681 14.2897
7. 1 1983 13.7784 14.8681

8. 2 1977 14.7909 .
9. 2 1978 14.1036 14.7909

10. 2 1979 14.9534 14.1036
11. 2 1980 15.491 14.9534
12. 2 1981 16.1969 15.491
13. 2 1982 16.1314 16.1969
14. 2 1983 16.3051 16.1314

L.wage is missing for 1977 in both panels because we have no wage data for 1976. In observation 8, the

lag operator did not incorrectly reach back into the previous panel.

Technical note
The terms balanced and unbalanced are often used to describe whether a panel dataset is missing some

observations. If a dataset does not contain a time variable, then panels are considered balanced if each

panel contains the same number of observations; otherwise, the panels are unbalanced.

When the dataset contains a time variable, panels are said to be strongly balanced if each panel contains

the same time points, weakly balanced if each panel contains the same number of observations but not

the same time points, and unbalanced otherwise.

Example 3: Applying time-series formats to the time variable
If our data are observed more than once per year, applying time-series formats to the time variable

can improve readability.

We have a dataset consisting of individuals who joined a gym’s weight-loss program that began in

January 2005 and ended in December 2005. Each participant’s weight was recorded once per month.

Some participants did not show up for all the monthly weigh-ins, so we do not have all 12 months’

records for each person. The first two people’s data are

xtset — Declare data to be panel data 10

. use https://www.stata-press.com/data/r19/gymdata

. list id month wt if id==1 | id==2, sepby(id)

id month wt

1. 1 1 145
2. 1 2 144

(output omitted)
11. 1 11 124
12. 1 12 120

13. 2 1 144
14. 2 2 143

(output omitted)
23. 2 11 122
24. 2 12 118

To set these data, we can type

. xtset id month
Panel variable: id (unbalanced)
Time variable: month, 1 to 12, but with gaps

Delta: 1 unit

The note “but with gaps” above is no cause for concern. It merely warns us that, within some panels,

some time values are missing. We already knew that about our data—some participants did not show up

for the monthly weigh-ins.

The rest of this example concerns making output more readable. Month numbers such as 1, 2, . . . ,

12 are perfectly readable here. In another dataset, where month numbers went to, say 127, they would

not be so readable. In such cases, we can make a more readable date—2005m1, 2005m2, . . .—by using

Stata’s %t variables. For a discussion, see [D] Datetime. We will go quickly here. One of the %t formats

is %tm—monthly—and it says that 1 means 1960m1. Thus, we need to recode our month variable so

that, rather than taking on values from 1 to 12, it takes on values from 540 to 551. Then we can put a

%tm format on that variable. Working out 540–551 is subject to mistakes. Stata function tm(2005m1)
tells us the %tm month corresponding to January of 2005, so we can type

. generate month2 = month + m(2005m1) - 1

. format month2 %tm

New variable month2 will work just as well as the original month in an xtset, and even a little better,
because output will be a little more readable:

. xtset id month2
Panel variable: id (unbalanced)
Time variable: month2, 2005m1 to 2005m12, but with gaps

Delta: 1 month

By the way, we could have omitted typing format month2 %tm and then, rather than typing xtset
id month2, we would have typed xtset id month2, monthly. The monthly option specifies that the

time variable is %tm. When we did not specify the option, xtset determined that it was monthly from

the display format we had set.

https://www.stata.com/manuals/ddatetime.pdf#dDatetime

xtset — Declare data to be panel data 11

Example 4: Clock times
We have data from a large hotel in Las Vegas that changes the reservation prices for its rooms hourly.

A piece of the data looks like

. list in 1/5

roomtype time price

1. 1 02.13.2007 08:00 140
2. 1 02.13.2007 09:00 155
3. 1 02.13.2007 10:00 160
4. 1 02.13.2007 11:00 155
5. 1 02.13.2007 12:00 160

The panel variable is roomtype and, although you cannot see it from the output above, it takes on 1, 2,

. . . , 20. Variable time is a string variable. The first step in making this dataset xt is to translate the string

to a numeric variable:

. generate double t = clock(time, ”MDY hm”)

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 1.487e+12
2. 1 02.13.2007 09:00 155 1.487e+12
3. 1 02.13.2007 10:00 160 1.487e+12
4. 1 02.13.2007 11:00 155 1.487e+12
5. 1 02.13.2007 12:00 160 1.487e+12

See [D] Datetime conversion for an explanation of what is going on here. clock() is the function that

converts strings to datetime (%tc) values. We typed clock(time, ”MDY hm”) to convert string variable

time, and we told clock() that the values in time were in the order month, day, year, hour, and minute.

We stored new variable t as a double because time values are large and that is required to prevent

rounding. Even so, the resulting values 1.487e+12 look rounded, but that is only because of the default

display format for new variables. We can see the values better if we change the format:

. format t %20.0gc

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 1,486,972,800,000
2. 1 02.13.2007 09:00 155 1,486,976,400,000
3. 1 02.13.2007 10:00 160 1,486,980,000,000
4. 1 02.13.2007 11:00 155 1,486,983,600,000
5. 1 02.13.2007 12:00 160 1,486,987,200,000

https://www.stata.com/manuals/ddatetimeconversion.pdf#dDatetimeconversion

xtset — Declare data to be panel data 12

Even better would be to change the format to %tc—Stata’s clock-time format:

. format t %tc

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 13feb2007 08:00:00
2. 1 02.13.2007 09:00 155 13feb2007 09:00:00
3. 1 02.13.2007 10:00 160 13feb2007 10:00:00
4. 1 02.13.2007 11:00 155 13feb2007 11:00:00
5. 1 02.13.2007 12:00 160 13feb2007 12:00:00

We could drop variable time. New variable t contains the same information as time and t is bet-

ter because it is a Stata time variable, the most important property of which being that it is numeric

rather than string. We can xtset it. Here, however, we also need to specify the length of the periods

with xtset’s delta() option. Stata’s time variables are numeric, but they record milliseconds since

01jan1960 00:00:00. By default, xtset uses delta(1), and that means the time-series operators would
not work as we want them to work. For instance, L.pricewould look back only 1 ms (and find nothing).
We want L.price to look back 1 hour (3,600,000 ms):

. xtset roomtype t, delta(1 hour)
Panel variable: roomtype (strongly balanced)
Time variable: t, 13feb2007 08:00:00 to 31mar2007 18:00:00, but with gaps

Delta: 1 hour
. list t price l.price in 1/5

L.
t price price

1. 13feb2007 08:00:00 140 .
2. 13feb2007 09:00:00 155 140
3. 13feb2007 10:00:00 160 155
4. 13feb2007 11:00:00 155 160
5. 13feb2007 12:00:00 160 155

Example 5: Clock times must be double
In the previous example, it was of vital importance that when we generated the %tc variable t,

. generate double t = clock(time, ”MDY hm”)

we generated it as a double. Let’s see what would have happened had we forgotten and just typed

generate t = clock(time, ”MDY hm”). Let’s go back and start with the same original data:

. list in 1/5

roomtype time price

1. 1 02.13.2007 08:00 140
2. 1 02.13.2007 09:00 155
3. 1 02.13.2007 10:00 160
4. 1 02.13.2007 11:00 155
5. 1 02.13.2007 12:00 160

xtset — Declare data to be panel data 13

Remember, variable time is a string variable, and we need to translate it to numeric. So we translate,

but this time we forget to make the new variable a double:

. generate t = clock(time, ”MDY hm”)

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 1.49e+12
2. 1 02.13.2007 09:00 155 1.49e+12
3. 1 02.13.2007 10:00 160 1.49e+12
4. 1 02.13.2007 11:00 155 1.49e+12
5. 1 02.13.2007 12:00 160 1.49e+12

We see the first difference—t now lists as 1.49e+12 rather than 1.487e+12 as it did previously—but this

is nothing that would catch our attention. We would not even know that the value is different. Let’s

continue.

We next put a %20.0gc format on t to better see the numerical values. In fact, that is not something

we would usually do in an analysis. We did that in the example to emphasize to you that the t values

were really big numbers. We will repeat the exercise just to be complete, but in real analysis, we would

not bother.

. format t %20.0gc

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 1,486,972,780,544
2. 1 02.13.2007 09:00 155 1,486,976,450,560
3. 1 02.13.2007 10:00 160 1,486,979,989,504
4. 1 02.13.2007 11:00 155 1,486,983,659,520
5. 1 02.13.2007 12:00 160 1,486,987,198,464

Okay, we see big numbers in t. Let’s continue.

Next we put a %tc format on t, and that is something we would usually do, and you should always
do. You should also list a bit of the data, as we did:

. format t %tc

. list in 1/5

roomtype time price t

1. 1 02.13.2007 08:00 140 13feb2007 07:59:40
2. 1 02.13.2007 09:00 155 13feb2007 09:00:50
3. 1 02.13.2007 10:00 160 13feb2007 09:59:49
4. 1 02.13.2007 11:00 155 13feb2007 11:00:59
5. 1 02.13.2007 12:00 160 13feb2007 11:59:58

By now, you should see a problem: the translated datetime values are off by a second or two. That was

caused by rounding. Dates and times should be the same, not approximately the same, and when you see

a difference like this, you should say to yourself, “The translation is off a little. Why is that?” and then

you should think, “Of course, rounding. I bet that I did not create t as a double.”

xtset — Declare data to be panel data 14

Let’s assume, however, that you do not do this. You instead plow ahead:

. xtset roomtype t, delta(1 hour)
time values with period less than delta() found
r(451);

And that is what will happen when you forget to create t as a double. The rounding will cause uneven
period, and xtset will complain.

By the way, it is important only that clock times (%tc and %tC variables) be stored as doubles. The
other date values %td, %tw, %tm, %tq, %th, and %ty are small enough that they can safely be stored as

floats, although forgetting and storing them as doubles does no harm.

Technical note
Stata provides two clock-time formats, %tc and %tC. %tC provides a clock with leap seconds. Leap

seconds are occasionally inserted to account for randomness of the earth’s rotation, which gradually

slows. Unlike the extra day inserted in leap years, the timing of when leap seconds will be inserted

cannot be foretold. The authorities in charge of such matters announce a leap second approximately

6 months before insertion. Leap seconds are inserted at the end of the day, and the leap second is called

23:59:60 (that is, 11:59:60 p.m.), which is then followed by the usual 00:00:00 (12:00:00 a.m.). Most

nonastronomers find these leap seconds vexing. The added seconds cause problems because of their lack

of predictability—knowing how many seconds there will be between 01jan2012 and 01jan2013 is not

possible—and because there are not necessarily 24 hours in a day. If you use a leap second–adjusted

clock, most days have 24 hours, but a few have 24 hours and 1 second. You must look at a table to find

out.

From a time-series analysis point of view, the nonconstant day causes the most problems. Let’s say

that you have data on blood pressure for a set of patients, taken hourly at 1:00, 2:00, . . . , and that you

have xtset your data with delta(1 hour). On most days, L24.bp would be blood pressure at the same

time yesterday. If the previous day had a leap second, however, and your data were recorded using a

leap second–adjusted clock, there would be no observation L24.bp because 86,400 seconds before the

current reading does not correspond to an on-the-hour time; 86,401 seconds before the current reading

corresponds to yesterday’s time. Thus, whenever possible, using Stata’s %tc encoding rather than %tC is

better.

When times are recorded by computers using leap second–adjusted clocks, however, avoiding %tC is

not possible. For performing most time-series analysis, the recommended procedure is to map the %tC
values to %tc and then xtset those. You must ask yourself whether the process you are studying is based
on the clock—the nurse does something at 2 o’clock every day—or the true passage of time—the emitter

spits out an electron every 86,400,000 ms.

When dealing with computer-recorded times, first find out whether the computer (and its time-

recording software) use a leap second–adjusted clock. If it does, translate that to a %tC value. Then

use function cofC() to convert to a %tc value and xtset that. If variable T contains the %tC value,

. generate double t = cofC(T)

. format t %tc

. xtset panelvar t, delta(. . .)

Function cofC() moves leap seconds forward: 23:59:60 becomes 00:00:00 of the next day.

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(451)

xtset — Declare data to be panel data 15

Stored results
xtset stores the following in r():

Scalars

r(imin) minimum panel ID

r(imax) maximum panel ID

r(tmin) minimum time

r(tmax) maximum time

r(tdelta) delta

r(gaps) 1 if there are gaps, 0 otherwise

Macros

r(panelvar) name of panel variable

r(timevar) name of time variable

r(tdeltas) formatted delta

r(tmins) formatted minimum time

r(tmaxs) formatted maximum time

r(tsfmt) %fmt of time variable
r(unit) units of time variable: Clock, clock, daily, weekly, monthly, quarterly,

halfyearly, yearly, or generic
r(unit1) units of time variable: C, c, d, w, m, q, h, y, or ””
r(balanced) unbalanced, weakly balanced, or strongly balanced; panels are strongly

balanced if they all have the same time values, weakly balanced if same

number of observations but different time values, otherwise unbalanced

References
Cox, N. J. 2024. Stata tip 158: The devil is in the delta. Stata Journal 24: 777–783.

Lazzaro, C. 2023. Stata tip 150: When is it appropriate to xtset a panel dataset with panelvar only? Stata Journal 23:

281–292.

Also see
[XT] xtdescribe — Describe pattern of xt data

[XT] xtsum — Summarize xt data

[TS] tsset — Declare data to be time-series data

[TS] tsfill — Fill in gaps in time variable

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1177/1536867X241297950
https://doi.org/10.1177/1536867X231162020
https://www.stata.com/manuals/xtxtdescribe.pdf#xtxtdescribe
https://www.stata.com/manuals/xtxtsum.pdf#xtxtsum
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/tstsfill.pdf#tstsfill
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

