xtprobit — Random-effects and population-averaged probit models

Description Options for RE model Methods and formulas Quick start Options for PA model References Menu Remarks and examples Also see Syntax Stored results

Description

xtprobit fits random-effects and population-averaged probit models for a binary dependent variable. The probability of a positive outcome is assumed to be determined by the standard normal cumulative distribution function.

Quick start

Random-effects probit model of y as a function of x1, x2, and indicators for levels of categorical variable a using xtset data

xtprobit y x1 x2 i.a

Population-averaged model with robust standard errors

xtprobit y x1 x2 i.a, pa vce(robust)

Same as above, but specify an autoregressive correlation structure of order 1

xtprobit y x1 x2 i.a, pa vce(robust) corr(ar 1)

Random-effects model with cluster-robust standard errors for panels nested within cvar xtprobit y x1 x2 i.a, vce(cluster cvar)

Menu

Statistics > Longitudinal/panel data > Binary outcomes > Probit regression (RE, PA)

Syntax

Random-effects (RE) model	
xtprobit depvar [indep	vars] [if] [in] [weight] [, re RE_options]
Population-averaged (PA) m	odel
xtprobit <i>depvar</i> [<i>indep</i>	$vars$] [if] [in] [$weight$], pa [$PA_options$]
<i>RE_options</i>	Description
Model	
<u>nocons</u> tant	suppress constant term
re	use random-effects estimator; the default
<u>off</u> set(<i>varname</i>)	include varname in model with coefficient constrained to 1
<u>constraints</u> (<i>constraints</i>)	apply specified linear constraints
asis	retain perfect predictor variables
SE/Robust	
vce(vcetype)	<i>vcetype</i> may be oim, <u>r</u> obust, <u>cl</u> uster <i>clustvar</i> , <u>boot</u> strap, or <u>jack</u> knife
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
lrmodel	perform the likelihood-ratio model test instead of the default Wald test
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Integration	
<pre>intmethod(intmethod)</pre>	integration method; <i>intmethod</i> may be <u>mv</u> aghermite (the default) or ghermite
<pre>intpoints(#)</pre>	use $\overline{\#}$ quadrature points; default is intpoints (12)
Maximization	
maximize_options	control the maximization process; seldom used
<u>col</u> linear	keep collinear variables
<u>coefl</u> egend	display legend instead of statistics

xtprobit — Random-effects and population-averaged probit models 3

PA_options	Description
Model	
<u>nocons</u> tant	suppress constant term
pa	use population-averaged estimator
<u>off</u> set(<i>varname</i>)	include varname in model with coefficient constrained to 1
asis	retain perfect predictor variables
Correlation	
<u>c</u> orr(<i>correlation</i>)	within-panel correlation structure
force	estimate even if observations unequally spaced in time
SE/Robust	
vce(<i>vcetype</i>)	<i>vcetype</i> may be conventional, <u>r</u> obust, <u>boot</u> strap, or <u>jackknife</u>
nmp	use divisor $N - P$ instead of the default N
<u>s</u> cale(<i>parm</i>)	overrides the default scale parameter; <i>parm</i> may be x2, dev, phi, or #
Reporting	
level(#)	set confidence level; default is level(95)
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Optimization	
optimize_options	control the optimization process; seldom used
<u>coefl</u> egend	display legend instead of statistics
correlation	Description
	•
<u>exc</u> hangeable	exchangeable
<u>ind</u> ependent unstructured	independent unstructured
fixed matname	user-specified
ar #	autoregressive of order #
u1 //	stationary of order #
<u>sta</u> tionary # nonstationary #	nonstationary of order #

A panel variable must be specified. For xtprobit, pa, correlation structures other than exchangeable and independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands. bayes is allowed for the randomeffects model. For more details, see [BAYES] bayes: xtprobit. fp is allowed for the random-effects model.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are allowed for the random-effects model; see [U] 11.1.6 weight. Weights must be constant within panel.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for RE model

Model

noconstant; see [R] Estimation options.

re requests the random-effects estimator. re is the default if neither re nor pa is specified.

offset(*varname*), constraints(*constraints*); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

Specifying vce(robust) is equivalent to specifying vce(cluster *panelvar*); see xtprobit, re and the robust VCE estimator in Methods and formulas.

Reporting

level(#), lrmodel, nocnsreport; see [R] Estimation options.

```
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
  allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt),
  sformat(%fmt), and nolstretch; see [R] Estimation options.
```

Integration

intmethod(intmethod), intpoints(#); see [R] Estimation options.

Maximization

```
maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.
```

The following options are available with xtprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Options for PA model

Model

noconstant; see [R] Estimation options.

pa requests the population-averaged estimator.

offset(varname); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

Correlation

corr(*correlation*) specifies the within-panel correlation structure; the default corresponds to the equalcorrelation model, corr(exchangeable).

When you specify a correlation structure that requires a lag, you indicate the lag after the structure's name with or without a blank; for example, corr(ar1) or corr(ar1).

If you specify the fixed correlation structure, you specify the name of the matrix containing the assumed correlations following the word fixed, for example, corr(fixed myr).

force specifies that estimation be forced even though the time variable is not equally spaced. This is relevant only for correlation structures that require knowledge of the time variable. These correlation structures require that observations be equally spaced so that calculations based on lags correspond to a constant time change. If you specify a time variable indicating that observations are not equally spaced, the (time dependent) model will not be fit. If you also specify force, the model will be fit, and it will be assumed that the lags based on the data ordered by the time variable are appropriate.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (conventional), that are robust to some kinds of misspecification (robust), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized least-squares regression.

nmp, scale(x2 | dev | phi | #); see [XT] vce_options.

Reporting

level(#); see [R] Estimation options.

```
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt),
sformat(%fmt), and nolstretch; see [R] Estimation options.
```

Optimization

optimize_options control the iterative optimization process. These options are seldom used.

<u>iter</u>ate(#) specifies the maximum number of iterations. When the number of iterations equals #, the optimization stops and presents the current results, even if convergence has not been reached. The default is iterate(100).

<u>tol</u>erance(#) specifies the tolerance for the coefficient vector. When the relative change in the coefficient vector from one iteration to the next is less than or equal to #, the optimization process is stopped. tolerance(1e-6) is the default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace specifies that the current estimates be printed at each iteration.

The following option is available with xtprobit but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

xtprobit may be used to fit a population-averaged model or a random-effects probit model. There is no command for a conditional fixed-effects model, as there does not exist a sufficient statistic allowing the fixed effects to be conditioned out of the likelihood. Unconditional fixed-effects probit models may be fit with the probit command with indicator variables for the panels. However, unconditional fixedeffects estimates are biased. We do not discuss fixed-effects further in this entry.

By default, the population-averaged model is an equal-correlation model; that is, xtprobit, pa assumes corr(exchangeable). Thus, xtprobit is a convenience command for obtaining the populationaveraged model using xtgee; see [XT] **xtgee**. Typing

. xtprobit ..., pa ...

is equivalent to typing

. xtgee ..., ... family(binomial) link(probit) corr(exchangeable)

See also [XT] **xtgee** for information about xtprobit.

By default or when re is specified, xtprobit fits via maximum likelihood the random-effects model

$$\Pr(y_{it} \neq 0 | \mathbf{x}_{it}) = \Phi(\mathbf{x}_{it}\boldsymbol{\beta} + \nu_i)$$

for i = 1, ..., n panels, where $t = 1, ..., n_i$, ν_i are i.i.d., $N(0, \sigma_{\nu}^2)$, and Φ is the standard normal cumulative distribution function.

Underlying this model is the variance components model

$$y_{it} \neq 0 \iff \mathbf{x}_{it}\boldsymbol{\beta} + \nu_i + \epsilon_{it} > 0$$

where ϵ_{it} are i.i.d. Gaussian distributed with mean zero and variance $\sigma_{\epsilon}^2 = 1$, independently of ν_i .

Example 1: Random-effects model

We are studying unionization of women in the United States and are using the union dataset; see [XT] **xt**. We wish to fit a random-effects model of union membership:

. use https:/ (NLS Women 14	/www.stata-pre -24 in 1968)	ss.com/data	/r19/unio	on		
. xtprobit un	ion age grade	i.not smsa	south##c	.vear		
Fitting compa				5		
Iteration 0:	Log likelihoo	d = -13864	23			
Iteration 1:	Log likelihoo					
Iteration 2:	Log likelihoo					
Iteration 3:	Log likelihoo	d = -13544.	385			
Fitting full :	model:					
rho = 0.0	Log likelihoo	d = -13544.	385			
rho = 0.1	Log likelihoo	d = -12237.	655			
rho = 0.2	Log likelihoo	d = -11590.	282			
rho = 0.3	Log likelihoo					
rho = 0.4	Log likelihoo					
rho = 0.5 rho = 0.6	Log likelihoo Log likelihoo					
rho = 0.0 rho = 0.7	Log likelihoo					
Iteration 0:	Log likelihoo					
Iteration 1:	Log likelihoo					
Iteration 2:	Log likelihoo					
Iteration 3:	Log likelihoo					
Iteration 4:	Log likelihoo	d = -10552.	225			
Random-effect Group variabl	s probit regre e: idcode	ssion			mber of obs mber of group	
-	s u_i ~ Gaussi	an			s per group:	-
						n = 1
					av	g = 5.9
					ma	x = 12
Integration m	ethod: mvagher	mite		In	tegration pts	. = 12
				Wa	ld chi2(6)	= 220.91
Log likelihoo	d = −10552.225	i		Pr	ob > chi2	= 0.0000
union	Coefficient	Std. err.	z	P> z	[95% conf.	intervall
age						
	.0082967	.0084599	0.98	0.327	0082843	.0248778
grade	.0082967 .0482731	.0084599 .0099469	0.98 4.85	0.327 0.000	0082843 .0287776	
-						.0248778
grade	.0482731 139657 -1.584394	.0099469 .0460548 .358473	4.85 -3.03 -4.42	0.000 0.002 0.000	.0287776 2299227 -2.286989	.0248778 .0677686 0493913 8818002
grade 1.not_smsa	.0482731 139657	.0099469 .0460548	4.85 -3.03	0.000 0.002	.0287776 2299227	.0248778 .0677686 0493913
grade 1.not_smsa 1.south year	.0482731 139657 -1.584394	.0099469 .0460548 .358473	4.85 -3.03 -4.42	0.000 0.002 0.000	.0287776 2299227 -2.286989	.0248778 .0677686 0493913 8818002
grade 1.not_smsa 1.south	.0482731 139657 -1.584394 0039854	.0099469 .0460548 .358473 .0088399	4.85 -3.03 -4.42 -0.45	0.000 0.002 0.000 0.652	.0287776 2299227 -2.286989 0213113	.0248778 .0677686 0493913 8818002 .0133406
grade 1.not_smsa 1.south year south#c.year	.0482731 139657 -1.584394	.0099469 .0460548 .358473	4.85 -3.03 -4.42	0.000 0.002 0.000	.0287776 2299227 -2.286989	.0248778 .0677686 0493913 8818002
grade 1.not_smsa 1.south year south#c.year	.0482731 139657 -1.584394 0039854	.0099469 .0460548 .358473 .0088399	4.85 -3.03 -4.42 -0.45	0.000 0.002 0.000 0.652	.0287776 2299227 -2.286989 0213113	.0248778 .0677686 0493913 8818002 .0133406
grade 1.not_smsa 1.south year south#c.year 1	.0482731 139657 -1.584394 0039854 .0134017	.0099469 .0460548 .358473 .0088399	4.85 -3.03 -4.42 -0.45 3.00	0.000 0.002 0.000 0.652 0.003	.0287776 2299227 -2.286989 0213113 .0046559	.0248778 .0677686 0493913 8818002 .0133406 .0221475
grade 1.not_smsa 1.south year south#c.year 1 1	.0482731 139657 -1.584394 0039854 .0134017 -1.668202	.0099469 .0460548 .358473 .0088399 .0044622 .4751819	4.85 -3.03 -4.42 -0.45 3.00	0.000 0.002 0.000 0.652 0.003	.0287776 2299227 -2.286989 0213113 .0046559 -2.599542	.0248778 .0677686 0493913 8818002 .0133406 .0221475 7368628

LR test of rho=0: chibar2(01) = 5984.32

 $Prob \ge chibar2 = 0.000$

The output includes the additional panel-level variance component, which is parameterized as the log of the variance $\ln(\sigma_{\nu}^2)$ (labeled lnsig2u in the output). The standard deviation σ_{ν} is also included in the output (labeled sigma_u) together with ρ (labeled rho), where

$$\rho = \frac{\sigma_{\nu}^2}{\sigma_{\nu}^2 + 1}$$

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator is not different from the pooled estimator. A likelihood-ratio test of this is included at the bottom of the output. This test formally compares the pooled estimator (probit) with the panel estimator.

4

Technical note

The random-effects model is calculated using quadrature, which is an approximation whose accuracy depends partially on the number of integration points used. We can use the quadchk command to see if changing the number of integration points affects the results. If the results change, the quadrature approximation is not accurate given the number of integration points. Try increasing the number of integration points () option and run quadchk again. Do not attempt to interpret the results of estimates when the coefficients reported by quadchk differ substantially.

```
. quadchk, nooutput
Refitting model intpoints() = 8
Refitting model intpoints() = 16
```

	-	Quadrature check		
	Fitted quadrature 12 points	Comparison quadrature 8 points	Comparison quadrature 16 points	
Log likelihood	-10552.225	-10554.496 -2.2712569 .00021524	-10552.399 17396615 .00001649	Difference Relative difference
union: age	.00829671	.00828745 -9.265e-06 0011167	.00831488 .00001817 .00218987	Difference Relative difference
union: grade	.0482731	.04860277 .00032967 .00682917	.04826287 00001023 00021188	Difference Relative difference
union: 1.not_smsa	13965702	14057441 00091739 .00656891	13953521 .00012181 00087218	Difference Relative difference
union: 1.south	-1.5843944	-1.5909857 00659135 .00416017	-1.5843375 .00005689 00003591	Difference Relative difference
union: year	00398535	00397811 7.237e-06 00181578	00400181 00001646 .00412982	Difference Relative difference
union: 1.south#c.~r	.01340169	.01344457 .00004288 .00319946	.01340388 2.193e-06 .0001636	Difference Relative difference
union: _cons	-1.6682022	-1.6757524 00755024 .00452597	-1.6665327 .00166948 00100077	Difference Relative difference
/: lnsig2u	.61036163	.61780789 .00744626 .01219976	.60974814 00061349 00100513	Difference Relative difference

The results obtained for 12 quadrature points were closer to the results for 16 points than to the results for eight points. Although the relative and absolute differences are a bit larger than we would like, they are not large. We can increase the number of quadrature points with the intpoints() option; if we choose intpoints(20) and do another quadchk we will get acceptable results, with relative differences around 0.01%.

This is not the case if we use nonadaptive quadrature. Then the results we obtain are

. xtprobit union age grade i.not_smsa south##c.year, intmethod(ghermite) Fitting comparison model: Iteration 0: Log likelihood = -13864.23 Iteration 1: Log likelihood = -13545.541 Iteration 2: Log likelihood = -13544.385 Iteration 3: Log likelihood = -13544.385 Fitting full model: rho = 0.0Log likelihood = -13544.385rho = 0.1 Log likelihood = -12237.655 rho = 0.2Log likelihood = -11590.282 rho = 0.3Log likelihood = -11211.185 rho = 0.4Log likelihood = -10981.319 rho = 0.5Log likelihood = -10852.793 rho = 0.6 Log likelihood = -10808.759 rho = 0.7Log likelihood = -10865.57 Iteration 0: Log likelihood = -10808.759 Iteration 1: Log likelihood = -10594.349 Iteration 2: Log likelihood = -10560.913 Iteration 3: Log likelihood = -10560.876 Iteration 4: Log likelihood = -10560.876 Random-effects probit regression Number of obs = 26,200 Group variable: idcode Number of groups = 4,434Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 5.9 max = 12 Integration method: ghermite Integration pts. = 12 Wald chi2(6) = 218.99Log likelihood = -10560.876Prob > chi2 = 0.0000 ~ D. 1 1 **~** • • - -

union	Coefficient	Std. err.	z	P> z	L95% conf.	interval
age	.0093488	.0083385	1.12	0.262	0069945	.025692
grade	.0488014	.0101168	4.82	0.000	.0289728	.06863
1.not_smsa	1364862	.0462831	-2.95	0.003	2271995	045773
1.south	-1.592711	.3576715	-4.45	0.000	-2.293734	8916877
year	0053723	.0087219	-0.62	0.538	0224668	.0117223
south#c.year						
1	.0136764	.0044532	3.07	0.002	.0049482	.0224046
_cons	-1.575539	.4639881	-3.40	0.001	-2.484939	6661388
/lnsig2u	.5615976	.0432021			.476923	.6462722
sigma_u	1.324187	.0286038			1.269295	1.381453
rho	.6368221	.0099918			.617021	.6561699
LR test of rho	b=0: chibar2(0	01) = 5967.0	2		Prob >= chiba	r2 = 0.000

We now check the stability of the quadrature technique for this nonadaptive quadrature model. We expect it to be less stable.

. quadchk, h	Jourput			
	del intpoints(del intpoints(
	Q	uadrature check		
	Fitted quadrature 12 points	Comparison quadrature 8 points	Comparison quadrature 16 points	
Log likelihood	-10560.876	-10574.239 -13.362535 .00126529	-10555.792 5.0839579 0004814	Difference Relative difference
union: age	.00934876	.01264615 .0032974 .35270966	.00731888 00202987 21712744	Difference Relative difference
union: grade	.04880139	.05710089 .00829951 .17006703	.04432417 00447722 09174372	Difference Relative difference
union: 1.not_smsa	13648624	13327724 .003209 0235115	14094541 00445917 .03267123	Difference Relative difference
union: 1.south	-1.592711	-1.5275627 .06514823 04090399	-1.6059143 01320331 .00828983	Difference Relative difference
union: year	00537226	00867673 00330447 .61509968	00307042 .00230184 4284678	Difference Relative difference
union: 1.south#c.~r	.01367641	.01278071 0008957 06549266	.01369009 .00001368 .00100054	Difference Relative difference
union: _cons	-1.5755388	-1.4888646 .08667418 0550124	-1.6505526 0750138 .04761152	Difference Relative difference
/: lnsig2u	.56159763	.49290978 06868786 12230795	.58068904 .0190914 .03399481	Difference Relative difference

. guadchk, nooutput

Once again, the results obtained for 12 quadrature points were closer to the results for 16 points than to the results for eight points. However, here the convergence point seems to be sensitive to the number of quadrature points, so we should not trust these results. We should increase the number of quadrature points with the intpoints() option and then use quadchk again. We should not use the results of a random-effects specification when there is evidence that the numeric technique for calculating the model is not stable (as shown by quadchk).

Generally, the relative differences in the coefficients should not change by more than 1% if the quadrature technique is stable. See [XT] **quadchk** for details. Increasing the number of quadrature points can often improve the stability, and for models with high rho we may need many. We can also switch between adaptive and nonadaptive quadrature. As a rule, adaptive quadrature, which is the default integration method, is much more flexible and robust. Because the xtprobit, re likelihood function is calculated by Gauss-Hermite quadrature, on large problems the computations can be slow. Computation time is roughly proportional to the number of points used for the quadrature.

Example 2: Equal-correlation model

As an alternative to the random-effects specification, we can fit an equal-correlation probit model:

. xtprobit un:	ion age grade	i.not_smsa	south##c.	year,	pa	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5:	Tolerance = . Tolerance = 8	0034686 00017448 .382e-06				
GEE population Group variable	0	el			Number of obs Number of group	,
Family: Binom:					Obs per group:	2
Link: Probit	t					n = 1
Correlation: e	exchangeable				av	g = 5.9
	-				ma	x = 12
					Wald chi2(6)	= 242.57
Scale paramete	er = 1				Prob > chi2	= 0.0000
union	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
age	.0089699	.0053208	1.69	0.092	0014586	.0193985
grade	.0333174	.0062352	5.34	0.000	.0210966	.0455382
1.not_smsa	0715717	.027543	-2.60	0.009	1255551	0175884
1.south	-1.017368	.207931	-4.89		-1.424905	6098308
year	0062708	.0055314	-1.13	0.257	0171122	.0045706
south#c.year 1	.0086294	.00258	3.34	0.001	.0035727	.013686
_cons	8670997	.294771	-2.94	0.003	-1.44484	2893592

Example 3: Population-averaged model

In example 3 of [R] **probit**, we showed the above results and compared them with probit, vce(cluster id). xtprobit with the pa option allows a vce(robust) option, so we can obtain the population-averaged probit estimator with the robust variance calculation by typing

. xtprobit union age grade i.not_smsa south##c.year, pa vce(robust) nolog GEE population-averaged model Number of obs = 26,200 Group variable: idcode Number of groups = 4,434Family: Binomial Obs per group: Link: Probit min = 1 Correlation: exchangeable 5.9 avg = max = 12 Wald chi2(6) = 156.33Prob > chi2 Scale parameter = 1= 0.0000 (Std. err. adjusted for clustering on idcode) Semirobust union Coefficient std. err. z P>|z| [95% conf. interval] .0089699 .0051169 1.75 0.080 -.001059 .0189988 age grade .0333174 .0076425 4.36 0.000 .0183383 .0482965 1.not_smsa -.0715717.0348659 -2.050.040 -.1399076-.0032359 1.south -1.017368.3026981 -3.36 0.001 -1.610645-.4240906 year -.0062708 .0055745 -1.120.261 -.0171965 .0046549 south#c.year .0037866 2.28 0.023 .0012078 .0160509 1 .0086294 _cons 0.008 -.8670997 .3243959 -2.67-1.502904-.2312955

These standard errors are similar to those shown for probit, vce(cluster id) in [R] probit.

Example 4: Random-effects model with stable quadrature

In a previous example, we showed how quadchk indicated that the quadrature technique was numerically unstable. Here we present an example in which the quadrature is stable.

In this example, we have (synthetic) data on whether workers complain to managers at fast-food restaurants. The covariates are age (in years of the worker), grade (years of schooling completed by the worker), south (equal to 1 if the restaurant is located in the South), tenure (the number of years spent on the job by the worker), gender (of the worker), race (of the worker), income (in thousands of dollars by the restaurant), genderm (gender of the manager), burger (equal to 1 if the restaurant specializes in hamburgers), and chicken (equal to 1 if the restaurant specializes in chicken). The model is given by

. use https://www.stata-press.com/data/r19/chicken . xtprobit complain age grade south tenure gender race income genderm burger > chicken, nolog Random-effects probit regression Number of obs 2,763 = Group variable: restaurant Number of groups = 500 Random effects u_i ~ Gaussian Obs per group: 3 min = avg = 5.5 max = 8 Integration method: mvaghermite Integration pts. = 12 Wald chi2(10) = 126.59Log likelihood = -1318.2088 Prob > chi2 = 0.0000 complain Coefficient Std. err. P>|z| [95% conf. interval] 7. -.0430409 .0130211 -3.31 0.001 -.0685617 -.01752 age .0330934 .0264572 1.25 0.211 -.0187618 .0849486 grade south .1012 .0707196 1.43 0.152 -.037408 .2398079 tenure -.0440079.0987099 -0.45 0.656 -.2374758.14946 gender .3318499 .0601382 5.52 0.000 .2139812 .4497185 .2668703 race .3417901 .0382251 8.94 0.000 .4167098 -.0022702 .0008885 -2.56 0.011 -.0040117 -.0005288 income .0524577 .0706585 0.74 0.458 -.0860305 .1909459 genderm .0448931 0.47 0.639 -.1425091.2322953 burger .0956151 2.00 0.046 chicken .1904714 .0953067 .0036737 .3772691 _cons -.2145311.6240549 -0.34 0.731 -1.4376561.008594 -1.704494/lnsig2u .2502057 -2.194888 -1.214099.4264557 .0533508 .333723 .5449563 sigma_u rho .1538793 .0325769 .1002105 .2289765 LR test of rho=0: chibar2(01) = 29.91Prob >= chibar2 = 0.000

Again we would like to check the stability of the quadrature technique of the model before interpreting the results. Given the estimate of ρ and the small size of the panels (between 3 and 8), we should find that the quadrature technique is numerically stable.

. quadchk, nooutput

Refitting model intpoints() = 8 Refitting model intpoints() = 16

-	- (Quadrature chec	k	
	Fitted	Comparison	Comparison	
	quadrature	quadrature	quadrature	
	12 points	8 points	16 points	
Log	-1318.2088	-1318.2088	-1318.2088	
likelihood		-2.002e-06	-1.194e-09	Difference
		1.519e-09	9.061e-13	Relative difference
complain:	04304086	04304086	04304086	
age		-3.896e-10	-2.625e-12	Difference
		9.051e-09	6.100e-11	Relative difference
complain:	.0330934	.0330934	.0330934	
grade		2.208e-11	1.867e-12	Difference
		6.673e-10	5.642e-11	Relative difference
complain:	.10119998	.10119999	.10119998	
south		2.369e-09	3.957e-11	Difference
		2.341e-08	3.910e-10	Relative difference
complain:	04400789	0440079	04400789	
tenure		-3.362e-09	-2.250e-11	Difference
		7.640e-08	5.114e-10	Relative difference
complain:	.33184986	.33184986	.33184986	
gender		3.190e-09	2.546e-11	Difference
		9.612e-09	7.673e-11	Relative difference
complain:	.34179006	.34179007	.34179006	
race		3.801e-09	2.990e-11	Difference
		1.112e-08	8.749e-11	Relative difference
complain:	00227021	00227021	00227021	
income		-4.468e-11	-9.252e-13	Difference
		1.968e-08	4.075e-10	Relative difference
complain:	.05245769	.05245769	.05245769	
genderm		1.963e-09	4.481e-11	Difference
		3.742e-08	8.542e-10	Relative difference
complain:	.04489311	.04489311	.04489311	
burger		4.173e-10	6.628e-12	Difference
		9.296e-09	1.476e-10	Relative difference
complain:	.19047138	.19047139	.19047138	
chicken		3.096e-09	4.916e-11	Difference
		1.625e-08	2.581e-10	Relative difference
complain:	21453112	21453111	21453112	
_cons		1.281e-08	2.682e-10	Difference
		-5.972e-08	-1.250e-09	Relative difference
/:	-1.7044935	-1.7044934	-1.7044935	
lnsig2u		1.255e-07	-4.135e-10	Difference
		-7.365e-08	2.426e-10	Relative difference

The relative and absolute differences are all small between the default 12 quadrature points and the result with 16 points. We do not have any coefficients that have a large difference between the default 12 quadrature points and eight quadrature points.

We conclude that the quadrature technique is stable. Because the differences here are so small, we would plan on using and interpreting these results rather than trying to rerun with more quadrature points.

/	1

Stored results

xtprobit, re stores the following in e():

e(N_g)	number of groups
e(k)	number of parameters
e(k_aux)	number of auxiliary parameters
e(k_eq)	number of equations in e(b)
e(k_eq_model)	number of equations in overall model test
e(k_dv)	number of dependent variables
e(df_m)	model degrees of freedom
e(11)	log likelihood
	log likelihood, constant-only model
e(ll_c)	log likelihood, comparison model
e(chi2)	χ^2
e(chi2_c)	χ^2 for comparison test
e(N_clust)	number of clusters
e(rho)	ρ
e(sigma_u)	panel-level standard deviation
•	number of quadrature points
-	smallest group size
•	average group size
0 0	largest group size
0	<i>p</i> -value for model test
e(rank)	rank of e(V)
	rank of e(V) for constant-only model
e(ic)	number of iterations
e(rc)	return code
e(converged)	1 if converged, 0 otherwise
•	6 /
	xtprobit
	command as typed
	name of dependent variable
-	variable denoting groups
	re
	weight type
• -	weight expression
•	title in estimation output
	name of cluster variable
	linear offset variable
	Wald or LR; type of model χ^2 test
	Wald or LR; type of model χ^2 test corresponding to e(chi2_c)
	<i>vcetype</i> specified in vce()
	title used to label Std. err.
• -	integration method
	Gaussian; the distribution of the random effect
C(ATSUIID)	
	<pre>e(k_aux) e(k_eq) e(k_eq_model) e(k_dv) e(df_m) e(l1) e(l1_0) e(l1_c) e(chi2) e(chi2_c) e(chi2_c) e(N_clust) e(r_no) e(sigma_u) e(n_quad) e(g_min) e(g_avg) e(g_max) e(p) e(rank) e(rank0) e(ic)</pre>

<pre>e(opt) e(which) e(ml_method) e(user) e(technique) e(properties) e(predict) e(marginsdefault) e(asbalanced) e(asobserved)</pre>	<pre>type of optimization max or min; whether optimizer is to perform maximization or minimization type of ml method name of likelihood-evaluator program maximization technique b V program used to implement predict default predict() specification for margins factor variables fvset as asobserved factor variables fvset as asobserved</pre>
Matrices	
e(b)	coefficient vector
e(Cns)	constraints matrix
e(ilog)	iteration log
e(gradient)	gradient vector
e(V)	variance-covariance matrix of the estimators
e(V_modelbased)	model-based variance
Functions	
e(sample)	marks estimation sample

In addition to the above, the following is stored in r():

Matrices r(table)

matrix containing the coefficients with their standard errors, test statistics, *p*-values, and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

xtprobit, pa stores the following in e():

Scalars			
	e(N)	number of observations	
	e(N_g)	number of groups	
	e(df_m)	model degrees of freedom	
	e(chi2)	χ^2	
	e(p)	<i>p</i> -value for model test	
	e(df_pear)	degrees of freedom for Pearson χ^2	
	e(chi2_dev)	χ^2 test of deviance	
	e(chi2_dis)	χ^2 test of deviance dispersion	
	e(deviance)	deviance	
	e(dispers)	deviance dispersion	
	e(phi)	scale parameter	
	e(g_min)	smallest group size	
	e(g_avg)	average group size	
	e(g_max)	largest group size	
	e(rank)	rank of e(V)	
	e(tol)	target tolerance	
	e(dif)	achieved tolerance	
	e(rc)	return code	
Macros			
	e(cmd)	xtgee	
	e(cmd2)	xtprobit	
	e(cmdline)	command as typed	
	e(depvar)	name of dependent variable	
	e(ivar)	variable denoting groups	
	e(tvar)	variable denoting time within groups	
	e(model)	ра	

<pre>e(family) e(link) e(corr) e(scale) e(wtype) e(wtype) e(offset) e(chi2type) e(vce) e(vceype) e(nmp) e(properties) e(predict) e(marginsnotok) e(asbalanced)</pre>	binomial probit; link function correlation structure x2, dev, phi, or #; scale parameter weight type weight expression linear offset variable Wald; type of model χ^2 test vcetype specified in vce() title used to label Std. err. nmp, if specified b V program used to implement predict predictions disallowed by margins factor variables fvset as asbalanced
e(asobserved)	factor variables fvset as asobserved
Matrices e(b) e(R) e(V) e(V_modelbased) Functions e(sample)	coefficient vector estimated working correlation matrix variance–covariance matrix of the estimators model-based variance marks estimation sample
c(bampro)	marks estimation sample

In addition to the above, the following is stored in r():

```
Matrices
r(table)
```

matrix containing the coefficients with their standard errors, test statistics, p-values, and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

Methods and formulas

xtprobit reports the population-averaged results obtained by using xtgee, family(binomial)
link(probit) to obtain estimates.

Assuming a normal distribution, $N(0, \sigma_{\nu}^2)$, for the random effects ν_i

$$\Pr(y_{i1},\ldots,y_{in_i}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{in_i}) = \int_{-\infty}^{\infty} \frac{e^{-\nu_i^2/2\sigma_\nu^2}}{\sqrt{2\pi}\sigma_\nu} \left\{ \prod_{t=1}^{n_i} F(y_{it},\mathbf{x}_{it}\boldsymbol{\beta}+\nu_i) \right\} d\nu_i$$

where

$$F(y,z) = \begin{cases} \Phi(z) & \text{if } y \neq 0 \\ 1 - \Phi(z) & \text{otherwise} \end{cases}$$

where Φ is the cumulative normal distribution.

The panel-level likelihood l_i is given by

$$\begin{split} l_i &= \int_{-\infty}^{\infty} \frac{e^{-\nu_i^2/2\sigma_{\nu}^2}}{\sqrt{2\pi}\sigma_{\nu}} \left\{ \prod_{t=1}^{n_i} F(y_{it},\mathbf{x}_{it}\boldsymbol{\beta}+\nu_i) \right\} d\nu_i \\ &\equiv \int_{-\infty}^{\infty} g(y_{it},x_{it},\nu_i) d\nu_i \end{split}$$

This integral can be approximated with M-point Gauss-Hermite quadrature

$$\int_{-\infty}^{\infty}e^{-x^2}h(x)dx\approx\sum_{m=1}^{M}w_m^*h(a_m^*)$$

This is equivalent to

$$\int_{-\infty}^{\infty} f(x) dx \approx \sum_{m=1}^{M} w_m^* \exp\left\{(a_m^*)^2\right\} f(a_m^*)$$

where the w_m^* denote the quadrature weights and the a_m^* denote the quadrature abscissas. The log likelihood, L, is the sum of the logs of the panel-level likelihoods l_i .

The default approximation of the log likelihood is by adaptive Gauss-Hermite quadrature, which approximates the panel-level likelihood with

$$l_i\approx \sqrt{2}\hat{\sigma}_i\sum_{m=1}^M w_m^*\exp\left\{(a_m^*)^2\right\}g(y_{it},x_{it},\sqrt{2}\hat{\sigma}_ia_m^*+\hat{\mu}_i)$$

where $\hat{\sigma}_i$ and $\hat{\mu}_i$ are the adaptive parameters for panel *i*. Therefore, with the definition of $g(y_{it}, x_{it}, \nu_i)$, the total log likelihood is approximated by

$$\begin{split} L \approx \sum_{i=1}^n w_i \log \biggl[\sqrt{2} \hat{\sigma}_i \sum_{m=1}^M w_m^* \exp\{(a_m^*)^2\} \frac{\exp\{-(\sqrt{2} \hat{\sigma}_i a_m^* + \hat{\mu}_i)^2 / 2\sigma_\nu^2\}}{\sqrt{2\pi}\sigma_\nu} \\ \prod_{t=1}^{n_i} F(y_{it}, x_{it}\beta + \sqrt{2} \hat{\sigma}_i a_m^* + \hat{\mu}_i) \biggr] \end{split}$$

where w_i is the user-specified weight for panel *i*; if no weights are specified, $w_i = 1$.

The default method of adaptive Gauss–Hermite quadrature is to calculate the posterior mean and variance and use those parameters for $\hat{\mu}_i$ and $\hat{\sigma}_i$ by following the method of Naylor and Smith (1982), further discussed in Skrondal and Rabe-Hesketh (2004). We start with $\hat{\sigma}_{i,0} = 1$ and $\hat{\mu}_{i,0} = 0$, and the posterior means and variances are updated in the *k*th iteration. That is, at the *k*th iteration of the optimization for l_i , we use

$$l_{i,k} \approx \sum_{m=1}^{M} \sqrt{2} \hat{\sigma}_{i,k-1} w_m^* \exp\{a_m^*)^2 \} g(y_{it}, x_{it}, \sqrt{2} \hat{\sigma}_{i,k-1} a_m^* + \hat{\mu}_{i,k-1})$$

Letting

$$\tau_{i,m,k-1} = \sqrt{2}\hat{\sigma}_{i,k-1}a_m^* + \hat{\mu}_{i,k-1}$$

$$\hat{\mu}_{i,k} = \sum_{m=1}^{M} (\tau_{i,m,k-1}) \frac{\sqrt{2} \hat{\sigma}_{i,k-1} w_m^* \exp\{(a_m^*)^2\} g(y_{it}, x_{it}, \tau_{i,m,k-1})}{l_{i,k}}$$

and

$$\hat{\sigma}_{i,k} = \sum_{m=1}^{M} (\tau_{i,m,k-1})^2 \frac{\sqrt{2} \hat{\sigma}_{i,k-1} w_m^* \exp\{(a_m^*)^2\} g(y_{it}, x_{it}, \tau_{i,m,k-1})}{l_{i,k}} - \left(\hat{\mu}_{i,k}\right)^2$$

and this is repeated until $\hat{\mu}_{i,k}$ and $\hat{\sigma}_{i,k}$ have converged for this iteration of the maximization algorithm. This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration is less than a relative difference of 1e–6; after this, the quadrature parameters are fixed.

The log likelihood can also be calculated by nonadaptive Gauss-Hermite quadrature, the intmethod(ghermite) option, where $\rho = \sigma_{\nu}^2/(\sigma_{\nu}^2 + 1)$:

$$\begin{split} L &= \sum_{i=1}^{n} w_i \log \Big\{ \Pr(y_{i1}, \dots, y_{in_i} | \mathbf{x}_{i1}, \dots, \mathbf{x}_{in_i}) \Big\} \\ &\approx \sum_{i=1}^{n} w_i \log \left[\frac{1}{\sqrt{\pi}} \sum_{m=1}^{M} w_m^* \prod_{t=1}^{n_i} F \left\{ y_{it}, \mathbf{x}_{it} \boldsymbol{\beta} + a_m^* \left(\frac{2\rho}{1-\rho} \right)^{1/2} \right\} \right] \end{split}$$

Both quadrature formulas require that the integrated function be well approximated by a polynomial of degree equal to the number of quadrature points. The number of periods (panel size) can affect whether

$$\prod_{t=1}^{n_i} F(y_{it}, \mathbf{x}_{it} \boldsymbol{\beta} + \nu_i)$$

is well approximated by a polynomial. As panel size and ρ increase, the quadrature approximation can become less accurate. For large ρ , the random-effects model can also become unidentified. Adaptive quadrature gives better results for correlated data and large panels than nonadaptive quadrature; however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the quadrature approximation used in this command, whichever approximation you choose.

xtprobit, re and the robust VCE estimator

Specifying vce(robust) or vce(cluster *clustvar*) causes the Huber/White/sandwich VCE estimator to be calculated for the coefficients estimated in this regression. See [P] **_robust**, particularly *Introduction* and *Methods and formulas*. Wooldridge (2020) and Arellano (2003) discuss this application of the Huber/White/sandwich VCE estimator. As discussed by Wooldridge (2020), Stock and Watson (2008), and Arellano (2003), specifying vce(robust) is equivalent to specifying vce(cluster *panel-var*), where *panelvar* is the variable that identifies the panels.

Clustering on the panel variable produces a consistent VCE estimator when the disturbances are not identically distributed over the panels or there is serial correlation in ϵ_{it} .

The cluster–robust VCE estimator requires that there are many clusters and the disturbances are uncorrelated across the clusters. The panel variable must be nested within the cluster variable because of the within-panel correlation that is generally induced by the random-effects transform when there is heteroskedasticity or within-panel serial correlation in the idiosyncratic errors.

References

- Arellano, M. 2003. Panel Data Econometrics. Oxford: Oxford University Press. https://doi.org/10.1093/0199245282.001. 0001.
- Baltagi, B. H. 2009. A Companion to Econometric Analysis of Panel Data. Chichester, UK: Wiley.
- ------. 2013. Econometric Analysis of Panel Data. 5th ed. Chichester, UK: Wiley.
- Conway, M. R. 1990. A random effects model for binary data. Biometrics 46: 317–328. https://doi.org/10.2307/2531437.
- Cruz-Gonzalez, M., I. Fernández-Val, and M. Weidner. 2017. Bias corrections for probit and logit models with two-way fixed effects. Stata Journal 17: 517–545.
- Grotti, R., and G. Cutuli. 2018. xtpdyn: A community-contributed command for fitting dynamic random-effects probit models with unobserved heterogeneity. *Stata Journal* 18: 844–862.
- Guilkey, D. K., and J. L. Murphy. 1993. Estimation and testing in the random effects probit model. *Journal of Econometrics* 59: 301–317. https://doi.org/10.1016/0304-4076(93)90028-4.
- Liang, K.-Y., and S. L. Zeger. 1986. Longitudinal data analysis using generalized linear models. *Biometrika* 73: 13–22. https://doi.org/10.1093/biomet/73.1.13.
- Naylor, J. C., and A. F. M. Smith. 1982. Applications of a method for the efficient computation of posterior distributions. Journal of the Royal Statistical Society, C ser., 31: 214–225. https://doi.org/10.2307/2347995.
- Neuhaus, J. M. 1992. Statistical methods for longitudinal and clustered designs with binary responses. Statistical Methods in Medical Research 1: 249–273. https://doi.org/10.1177/096228029200100303.
- Neuhaus, J. M., J. D. Kalbfleisch, and W. W. Hauck. 1991. A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. *International Statistical Review* 59: 25–35. https://doi.org/10.2307/ 1403572.
- Pendergast, J. F., S. J. Gange, M. A. Newton, M. J. Lindstrom, M. Palta, and M. R. Fisher. 1996. A survey of methods for analyzing clustered binary response data. *International Statistical Review* 64: 89–118. https://doi.org/10.2307/1403425.
- Plum, A. 2016. bireprob: An estimator for bivariate random-effects probit models. Stata Journal 16: 96-111.
- Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman and Hall/CRC.
- Stewart, M. B. 2006. Maximum simulated likelihood estimation of random-effects dynamic probit models with autocorrelated errors. *Stata Journal* 6: 256–272.
- Stock, J. H., and M. W. Watson. 2008. Heteroskedasticity-robust standard errors for fixed effects panel data regression. Econometrica 76: 155–174. https://doi.org/10.1111/j.0012-9682.2008.00821.x.
- Wooldridge, J. M. 2020. Introductory Econometrics: A Modern Approach. 7th ed. Boston: Cengage.

Also see

- [XT] **xtprobit postestimation** Postestimation tools for xtprobit
- [XT] **quadchk** Check sensitivity of quadrature approximation
- [XT] xtcloglog Random-effects and population-averaged cloglog models
- [XT] xteprobit Extended random-effects probit regression
- [XT] **xtgee** GEE population-averaged panel-data models
- [XT] xtlogit Fixed-effects, random-effects, and population-averaged logit models
- [XT] **xtset** Declare data to be panel data
- [BAYES] bayes: xtprobit Bayesian random-effects probit model
- [ME] meprobit Multilevel mixed-effects probit regression
- [MI] Estimation Estimation commands for use with mi estimate
- [R] **probit** Probit regression
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.