xtlogit - Fixed-effects, random-effects, and population-averaged logit models

Description Syntax Options for PA model Methods and formulas Quick start Options for RE model Remarks and examples References Menu Options for FE model Stored results Also see

Description

xtlogit fits random-effects, conditional fixed-effects, and population-averaged logit models for a binary dependent variable. The probability of a positive outcome is assumed to be determined by the logistic cumulative distribution function. Results may be reported as coefficients or odds ratios.

Quick start

Random-effects model of y as a function of x1, x2, and indicators for levels of categorical variable a using xtset data

xtlogit y x1 x2 i.a

Same as above, but report odds ratios

xtlogit y x1 x2 i.a, or

Conditional fixed-effects model

xtlogit y x1 x2 i.a, fe

Population-averaged model with robust standard errors

xtlogit y x1 x2 i.a, pa vce(robust)

Random-effects model with cluster-robust standard errors for panels nested within cvar xtlogit y x1 x2 i.a, vce(cluster cvar)

Menu

Statistics > Longitudinal/panel data > Binary outcomes > Logistic regression (FE, RE, PA)

Syntax

Random-effects (RE) model xtlogit depvar [indepvars] [if] [in] [weight] [, re RE_options]
Conditional fixed-effects (FE) model

 $\texttt{xtlogit} \ \textit{depvar} \ [\textit{indepvars}] \ [\textit{if} \] \ [\textit{in} \] \ [\textit{weight} \] \ \texttt{, fe} \ [\textit{FE_options} \]$

Population-averaged (PA) model

xtlogit depvar [indepvars] [if] [in] [weight], pa [PA_options]

RE_options	Description
Model	
<u>nocons</u> tant	suppress constant term
re	use random-effects estimator; the default
<u>off</u> set(<i>varname</i>)	include varname in model with coefficient constrained to 1
<pre><u>constraints(constraints)</u></pre>	apply specified linear constraints
asis	retain perfect predictor variables
SE/Robust	
vce(<i>vcetype</i>)	<i>vcetype</i> may be oim, <u>r</u> obust, <u>cl</u> uster <i>clustvar</i> , <u>boot</u> strap, or <u>jack</u> knife
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
or	report odds ratios
lrmodel	perform the likelihood-ratio model test instead of the default Wald test
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Integration	
<u>intm</u> ethod(<i>intmethod</i>)	integration method; <i>intmethod</i> may be <u>mv</u> aghermite (the default) or ghermite
<pre>intpoints(#)</pre>	use $\frac{3}{4}$ quadrature points; default is intpoints(12)
Maximization	
maximize_options	control the maximization process; seldom used
<u>nodis</u> play	suppress display of header and coefficients
<u>col</u> linear	keep collinear variables
<u>coefl</u> egend	display legend instead of statistics

xtlogit — Fixed-effects, random-effects, and population-averaged logit models 3

FE_options	Description
Model	
fe	use fixed-effects estimator
<u>offset(varname)</u>	include varname in model with coefficient constrained to 1
<u>const</u> raints(<i>constraints</i>)	apply specified linear constraints
SE	
vce(<i>vcetype</i>)	vcetype may be oim, <u>boot</u> strap, or <u>jackknife</u>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
or	report odds ratios
lrmodel	perform the likelihood-ratio model test instead of the default Wald test
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Maximization	
maximize_options	control the maximization process; seldom used
<u>nodis</u> play	suppress display of header and coefficients
<u>col</u> linear	keep collinear variables
<u>coefl</u> egend	display legend instead of statistics

xtlogit — Fixed-effects, random-effects, and population-averaged logit models 4

PA_options	Description
Model	
<u>nocons</u> tant	suppress constant term
pa	use population-averaged estimator
<u>off</u> set(<i>varname</i>)	include varname in model with coefficient constrained to 1
asis	retain perfect predictor variables
Correlation	
<u>c</u> orr(<i>correlation</i>)	within-panel correlation structure
force	estimate even if observations unequally spaced in time
SE/Robust	
vce(<i>vcetype</i>)	<i>vcetype</i> may be conventional, <u>r</u> obust, <u>boot</u> strap, or jackknife
nmp	use divisor $N - P$ instead of the default N
<u>s</u> cale(<i>parm</i>)	overrides the default scale parameter; <i>parm</i> may be x2, dev, phi, or #
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
or	report odds ratios
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Optimization	
optimize_options	control the optimization process; seldom used
<u>nodis</u> play	suppress display of header and coefficients
coeflegend	display legend instead of statistics

xtlogit — Fixed-effects, random-effects, and population-averaged logit models 5

correlation	Description
<u>exc</u> hangeable	exchangeable
<u>ind</u> ependent	independent
<u>un</u> structured	unstructured
<u>fix</u> ed <i>matname</i>	user-specified
ar #	autoregressive of order #
<u>sta</u> tionary #	stationary of order #
<u>non</u> stationary#	nonstationary of order #

A panel variable must be specified. For xtlogit, pa, correlation structures other than exchangeable and independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands. bayes is allowed for the randomeffects model. For more details, see [BAYES] bayes: xtlogit. fp is allowed for the random-effects and fixed-effects models.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are allowed for the fixed-effects and random-effects models; see [U] 11.1.6 weight. Weights must be constant within panel.

nodisplay, collinear, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for RE model

Model

noconstant; see [R] Estimation options.

re requests the random-effects estimator, which is the default.

offset(*varname*) constraints(*constraints*); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

Specifying vce(robust) is equivalent to specifying vce(cluster *panelvar*); see xtlogit, re and the robust VCE estimator in Methods and formulas.

Reporting

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, e^b rather than b. Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated. or may be specified at estimation or when replaying previously estimated results. lrmodel, nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod(intmethod), intpoints(#); see [R] Estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used.

The following options are available with xtlogit but are not shown in the dialog box:

nodisplay is for programmers. It suppresses the display of the header and the coefficients.

collinear, coeflegend; see [R] Estimation options.

Options for FE model

Model

fe requests the fixed-effects estimator.

offset(varname), constraints(constraints); see [R] Estimation options.

∫SE Ù

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim) and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

Reporting

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, e^b rather than b. Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated. or may be specified at estimation or when replaying previously estimated results.

lrmodel, nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options. Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used.

The following options are available with xtlogit but are not shown in the dialog box:

nodisplay is for programmers. It suppresses the display of the header and the coefficients.

collinear, coeflegend; see [R] Estimation options.

Options for PA model

Model

noconstant; see [R] Estimation options.

pa requests the population-averaged estimator.

offset(varname); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

Correlation

corr(*correlation*) specifies the within-panel correlation structure; the default corresponds to the equalcorrelation model, corr(exchangeable).

When you specify a correlation structure that requires a lag, you indicate the lag after the structure's name with or without a blank; for example, corr(ar1) or corr(ar1).

If you specify the fixed correlation structure, you specify the name of the matrix containing the assumed correlations following the word fixed, for example, corr(fixed myr).

force specifies that estimation be forced even though the time variable is not equally spaced. This is relevant only for correlation structures that require knowledge of the time variable. These correlation structures require that observations be equally spaced so that calculations based on lags correspond to a constant time change. If you specify a time variable indicating that observations are not equally spaced, the (time dependent) model will not be fit. If you also specify force, the model will be fit, and it will be assumed that the lags based on the data ordered by the time variable are appropriate.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (conventional), that are robust to some kinds of misspecification (robust), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized least-squares regression.

nmp, scale(x2 | dev | phi | #); see [XT] vce_options.

Reporting

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, e^b rather than b. Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated. or may be specified at estimation or when replaying previously estimated results.

display_options: noci, nopvalues, <u>noomit</u>ted, vsquish, noemptycells, <u>base</u>levels,

<u>allbase</u>levels, <u>nofvlab</u>el, fvwrap(#), fvwrapon(*style*), cformat(%*fmt*), pformat(%*fmt*), sformat(%*fmt*), and nolstretch; see [R] Estimation options.

Optimization

optimize_options control the iterative optimization process. These options are seldom used.

<u>iterate(#)</u> specifies the maximum number of iterations. When the number of iterations equals #, the optimization stops and presents the current results, even if convergence has not been reached. The default is iterate(100).

<u>tol</u>erance(#) specifies the tolerance for the coefficient vector. When the relative change in the coefficient vector from one iteration to the next is less than or equal to #, the optimization process is stopped. tolerance(1e-6) is the default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtlogit but are not shown in the dialog box:

nodisplay is for programmers. It suppresses the display of the header and the coefficients.

coeflegend; see [R] Estimation options.

Remarks and examples

xtlogit fits random-effects, conditional fixed-effects, and population-averaged logit models. Whenever we refer to a fixed-effects model, we mean the conditional fixed-effects model. *depvar* equal to nonzero and nonmissing (typically *depvar* equal to one) indicates a positive outcome, whereas *depvar* equal to zero indicates a negative outcome.

By default, the population-averaged model is an equal-correlation model; that is xtlogit, pa assumes corr(exchangeable). Thus, xtlogit is a convenience command for fitting the populationaveraged model using xtgee; see [XT] **xtgee**. Typing

```
. xtlogit ..., pa ...
```

is equivalent to typing

. xtgee ..., ... family(binomial) link(logit) corr(exchangeable)

It is also a convenience command if you want the fixed-effects model. Typing

```
. xtlogit ..., fe ...
```

is equivalent to typing

```
. clogit ..., group(varname_i) ...
```

See also [XT] **xtgee** and [R] **clogit** for information about xtlogit.

By default or when re is specified, xtlogit fits via maximum likelihood the random-effects model

$$\Pr(y_{it} \neq 0 | \mathbf{x}_{it}) = P(\mathbf{x}_{it}\boldsymbol{\beta} + \nu_i)$$

for i = 1, ..., n panels, where $t = 1, ..., n_i, \nu_i$ are i.i.d., $N(0, \sigma_{\nu}^2)$, and $P(z) = \{1 + \exp(-z)\}^{-1}$.

Underlying this model is the variance components model

$$y_{it} \neq 0 \iff \mathbf{x}_{it} \boldsymbol{\beta} + \nu_i + \epsilon_{it} > 0$$

where ϵ_{it} are i.i.d. logistic distributed with mean zero and variance $\sigma_{\epsilon}^2 = \pi^2/3$, independently of ν_i .

Example 1

We are studying unionization of women in the United States and are using the union dataset; see [XT] **xt**. We wish to fit a random-effects model of union membership:

use https://	/www.stata-pro	ss com/data	/r19/11ni	מר	-	
. use https://www.stata-press.com/data/r19/union (NLS Women 14-24 in 1968)						
. xtlogit unio	on age grade n	ot_smsa sou	th##c.yea	ar		
(output omitted)					
Random-effects Group variable	0 0	ression			mber of obs mber of group	,
Random effects	s u i ~ Gaussi	an		Ob	s per group:	
	-					in = 1
					a	rg = 5.9
					ma	ax = 12
Integration me	ethod: mvagher	mite		In	tegration pt	s. = 12
					ld chi2(6)	= 227.46
Log likelihood	d = -10540.274			Pr	ob > chi2	= 0.0000
union	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
age	.0156732	.0149895	1.05	0.296	0137056	.045052
grade	.0870851	.0176476	4.93	0.000	.0524965	.1216738
not_smsa	2511884	.0823508	-3.05	0.002	4125929	
1.south	-2.839112	.6413116	-4.43	0.000	-4.096059	
year	0068604	.0156575	-0.44	0.661	0375486	.0238277
south#c.year						
1	.0238506	.0079732	2.99	0.003	.0082235	.0394777
_cons	-3.009365	.8414963	-3.58	0.000	-4.658667	-1.360062
/lnsig2u	1.749366	.0470017			1.657245	1.841488
sigma_u	2.398116	.0563577			2.290162	2.511158
rho	.6361098	.0108797			.6145307	.6571548

LR test of rho=0: chibar2(01) = 6004.43

Prob >= chibar2 = 0.000

The output includes the additional panel-level variance component. This is parameterized as the log of the variance $\ln(\sigma_{\nu}^2)$ (labeled lnsig2u in the output). The standard deviation σ_{ν} is also included in the output and labeled sigma_u together with ρ (labeled rho),

$$\rho = \frac{\sigma_{\nu}^2}{\sigma_{\nu}^2 + \sigma_{\epsilon}^2}$$

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator is no different from the pooled estimator. A likelihood-ratio test of this is included at the bottom of the output. This test formally compares the pooled estimator (logit) with the panel estimator.

As an alternative to the random-effects specification, we might want to fit an equal-correlation logit model:

. xtlogit union age grade not_smsa south##c.year, pa

Iteration 2: Iteration 3: Iteration 4:	Tolerance = .14878775 Tolerance = .00949339 Tolerance = .00040606 Tolerance = .00001602 Tolerance = 6.628e-07		
GEE populatio Group variabl Family: Binom		Number of obs = Number of groups = Obs per group:	,
Link: Logit		min =	1
Correlation:	exchangeable	avg =	5.9
	-	max =	12
		Wald chi2(6) =	235.08
Scale paramet	er = 1	Prob > chi2 =	0.0000

union	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
age	.0165893	.0092229	1.80	0.072	0014873	.0346659
grade	.0600669	.0108343	5.54	0.000	.0388321	.0813016
not_smsa	1215445	.0483713	-2.51	0.012	2163505	0267384
1.south	-1.857094	.372967	-4.98	0.000	-2.588096	-1.126092
year	0121168	.0095707	-1.27	0.205	030875	.0066413
south#c.year						
1	.0160193	.0046076	3.48	0.001	.0069886	.0250501
_cons	-1.39755	.5089508	-2.75	0.006	-2.395075	4000247

Example 2

xtlogit with the pa option allows a vce(robust) option, so we can obtain the population-averaged logit estimator with the robust variance calculation by typing

. xtlogit union age grade not_smsa south##c.year, pa vce(robust) nolog						
	GEE population-averaged model Number of obs = 26,200					
Group variable					Number of group	s = 4,434
Family: Binom:	lal				Dbs per group:	
Link: Logit						n = 1
Correlation: e	exchangeable					rg = 5.9
						12 = 12
0					Wald chi2(6)	= 154.88
Scale paramete	er = 1			1	Prob > chi2	= 0.0000
		(Std.	err. ad	justed :	for clustering	on idcode)
		Robust				
union	Coefficient	std. err.	z	P> z	[95% conf.	interval]
age	.0165893	.008951	1.85	0.064	0009543	.0341329
grade	.0600669	.0133193	4.51	0.000	.0339616	.0861722
not_smsa	1215445	.0613803	-1.98	0.048	2418477	0012412
1.south	-1.857094	.5389238	-3.45	0.001	-2.913366	8008231
year	0121168	.0096998	-1.25	0.212	0311282	.0068945
south#c.year						
1	.0160193	.0067217	2.38	0.017	.002845	.0291937
_cons	-1.39755	.5603767	-2.49	0.013	-2.495868	2992317

These standard errors are somewhat larger than those obtained without the vce(robust) option.

Finally, we can also fit a fixed-effects model to these data (see also [R] clogit for details):

note: multiple note: 2,744 gr	. xtlogit union age grade not_smsa south##c.year, fe note: multiple positive outcomes within groups encountered. note: 2,744 groups (14,165 obs) omitted because of all positive or all negative outcomes.					
Iteration 0: Iteration 1: Iteration 2: Iteration 3:	Log likelihoo Log likelihoo	d = -4510.8 d = -4510.	906 888			
Conditional f: Group variable		ogistic reg	ression		umber of obs umber of group	
				וס	av	n = 2 g = 7.1 x = 12
Log likelihood	d = -4510.888				R chi2(6) rob > chi2	
union	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
age grade not_smsa 1.south year south#c.year	.0710973 .0816111 .0224809 -2.856488 0636853			0.843	0005259 199345	
1	.0264136	.0083216	3.17	0.002	.0101036	.0427235

Technical note

The random-effects model is calculated using quadrature, which is an approximation whose accuracy depends partially on the number of integration points used. We can use the quadchk command to see if changing the number of integration points affects the results. If the results change, the quadrature approximation is not accurate given the number of integration points. Try increasing the number of integration points using the intpoints() option and run quadchk again. Do not attempt to integret the results of estimates when the coefficients reported by quadchk differ substantially. See [XT] quadchk for details and [XT] xtprobit for an example.

Because the xtlogit likelihood function is calculated by Gauss-Hermite quadrature, on large problems the computations can be slow. Computation time is roughly proportional to the number of points used for the quadrature.

Stored results

xtlogit,	re stores	the	followin	g in	e():
----------	-----------	-----	----------	------	------

Scal	ars

	e(N)	number of observations
	e(N_g)	number of groups
	e(k)	number of parameters
	e(k_aux)	number of auxiliary parameters
	e(k_eq)	number of equations in e(b)
	e(k_eq_model)	number of equations in overall model test
	e(k_dv)	number of dependent variables
	e(df_m)	model degrees of freedom
	e(11)	log likelihood
	e(11_0)	log likelihood, constant-only model
	e(11_c)	log likelihood, comparison model
	e(chi2)	χ^2
	e(chi2_c)	χ^2 for comparison test
	e(N_clust)	number of clusters
	e(rho)	ρ
	e(sigma_u)	panel-level standard deviation
	e(n_quad)	number of quadrature points
	e(g_min)	smallest group size
	e(g_avg)	average group size
	e(g_max)	largest group size
	e(p)	<i>p</i> -value for model test
	e(rank)	rank of $e(V)$
	e(rank0)	rank of e(V) for constant-only model
	e(ic)	number of iterations
	e(rc)	return code
	e(converged)	1 if converged, 0 otherwise
Mac		
	e(cmd)	xtlogit
	e(cmdline)	command as typed
	e(depvar)	name of dependent variable
	e(ivar)	variable denoting groups
	e(model)	re
	e(wtype)	weight type
	e(wexp)	weight expression
	e(title)	title in estimation output
	e(clustvar)	name of cluster variable
	e(offset)	linear offset variable
	e(chi2type)	Wald or LR; type of model χ^2_2 test
	e(chi2_ct)	Wald or LR; type of model χ^2 test corresponding to e(chi2_c)
	e(vce)	vcetype specified in vce()
	e(vcetype)	title used to label Std. err.
	e(intmethod)	integration method
	e(distrib)	Gaussian; the distribution of the random effect
	e(opt)	type of optimization
	e(which)	max or min; whether optimizer is to perform maximization or minimization
	e(ml_method)	type of ml method
	e(user)	name of likelihood-evaluator program
	e(technique)	maximization technique
	e(properties)	b V
	e(predict)	program used to implement predict
	e(marginsdefault)	default predict() specification for margins
	e(asbalanced)	factor variables fvset as asbalanced
	e(asobserved)	factor variables fvset as asobserved

Matrices	
e(b)	coefficient vector
e(Cns)	constraints matrix
e(ilog)	iteration log
e(gradient)	gradient vector
e(V)	variance-covariance matrix of the estimators
e(V_modelbased)	model-based variance
Functions	
e(sample)	marks estimation sample

In addition to the above, the following is stored in r():

Matrices	
r(table)	

matrix containing the coefficients with their standard errors, test statistics, p-values, and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

xtlogit, fe stores the following in e():

$e(N)$ number of observations $e(N_g)$ number of groups $e(N_drop)$ number of observations dropped because of all positive or all negative outcomes $e(N_group_drop)$ number of groups dropped because of all positive or all negative outcomes $e(k)$ number of parameters $e(k_eq)$ number of equations in $e(b)$ $e(k_eq_model)$ number of dependent variables $e(df_m)$ model degrees of freedom $e(r2_p)$ pseudo- R^2 $e(11_0)$ log likelihood $e(til_2)$ χ^2 $e(g_min)$ smallest group size	Scalars	
$e(N_drop)$ number of observations dropped because of all positive or all negative outcomes $e(N_group_drop)$ number of groups dropped because of all positive or all negative outcomes $e(k)$ number of groups dropped because of all positive or all negative outcomes $e(k)$ number of parameters $e(k_eq]$ number of equations in $e(b)$ $e(k_eq_model)$ number of equations in overall model test $e(k_dv)$ number of dependent variables $e(df_m)$ model degrees of freedom $e(r2_p)$ pseudo- R^2 $e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(N)	number of observations
$e(N_group_drop)$ number of groups dropped because of all positive or all negative outcomes $e(k)$ number of parameters $e(k_eq)$ number of equations in $e(b)$ $e(k_eq_model)$ number of equations in overall model test $e(k_dv)$ number of dependent variables $e(df_m)$ model degrees of freedom $e(r2_p)$ pseudo- R^2 $e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(N_g)	number of groups
$e(k)$ number of parameters $e(k_eq)$ number of equations in $e(b)$ $e(k_eq_model)$ number of equations in overall model test $e(k_dv)$ number of dependent variables $e(df_m)$ model degrees of freedom $e(r2_p)$ pseudo- R^2 $e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(N_drop)	number of observations dropped because of all positive or all negative outcomes
$e(k_eq)$ number of equations in $e(b)$ $e(k_eq_model)$ number of equations in overall model test $e(k_dv)$ number of dependent variables $e(df_m)$ model degrees of freedom $e(r2_p)$ pseudo- R^2 $e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(N_group_drop)	number of groups dropped because of all positive or all negative outcomes
$e(k_eq_model)$ number of equations in overall model test $e(k_dv)$ number of dependent variables $e(df_m)$ model degrees of freedom $e(r2_p)$ pseudo- R^2 $e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(k)	number of parameters
$e(k_dv)$ number of dependent variables $e(df_m)$ model degrees of freedom $e(r2_p)$ pseudo- R^2 $e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(k_eq)	number of equations in e(b)
$e(df_m)$ model degrees of freedom $e(r2_p)$ pseudo- R^2 $e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(k_eq_model)	number of equations in overall model test
$e(r2_p)$ pseudo- R^2 $e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(k_dv)	
$e(11)$ log likelihood $e(11_0)$ log likelihood, constant-only model $e(chi2)$ χ^2	e(df_m)	model degrees of freedom
e(11_0)log likelihood, constant-only modele(chi2) χ^2	e(r2_p)	pseudo- R^2
e(chi2) χ^2	e(11)	log likelihood
	e(11_0)	log likelihood, constant-only model
e(g_min) smallest group size	e(chi2)	χ^2
	e(g_min)	smallest group size
e(g_avg) average group size	e(g_avg)	average group size
e(g_max) largest group size	e(g_max)	largest group size
e(p) p-value for model test	e(p)	<i>p</i> -value for model test
e(rank) rank of e(V)	e(rank)	rank of e(V)
e(ic) number of iterations	e(ic)	number of iterations
e(rc) return code	e(rc)	return code
e(converged) 1 if converged, 0 otherwise	e(converged)	1 if converged, 0 otherwise
Macros	Macros	
e(cmd) clogit	e(cmd)	clogit
e(cmd2) xtlogit	e(cmd2)	xtlogit
e(cmdline) command as typed	e(cmdline)	command as typed
e(depvar) name of dependent variable	e(depvar)	name of dependent variable
e(ivar) variable denoting groups	e(ivar)	variable denoting groups
e(model) fe	e(model)	fe
e(wtype) weight type	e(wtype)	weight type
e(wexp) weight expression	e(wexp)	weight expression
e(title) title in estimation output	e(title)	title in estimation output
e(offset) linear offset variable	e(offset)	linear offset variable
e(chi2type) LR; type of model χ^2 test	e(chi2type)	LR; type of model χ^2 test
e(vce) vcetype specified in vce()	e(vce)	vcetype specified in vce()
e(group) name of group() variable	e(group)	name of group() variable
e(multiple) multiple if multiple positive outcomes within groups	e(multiple)	multiple if multiple positive outcomes within groups

<pre>e(opt) e(which) e(ml_method) e(user) e(technique) e(properties) e(predict) e(marginsok) e(marginsnotok)</pre>	<pre>type of optimization max or min; whether optimizer is to perform maximization or minimization type of ml method name of likelihood-evaluator program maximization technique b V program used to implement predict predictions allowed by margins predictions disallowed by margins</pre>
e(marginsdefault)	default predict() specification for margins
e(asbalanced)	factor variables fvset as asbalanced
e(asobserved)	factor variables fvset as asobserved
Matrices	
e(b)	coefficient vector
e(Cns)	constraints matrix
e(ilog)	iteration log
e(gradient)	gradient vector
e(V)	variance-covariance matrix of the estimators
Functions	
e(sample)	marks estimation sample

In addition to the above, the following is stored in r():

```
Matrices
```

```
r(table)
```

matrix containing the coefficients with their standard errors, test statistics, *p*-values, and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

xtlogit, pa stores the following in e():

Scalars	
e(N)	number of observations
e(N_g)	number of groups
e(df_m)	model degrees of freedom
e(chi2)	χ^2
e(p)	<i>p</i> -value for model test
e(df_pear)	degrees of freedom for Pearson χ^2
e(chi2_dev)	χ^2 test of deviance
e(chi2_dis)	χ^2 test of deviance dispersion
e(deviance)	deviance
e(dispers)	deviance dispersion
e(phi)	scale parameter
e(g_min)	smallest group size
e(g_avg)	average group size
e(g_max)	largest group size
e(rank)	rank of e(V)
e(tol)	target tolerance
e(dif)	achieved tolerance
e(rc)	return code
Macros	
e(cmd)	xtgee
e(cmd2)	xtlogit
e(cmdline)	command as typed
e(depvar)	name of dependent variable
e(ivar)	variable denoting groups
e(tvar)	variable denoting time within groups

e(model)	pa
e(family)	binomial
e(link)	logit; link function
e(corr)	correlation structure
e(scale)	x2, dev, phi, or #; scale parameter
e(wtype)	weight type
e(wexp)	weight expression
e(offset)	linear offset variable
e(chi2type)	Wald; type of model χ^2 test
e(vce)	vcetype specified in vce()
e(vcetype)	title used to label Std. err.
e(nmp)	nmp, if specified
e(properties)	b V
e(predict)	program used to implement predict
e(marginsnotok)	predictions disallowed by margins
e(asbalanced)	factor variables fvset as asbalanced
e(asobserved)	factor variables fvset as asobserved
Matrices	
e(b)	coefficient vector
e(R)	estimated working correlation matrix
e(V)	variance-covariance matrix of the estimators
e(V_modelbased)	model-based variance
Functions	
e(sample)	marks estimation sample

In addition to the above, the following is stored in r():

Matrices r(table)

matrix containing the coefficients with their standard errors, test statistics, *p*-values, and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

Methods and formulas

xtlogit reports the population-averaged results obtained using xtgee, family(binomial) link(logit) to obtain estimates. The fixed-effects results are obtained using clogit. See [XT] **xtgee** and [R] **clogit** for details on the methods and formulas.

If we assume a normal distribution, $N(0, \sigma_{\nu}^2)$, for the random effects ν_i ,

$$\Pr(y_{i1},\ldots,y_{in_i}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{in_i}) = \int_{-\infty}^{\infty} \frac{e^{-\nu_i^2/2\sigma_\nu^2}}{\sqrt{2\pi}\sigma_\nu} \left\{ \prod_{t=1}^{n_i} F(y_{it},\mathbf{x}_{it}\boldsymbol{\beta}+\nu_i) \right\} d\nu_i$$

where

$$F(y,z) = \begin{cases} \displaystyle \frac{1}{1+\exp(-z)} & \text{if } y \neq 0 \\ \\ \displaystyle \frac{1}{1+\exp(z)} & \text{otherwise} \end{cases}$$

The panel-level likelihood l_i is given by

$$\begin{split} l_i &= \int_{-\infty}^{\infty} \frac{e^{-\nu_i^2/2\sigma_{\nu}^2}}{\sqrt{2\pi}\sigma_{\nu}} \left\{ \prod_{t=1}^{n_i} F(y_{it}, \mathbf{x}_{it} \boldsymbol{\beta} + \nu_i) \right\} d\nu_i \\ &\equiv \int_{-\infty}^{\infty} g(y_{it}, x_{it}, \nu_i) d\nu_i \end{split}$$

This integral can be approximated with *M*-point Gauss–Hermite quadrature

$$\int_{-\infty}^{\infty}e^{-x^2}h(x)dx\approx\sum_{m=1}^{M}w_m^*h(a_m^*)$$

This is equivalent to

$$\int_{-\infty}^{\infty} f(x) dx \approx \sum_{m=1}^{M} w_m^* \exp\left\{(a_m^*)^2\right\} f(a_m^*)$$

where the w_m^* denote the quadrature weights and the a_m^* denote the quadrature abscissas. The log likelihood, L, is the sum of the logs of the panel-level likelihoods l_i .

The default approximation of the log likelihood is by adaptive Gauss-Hermite quadrature, which approximates the panel-level likelihood with

$$l_i\approx \sqrt{2}\hat{\sigma}_i\sum_{m=1}^M w_m^*\exp\left\{(a_m^*)^2\right\}g(y_{it},x_{it},\sqrt{2}\hat{\sigma}_ia_m^*+\hat{\mu}_i)$$

where $\hat{\sigma}_i$ and $\hat{\mu}_i$ are the adaptive parameters for panel *i*. Therefore, with the definition of $g(y_{it}, x_{it}, \nu_i)$, the total log likelihood is approximated by

$$\begin{split} L \approx \sum_{i=1}^n w_i \log \biggl[\sqrt{2} \hat{\sigma}_i \sum_{m=1}^M w_m^* \exp\{(a_m^*)^2\} \frac{\exp\{-(\sqrt{2} \hat{\sigma}_i a_m^* + \hat{\mu}_i)^2 / 2\sigma_\nu^2\}}{\sqrt{2\pi}\sigma_\nu} \\ \prod_{t=1}^{n_i} F(y_{it}, x_{it}\beta + \sqrt{2} \hat{\sigma}_i a_m^* + \hat{\mu}_i) \biggr] \end{split}$$

where w_i is the user-specified weight for panel *i*; if no weights are specified, $w_i = 1$.

The default method of adaptive Gauss–Hermite quadrature is to calculate the posterior mean and variance and use those parameters for $\hat{\mu}_i$ and $\hat{\sigma}_i$ by following the method of Naylor and Smith (1982), further discussed in Skrondal and Rabe-Hesketh (2004). We start with $\hat{\sigma}_{i,0} = 1$ and $\hat{\mu}_{i,0} = 0$, and the posterior means and variances are updated in the *k*th iteration. That is, at the *k*th iteration of the optimization for l_i , we use

$$l_{i,k} \approx \sum_{m=1}^{M} \sqrt{2} \hat{\sigma}_{i,k-1} w_m^* \exp\{a_m^*)^2 \} g(y_{it}, x_{it}, \sqrt{2} \hat{\sigma}_{i,k-1} a_m^* + \hat{\mu}_{i,k-1})$$

Letting

$$\tau_{i,m,k-1} = \sqrt{2}\hat{\sigma}_{i,k-1}a_m^* + \hat{\mu}_{i,k-1}$$

$$\hat{\mu}_{i,k} = \sum_{m=1}^{M} (\tau_{i,m,k-1}) \frac{\sqrt{2} \hat{\sigma}_{i,k-1} w_m^* \exp\{(a_m^*)^2\} g(y_{it}, x_{it}, \tau_{i,m,k-1})}{l_{i,k}}$$

and

$$\hat{\sigma}_{i,k} = \sum_{m=1}^{M} (\tau_{i,m,k-1})^2 \frac{\sqrt{2} \hat{\sigma}_{i,k-1} w_m^* \exp\{(a_m^*)^2\} g(y_{it}, x_{it}, \tau_{i,m,k-1})}{l_{i,k}} - \left(\hat{\mu}_{i,k}\right)^2$$

and this is repeated until $\hat{\mu}_{i,k}$ and $\hat{\sigma}_{i,k}$ have converged for this iteration of the maximization algorithm. This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration is less than a relative difference of 1e–6; after this, the quadrature parameters are fixed.

The log likelihood can also be calculated by nonadaptive Gauss-Hermite quadrature, the intmethod(ghermite) option, where $\rho = \sigma_{\nu}^2/(\sigma_{\nu}^2 + 1)$:

$$\begin{split} L &= \sum_{i=1}^{n} w_i \log \Big\{ \Pr(y_{i1}, \dots, y_{in_i} | \mathbf{x}_{i1}, \dots, \mathbf{x}_{in_i}) \Big\} \\ &\approx \sum_{i=1}^{n} w_i \log \left[\frac{1}{\sqrt{\pi}} \sum_{m=1}^{M} w_m^* \prod_{t=1}^{n_i} F\left\{ y_{it}, \mathbf{x}_{it} \boldsymbol{\beta} + a_m^* \left(\frac{2\rho}{1-\rho} \right)^{1/2} \right\} \right] \end{split}$$

Both quadrature formulas require that the integrated function be well approximated by a polynomial of degree equal to the number of quadrature points. The number of periods (panel size) can affect whether

$$\prod_{t=1}^{n_i} F(y_{it}, \mathbf{x}_{it} \boldsymbol{\beta} + \nu_i)$$

is well approximated by a polynomial. As panel size and ρ increase, the quadrature approximation can become less accurate. For large ρ , the random-effects model can also become unidentified. Adaptive quadrature gives better results for correlated data and large panels than nonadaptive quadrature; however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the quadrature approximation used in this command, whichever approximation you choose.

xtlogit, re and the robust VCE estimator

Specifying vce(robust) or vce(cluster *clustvar*) causes the Huber/White/sandwich VCE estimator to be calculated for the coefficients estimated in this regression. See [P] **_robust**, particularly *Introduction* and *Methods and formulas*. Wooldridge (2020) and Arellano (2003) discuss this application of the Huber/White/sandwich VCE estimator. As discussed by Wooldridge (2020), Stock and Watson (2008), and Arellano (2003), specifying vce(robust) is equivalent to specifying vce(cluster *panel-var*), where *panelvar* is the variable that identifies the panels.

Clustering on the panel variable produces a consistent VCE estimator when the disturbances are not identically distributed over the panels or there is serial correlation in ϵ_{ii} .

The cluster–robust VCE estimator requires that there are many clusters and the disturbances are uncorrelated across the clusters. The panel variable must be nested within the cluster variable because of the within-panel correlation that is generally induced by the random-effects transform when there is heteroskedasticity or within-panel serial correlation in the idiosyncratic errors.

References

Allison, P. D. 2009. Fixed Effects Regression Models. Newbury Park, CA: Sage.

- Arellano, M. 2003. Panel Data Econometrics. Oxford: Oxford University Press. https://doi.org/10.1093/0199245282.001. 0001.
- Conway, M. R. 1990. A random effects model for binary data. Biometrics 46: 317-328. https://doi.org/10.2307/2531437.
- Cruz-Gonzalez, M., I. Fernández-Val, and M. Weidner. 2017. Bias corrections for probit and logit models with two-way fixed effects. Stata Journal 17: 517–545.
- Liang, K.-Y., and S. L. Zeger. 1986. Longitudinal data analysis using generalized linear models. *Biometrika* 73: 13–22. https://doi.org/10.1093/biomet/73.1.13.
- Naylor, J. C., and A. F. M. Smith. 1982. Applications of a method for the efficient computation of posterior distributions. Journal of the Royal Statistical Society, C ser., 31: 214–225. https://doi.org/10.2307/2347995.
- Neuhaus, J. M. 1992. Statistical methods for longitudinal and clustered designs with binary responses. Statistical Methods in Medical Research 1: 249–273. https://doi.org/10.1177/096228029200100303.
- Neuhaus, J. M., J. D. Kalbfleisch, and W. W. Hauck. 1991. A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. *International Statistical Review* 59: 25–35. https://doi.org/10.2307/ 1403572.
- Pendergast, J. F., S. J. Gange, M. A. Newton, M. J. Lindstrom, M. Palta, and M. R. Fisher. 1996. A survey of methods for analyzing clustered binary response data. *International Statistical Review* 64: 89–118. https://doi.org/10.2307/1403425.
- Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman and Hall/CRC.
- Stock, J. H., and M. W. Watson. 2008. Heteroskedasticity-robust standard errors for fixed effects panel data regression. Econometrica 76: 155–174. https://doi.org/10.1111/j.0012-9682.2008.00821.x.
- Twisk, J. W. R. 2013. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2nd ed. Cambridge: Cambridge University Press.
- Wooldridge, J. M. 2020. Introductory Econometrics: A Modern Approach. 7th ed. Boston: Cengage.

Also see

- [XT] **xtlogit postestimation** Postestimation tools for xtlogit
- [XT] **quadchk** Check sensitivity of quadrature approximation
- [XT] xtcloglog Random-effects and population-averaged cloglog models
- [XT] **xtgee** GEE population-averaged panel-data models
- [XT] **xtmlogit** Fixed-effects and random-effects multinomial logit models
- [XT] **xtprobit** Random-effects and population-averaged probit models
- [XT] **xtset** Declare data to be panel data
- [BAYES] **bayes: xtlogit** Bayesian random-effects logit model
- [ME] melogit Multilevel mixed-effects logistic regression
- [MI] Estimation Estimation commands for use with mi estimate
- [R] clogit Conditional (fixed-effects) logistic regression
- [R] logistic Logistic regression, reporting odds ratios
- [R] logit Logistic regression, reporting coefficients
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.