
xthtaylor — Hausman–Taylor estimator for error-components model

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
xthtaylor fits a random-effects model for panel data in which some of the covariates are correlated

with the unobserved individual-level random effects. The command implements the Hausman–Taylor

estimator by default, but the Amemiya–MaCurdy estimator is available for balanced panels.

Quick start
Hausman–Taylor model of y as a function of time-varying exogenous variable x1, time-invariant binary

variable a, and time-varying endogenous variable x2 using xtset data

xthtaylor y x1 x2 a, endog(x2)

Same as above, and verify that a is the only time-invariant variable in the model

xthtaylor y x1 x2 a, endog(x2) constant(a)

Add time-invariant x3 as an endogenous covariate, but do not verify that a and x3 are the only time-

invariant variables

xthtaylor y x1 x2 a x3, endog(x2 x3)

Same as above, but use Amemiya–MaCurdy estimator for balanced panels

xthtaylor y x1 x2 a x3, endog(x2 x3) am

Menu
Statistics > Longitudinal/panel data > Endogenous covariates > Hausman–Taylor regression (RE)
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Syntax
xthtaylor depvar indepvars [ if ] [ in ] [weight ] , endog(varlist) [ options ]

options Description

Model

noconstant suppress constant term
∗ endog(varlist) explanatory variables in indepvars to be treated as endogenous

constant(varlistti) independent variables that are constant within panel

varying(varlisttv) independent variables that are time varying within panel

amacurdy fit model based on Amemiya and MaCurdy estimator

SE/Robust

vce(vcetype) vcetype may be conventional, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
small report small-sample statistics

∗endog(varlist) is required.

A panel variable must be specified. For xthtaylor, amacurdy, a time variable must also be specified. Use xtset;
see [XT] xtset.

depvar, indepvars, and all varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

iweights and fweights are allowed unless the amacurdy option is specified. Weights must be constant within panel; see
[U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

endog(varlist) specifies that a subset of explanatory variables in indepvars be treated as endogenous

variables, that is, the explanatory variables that are assumed to be correlated with the unobserved

random effect. endog() is required.

constant(varlistti) specifies the subset of variables in indepvars that are time invariant, that is, con-

stant within panel. By using this option, you assert not only that the variables specified in varlistti are

time invariant but also that all other variables in indepvars are time varying. If this assertion is false,

xthtaylor does not perform the estimation and will issue an error message. xthtaylor automati-

cally detects which variables are time invariant and which are not. However, users may want to check

their understanding of the data and specify which variables are time invariant and which are not.

varying(varlisttv) specifies the subset of variables in indepvars that are time varying. By using this

option, you assert not only that the variables specified in varlisttv are time varying but also that all

other variables in indepvars are time invariant. If this assertion is false, xthtaylor does not perform

the estimation and will issue an error message. xthtaylor automatically detects which variables are

time varying and which are not. However, users may want to check their understanding of the data

and specify which variables are time varying and which are not.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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amacurdy specifies that the Amemiya–MaCurdy estimator be used. This estimator uses extra instru-

ments to gain efficiency at the cost of additional assumptions on the data-generating process. This

option may be specified only for samples containing balanced panels, and weights may not be speci-

fied. The panels must also have a common initial period.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (conventional), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for this Haus-
man–Taylor model.

Specifying vce(robust) is equivalent to specifying vce(cluster panelvar); see xtpoisson, re and
the robust VCE estimator in Methods and formulas of [XT] xtpoisson.

� � �
Reporting �

level(#); see [R] Estimation options.

small specifies that the 𝑝-values from theWald tests in the output and all subsequentWald tests obtained

via test use 𝑡 and 𝐹 distributions instead of the large-sample normal and 𝜒2 distributions. By default,

the 𝑝-values are obtained using the normal and 𝜒2 distributions.

Remarks and examples
If you have not read [XT] xt, please do so.

Consider a random-effects model of the form

𝑦𝑖𝑡 = X1𝑖𝑡β1 + X2𝑖𝑡β2 + Z1𝑖δ1 + Z2𝑖δ2 + 𝜇𝑖 + 𝜖𝑖𝑡

where

X1𝑖𝑡 is a 1×𝑘1 vector of observations on exogenous, time-varying variables assumed to be uncorrelated

with 𝜇𝑖 and 𝜖𝑖𝑡;

X2𝑖𝑡 is a 1×𝑘2 vector of observations on endogenous, time-varying variables assumed to be (possibly)

correlated with 𝜇𝑖 but orthogonal to 𝜖𝑖𝑡;

Z1𝑖 is a 1 × 𝑔1 vector of observations on exogenous, time-invariant variables assumed to be uncorre-

lated with 𝜇𝑖 and 𝜖𝑖𝑡;

Z2𝑖 is a 1×𝑔2 vector of observations on endogenous, time-invariant variables assumed to be (possibly)

correlated 𝜇𝑖 but orthogonal to 𝜖𝑖𝑡;

𝜇𝑖 is the unobserved, panel-level random effect that is assumed to have zero mean and finite variance

𝜎2
𝜇 and to be independent and identically distributed (i.i.d.) over the panels;

𝜖𝑖𝑡 is the idiosyncratic error that is assumed to have zero mean and finite variance 𝜎2
𝜖 and to be i.i.d.

over all the observations in the data;

β1, β2, δ1, and δ2 are 𝑘1 × 1, 𝑘2 × 1, 𝑔1 × 1, and 𝑔2 × 1 coefficient vectors, respectively; and

𝑖 = 1, . . . , 𝑛, where 𝑛 is the number of panels in the sample and, for each 𝑖, 𝑡 = 1, . . . , 𝑇𝑖.

https://www.stata.com/manuals/xtvce_options.pdf#xtvce_options
https://www.stata.com/manuals/xtxtpoisson.pdf#xtxtpoissonMethodsandformulasxtpoisson,reandtherobustVCEestimator
https://www.stata.com/manuals/xtxtpoisson.pdf#xtxtpoissonMethodsandformulasxtpoisson,reandtherobustVCEestimator
https://www.stata.com/manuals/xtxtpoisson.pdf#xtxtpoisson
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/xtxt.pdf#xtxt
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Because X2𝑖𝑡 and Z2𝑖 may be correlated with 𝜇𝑖, the simple random-effects estimators—xtreg, re
and xtreg, mle—are generally not consistent for the parameters in this model. Because the within

estimator, xtreg, fe, removes the 𝜇𝑖 by mean-differencing the data before estimating β1 and β2, it

is consistent for these parameters. However, in the process of removing the 𝜇𝑖, the within estimator

also eliminates the Z1𝑖 and the Z2𝑖. Thus it cannot estimate δ1 nor δ2. The Hausman–Taylor and

Amemiya–MaCurdy estimators implemented in xthtaylor are designed to resolve this problem.

The within estimator consistently estimates β1 and β2. Using these estimates, we can obtain the

within residuals, called ̂𝑑𝑖. Intermediate, albeit consistent, estimates of δ1 and δ2—called ̂δ1IV and ̂δ2IV,

respectively—are obtained by regressing the within residuals on Z1𝑖 and Z2𝑖, using X1𝑖𝑡 and Z1𝑖 as

instruments. The order condition for identification requires that the number of variables in X1𝑖𝑡, 𝑘1, be

at least as large as the number of elements in Z2𝑖, 𝑔2 and that there be sufficient correlation between the

instruments and Z2𝑖 to avoid a weak-instrument problem.

The within estimates of β1 and β2 and the intermediate estimates
̂δ1IV and ̂δ2IV can be used to obtain

sets of within and overall residuals. These two sets of residuals can be used to estimate the variance

components (see Methods and formulas for details).

The estimated variance components can then be used to perform a GLS transform on each of the

variables. For what follows, define the general notation �̆�𝑖𝑡 to represent the GLS transform of the variable

𝑤𝑖𝑡, 𝑤𝑖 to represent the within-panel mean of 𝑤𝑖𝑡, and 𝑤𝑖𝑡 to represent the within transform of 𝑤𝑖𝑡. With

this notational convention, the Hausman–Taylor (1981) estimator of the coefficients of interest can be

obtained by the instrumental-variables regression

̆𝑦𝑖𝑡 = X̆1𝑖𝑡β1 + X̆2𝑖𝑡β2 + Z̆1𝑖δ1 + Z̆2𝑖δ2 + ̆𝜇𝑖 + ̆𝜖𝑖𝑡 (1)

using X̃1𝑖𝑡, X̃2𝑖𝑡, X1𝑖, X2𝑖, and Z1𝑖 as instruments.

For the instruments to be valid, this estimator requires that X1𝑖. and Z1𝑖 be uncorrelated with the

random-effect 𝜇𝑖. More precisely, the instruments are valid when

plim𝑛→∞
1
𝑛

𝑛
∑
𝑖=1

X1𝑖.𝜇𝑖 = 0

and

plim𝑛→∞
1
𝑛

𝑛
∑
𝑖=1

Z1𝑖𝜇𝑖 = 0

Amemiya and MaCurdy (1986) place stricter requirements on the instruments that vary within panels

to obtain a more efficient estimator. Specifically, Amemiya and MaCurdy (1986) assume that X1𝑖𝑡 is

orthogonal to 𝜇𝑖 in every period; that is, plim𝑛→∞1/𝑛 ∑𝑛
𝑖=1 X1𝑖𝑡𝜇𝑖 = 0 for 𝑡 = 1, . . . , 𝑇. With this

restriction, they derive theAmemiya–MaCurdy estimator as the instrumental-variables regression of (1)

using instruments X̃1𝑖𝑡, X̃2𝑖𝑡, X
∗
1𝑖𝑡, and Z1𝑖. The order condition for the Amemiya–MaCurdy estimator

is now 𝑇 𝑘1 > 𝑔2. xthtaylor uses the Amemiya–MaCurdy estimator when the amacurdy option is

specified.

Although the estimators implemented in xthtaylor and xtivreg (see [XT] xtivreg) use the method

of instrumental variables, each command is designed for different problems. The estimators imple-

mented in xtivreg assume that a subset of the explanatory variables in the model are correlated with

the idiosyncratic error 𝜖𝑖𝑡. In contrast, the Hausman–Taylor and Amemiya–MaCurdy estimators that

are implemented in xthtaylor assume that some of the explanatory variables are correlated with the

individual-level random effects, 𝑢𝑖, but that none of the explanatory variables are correlated with the

idiosyncratic error, 𝜖𝑖𝑡.

https://www.stata.com/manuals/xtxthtaylor.pdf#xtxthtaylorMethodsandformulas
https://www.stata.com/manuals/xtxthtaylor.pdf#xtxthtaylorRemarksandexampleseq1
https://www.stata.com/manuals/xtxtivreg.pdf#xtxtivreg
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Example 1
This example replicates the results of Baltagi and Khanti-Akom (1990, table II, column HT) using

595 observations on individuals over 1976–1982 that were extracted from the Panel Study of Income

Dynamics (PSID). In the model, the log-transformed wage lwage is assumed to be a function of how

long the person has worked for a firm, wks; binary variables indicating whether a person lives in a

large metropolitan area or in the south, smsa and south; marital status is ms; years of education, ed; a
quadratic of work experience, exp and exp2; occupation, occ; a binary variable indicating employment
in a manufacture industry, ind; a binary variable indicating that wages are set by a union contract, union;
a binary variable indicating gender, fem; and a binary variable indicatingwhether the individual isAfrican
American, blk.

We suspect that the time-varying variables exp, exp2, wks, ms, and union are all correlated with

the unobserved individual random effect. We can inspect these variables to see if they exhibit sufficient

within-panel variation to serve as their own instruments.

. use https://www.stata-press.com/data/r19/psidextract

. xtsum exp exp2 wks ms union
Variable Mean Std. dev. Min Max Observations

exp overall 19.85378 10.96637 1 51 N = 4165
between 10.79018 4 48 n = 595
within 2.00024 16.85378 22.85378 T = 7

exp2 overall 514.405 496.9962 1 2601 N = 4165
between 489.0495 20 2308 n = 595
within 90.44581 231.405 807.405 T = 7

wks overall 46.81152 5.129098 5 52 N = 4165
between 3.284016 31.57143 51.57143 n = 595
within 3.941881 12.2401 63.66867 T = 7

ms overall .8144058 .3888256 0 1 N = 4165
between .3686109 0 1 n = 595
within .1245274 -.0427371 1.671549 T = 7

union overall .3639856 .4812023 0 1 N = 4165
between .4543848 0 1 n = 595
within .1593351 -.4931573 1.221128 T = 7
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We are also going to assume that the exogenous variables occ, south, smsa, ind, fem, and blk are

instruments for the endogenous, time-invariant variable ed. The output below indicates that although

fem appears to be a weak instrument, the remaining instruments are probably sufficiently correlated to

identify the coefficient on ed. (See Baltagi and Khanti-Akom [1990] for more discussion.)

. correlate fem blk occ south smsa ind ed
(obs=4,165)

fem blk occ south smsa ind ed

fem 1.0000
blk 0.2086 1.0000
occ -0.0847 0.0837 1.0000

south 0.0516 0.1218 0.0413 1.0000
smsa 0.1044 0.1154 -0.2018 -0.1350 1.0000
ind -0.1778 -0.0475 0.2260 -0.0769 -0.0689 1.0000
ed -0.0012 -0.1196 -0.6194 -0.1216 0.1843 -0.2365 1.0000

We will assume that the correlations are strong enough and proceed with the estimation. The output

below gives the Hausman–Taylor estimates for this model.

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed,
> endog(exp exp2 wks ms union ed)
Hausman--Taylor estimation Number of obs = 4,165
Group variable: id Number of groups = 595

Obs per group:
min = 7
avg = 7
max = 7

Random effects u_i ~ i.i.d. Wald chi2(12) = 6891.87
Prob > chi2 = 0.0000

lwage Coefficient Std. err. z P>|z| [95% conf. interval]

TVexogenous
occ -.0207047 .0137809 -1.50 0.133 -.0477149 .0063055

south .0074398 .031955 0.23 0.816 -.0551908 .0700705
smsa -.0418334 .0189581 -2.21 0.027 -.0789906 -.0046761
ind .0136039 .0152374 0.89 0.372 -.0162608 .0434686

TVendogenous
exp .1131328 .002471 45.79 0.000 .1082898 .1179758

exp2 -.0004189 .0000546 -7.67 0.000 -.0005259 -.0003119
wks .0008374 .0005997 1.40 0.163 -.0003381 .0020129
ms -.0298508 .01898 -1.57 0.116 -.0670508 .0073493

union .0327714 .0149084 2.20 0.028 .0035514 .0619914
TIexogenous

fem -.1309236 .126659 -1.03 0.301 -.3791707 .1173234
blk -.2857479 .1557019 -1.84 0.066 -.5909179 .0194221

TIendogenous
ed .137944 .0212485 6.49 0.000 .0962977 .1795902

_cons 2.912726 .2836522 10.27 0.000 2.356778 3.468674

sigma_u .94180304
sigma_e .15180273

rho .97467788 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.
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The estimated 𝜎𝜇 and 𝜎𝜖 are 0.9418 and 0.1518, respectively, indicating that a large fraction of the

total error variance is attributed to 𝜇𝑖. The 𝑧 statistics indicate that several the coefficients may not be

significantly different from zero. Whereas the coefficients on the time-invariant variables fem and blk
have relatively large standard errors, the standard error for the coefficient on ed is relatively small.

Baltagi and Khanti-Akom (1990) also present evidence that the efficiency gains of the

Amemiya–MaCurdy estimator over the Hausman–Taylor estimator are small for these data. This point

is especially important given the additional restrictions that the estimator places on the data-generating

process. The output below replicates the Baltagi and Khanti-Akom (1990) results from column AM of

table II.

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed,
> endog(exp exp2 wks ms union ed) amacurdy
Amemiya--MaCurdy estimation Number of obs = 4,165
Group variable: id Number of groups = 595
Time variable: t Obs per group:

min = 7
avg = 7
max = 7

Random effects u_i ~ i.i.d. Wald chi2(12) = 6879.20
Prob > chi2 = 0.0000

lwage Coefficient Std. err. z P>|z| [95% conf. interval]

TVexogenous
occ -.0208498 .0137653 -1.51 0.130 -.0478292 .0061297

south .0072818 .0319365 0.23 0.820 -.0553126 .0698761
smsa -.0419507 .0189471 -2.21 0.027 -.0790864 -.0048149
ind .0136289 .015229 0.89 0.371 -.0162194 .0434771

TVendogenous
exp .1129704 .0024688 45.76 0.000 .1081316 .1178093

exp2 -.0004214 .0000546 -7.72 0.000 -.0005283 -.0003145
wks .0008381 .0005995 1.40 0.162 -.0003368 .002013
ms -.0300894 .0189674 -1.59 0.113 -.0672649 .0070861

union .0324752 .0148939 2.18 0.029 .0032837 .0616667
TIexogenous

fem -.132008 .1266039 -1.04 0.297 -.380147 .1161311
blk -.2859004 .1554857 -1.84 0.066 -.5906468 .0188459

TIendogenous
ed .1372049 .0205695 6.67 0.000 .0968894 .1775205

_cons 2.927338 .2751274 10.64 0.000 2.388098 3.466578

sigma_u .94180304
sigma_e .15180273

rho .97467788 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

Technical note
Wementioned earlier that insufficient correlation between an endogenous variable and the instruments

can give rise to a weak-instrument problem. Suppose that we simulate data for a model of the form

𝑦 = 3 + 3𝑥1𝑎 + 3𝑥1𝑏 + 3𝑥2 + 3𝑧1 + 3𝑧2 + 𝑢𝑖 + 𝑒𝑖𝑡
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and purposely construct the instruments so that they exhibit little correlationwith the endogenous variable

𝑧2.

. use https://www.stata-press.com/data/r19/xthtaylor1

. correlate ui z1 z2 x1a x1b x2 eit
(obs=10,000)

ui z1 z2 x1a x1b x2 eit

ui 1.0000
z1 0.0268 1.0000
z2 0.8777 0.0286 1.0000

x1a -0.0145 0.0065 -0.0034 1.0000
x1b 0.0026 0.0079 0.0038 -0.0030 1.0000
x2 0.8765 0.0191 0.7671 -0.0192 0.0037 1.0000

eit 0.0060 -0.0198 0.0123 -0.0100 -0.0138 0.0092 1.0000

In the output below, weak instruments have serious consequences on the estimates produced by

xthtaylor. The estimate of the coefficient on z2 is three times larger than its true value, and its standard
error is rather large. Without sufficient correlation between the endogenous variable and its instruments

in a given sample, there is insufficient information for identifying the parameter. Also, given the re-

sults of Stock, Wright, and Yogo (2002), weak instruments will cause serious size distortions in any tests

performed.

. xthtaylor yit x1a x1b x2 z1 z2, endog(x2 z2)
Hausman--Taylor estimation Number of obs = 10,000
Group variable: id Number of groups = 1,000

Obs per group:
min = 10
avg = 10
max = 10

Random effects u_i ~ i.i.d. Wald chi2(5) = 24172.91
Prob > chi2 = 0.0000

yit Coefficient Std. err. z P>|z| [95% conf. interval]

TVexogenous
x1a 2.959736 .0330233 89.63 0.000 2.895011 3.02446
x1b 2.953891 .0333051 88.69 0.000 2.888614 3.019168

TVendogenous
x2 3.022685 .033085 91.36 0.000 2.957839 3.08753

TIexogenous
z1 2.709179 .587031 4.62 0.000 1.55862 3.859739

TIendogenous
z2 9.525973 8.572966 1.11 0.266 -7.276732 26.32868

_cons 2.837072 .4276595 6.63 0.000 1.998875 3.675269

sigma_u 8.729479
sigma_e 3.1657492

rho .88377062 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.
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Example 2
Now let’s consider why we might want to specify the constant(varlistti) option. For this example,

we will use simulated data. In the output below, we fit a model over the full sample. Note the placement

in the output of the coefficient on the exogenous variable x1c.

. use https://www.stata-press.com/data/r19/xthtaylor2

. xthtaylor yit x1a x1b x1c x2 z1 z2, endog(x2 z2)
Hausman--Taylor estimation Number of obs = 10,000
Group variable: id Number of groups = 1,000

Obs per group:
min = 10
avg = 10
max = 10

Random effects u_i ~ i.i.d. Wald chi2(6) = 10341.63
Prob > chi2 = 0.0000

yit Coefficient Std. err. z P>|z| [95% conf. interval]

TVexogenous
x1a 3.023647 .0570274 53.02 0.000 2.911875 3.135418
x1b 2.966666 .0572659 51.81 0.000 2.854427 3.078905
x1c .2355318 .123502 1.91 0.057 -.0065276 .4775912

TVendogenous
x2 14.17476 3.128385 4.53 0.000 8.043234 20.30628

TIexogenous
z1 1.741709 .4280022 4.07 0.000 .9028398 2.580578

TIendogenous
z2 7.983849 .6970903 11.45 0.000 6.617577 9.350121

_cons 2.146038 .3794179 5.66 0.000 1.402393 2.889684

sigma_u 5.6787791
sigma_e 3.1806188

rho .76120931 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.
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Now suppose that we want to fit the model using only the first eight periods. Below, x1c now appears

under the TIexogenous heading rather than the TVexogenous heading because x1c is time invariant in

the subsample defined by t<9.

. xthtaylor yit x1a x1b x1c x2 z1 z2 if t<9, endog(x2 z2)
Hausman--Taylor estimation Number of obs = 8,000
Group variable: id Number of groups = 1,000

Obs per group:
min = 8
avg = 8
max = 8

Random effects u_i ~ i.i.d. Wald chi2(6) = 15354.87
Prob > chi2 = 0.0000

yit Coefficient Std. err. z P>|z| [95% conf. interval]

TVexogenous
x1a 3.051966 .0367026 83.15 0.000 2.98003 3.123901
x1b 2.967822 .0368144 80.62 0.000 2.895667 3.039977

TVendogenous
x2 .7361217 3.199764 0.23 0.818 -5.5353 7.007543

TIexogenous
x1c 3.215907 .5657191 5.68 0.000 2.107118 4.324696
z1 3.347644 .5819756 5.75 0.000 2.206992 4.488295

TIendogenous
z2 2.010578 1.143982 1.76 0.079 -.231586 4.252742

_cons 3.257004 .5295828 6.15 0.000 2.219041 4.294967

sigma_u 15.445594
sigma_e 3.175083

rho .95945606 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

To prevent a variable from becoming time invariant, you can use either constant(varlistti) or

varying(varlisttv). constant(varlistti) specifies the subset of variables in varlist that are time invari-

ant and requires the remaining variables in varlist to be time varying. If you specify constant(varlistti)
and any of the variables contained in varlistti are time varying, or if any of the variables not contained in

varlistti are time invariant, xthtaylor will not perform the estimation and will issue an error message.

. xthtaylor yit x1a x1b x1c x2 z1 z2 if t<9, endog(x2 z2) constant(z1 z2)
x1c not included in constant().
r(198);

The same thing happens when you use the varying(varlisttv) option.

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)


xthtaylor — Hausman–Taylor estimator for error-components model 11

Stored results
xthtaylor stores the following in e():

Scalars

e(N) number of observations

e(N g) number of groups

e(df m) model degrees of freedom

e(df r) residual degrees of freedom (small only)

e(g min) smallest group size

e(g avg) average group size

e(g max) largest group size

e(Tcon) 1 if panels balanced, 0 otherwise

e(N clust) number of clusters

e(sigma u) panel-level standard deviation

e(sigma e) standard deviation of 𝜖𝑖𝑡
e(chi2) 𝜒2

e(rho) 𝜌
e(F) model 𝐹 (small only)

e(Tbar) harmonic mean of group sizes

e(rank) rank of e(V)

Macros

e(cmd) xthtaylor
e(cmdline) command as typed

e(depvar) name of dependent variable

e(ivar) variable denoting groups

e(tvar) variable denoting time within groups, amacurdy only

e(TVexogenous) exogenous time-varying variables

e(TIexogenous) exogenous time-invariant variables

e(TVendogenous) endogenous time-varying variables

e(TIendogenous) endogenous time-invariant variables

e(wtype) weight type

e(wexp) weight expression

e(title) Hausman-Taylor or Amemiya-MaCurdy
e(clustvar) name of cluster variable

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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Methods and formulas
Consider an error-components model of the form

𝑦𝑖𝑡 = X1𝑖𝑡β1 + X2𝑖𝑡β2 + Z1𝑖δ1 + Z2𝑖δ2 + 𝜇𝑖 + 𝜖𝑖𝑡 (2)

for 𝑖 = 1, . . . , 𝑛 and, for each 𝑖, 𝑡 = 1, . . . , 𝑇𝑖, of which 𝑇𝑖 periods are observed; 𝑛 is the number of

panels in the sample. The covariates in X are time varying, and the covariates in Z are time invariant.

BothX andZ are decomposed into two parts. The covariates inX1 andZ1 are assumed to be uncorrelated

with 𝜇𝑖 and 𝑒𝑖𝑡, whereas the covariates in X2 and Z2 are allowed to be correlated with 𝜇𝑖 but not with

𝜖𝑖𝑡. Hausman and Taylor (1981) suggest an instrumental-variable estimator for this model.

For some variable 𝑤, the within transformation of 𝑤 is defined as

𝑤𝑖𝑡 = 𝑤𝑖𝑡 − 𝑤𝑖. 𝑤𝑖. = 1
𝑇𝑖

𝑇𝑖

∑
𝑡=1

𝑤𝑖𝑡

Because the within estimator removes Z, the within transformation reduces the model to

̃𝑦𝑖𝑡 = X̃1𝑖𝑡β1 + X̃2𝑖𝑡β2 + ̃𝜖𝑖𝑡

The within estimators ̂𝛽1𝑤 and ̂𝛽2𝑤 are consistent for β1 and β2, but they may not be efficient. Also,

note that the within estimator cannot estimate δ1 and δ2.

From the within estimator, we can obtain an estimate of the idiosyncratic error component, 𝜎2
𝜖 , as

�̂�2
𝜖 = RSS

𝑁 − 𝑛

where RSS is the residual sum of squares from the within regression and 𝑁 is the total number of obser-

vations in the sample.

Using the results of the within estimation, we can define

𝑑𝑖𝑡 = 𝑦𝑖𝑡 − 𝑋1𝑖𝑡
̂𝛽1𝑤 − 𝑋2𝑖𝑡

̂𝛽2𝑤

where 𝑦𝑖𝑡, 𝑋1𝑖𝑡, and 𝑋2𝑖𝑡 contain the panel level means of these variables in all observations.

Regressing 𝑑𝑖𝑡 on Z1 and Z2, using X1 and Z1 as instruments, provides intermediate, consistent

estimates of δ1 and δ2, which we will call
̂δ1IV and ̂δ2IV.

Using the within estimates, ̂δ1IV, and
̂δ2IV, we can obtain an estimate of the variance of the random

effect, 𝜎2
𝜇. First, let

̂𝑒𝑖𝑡 = (𝑦𝑖𝑡 − X1𝑖𝑡β̂1𝑤 − X2𝑖𝑡β̂2𝑤 − Z1𝑖𝑡
̂δ1IV − Z2𝑖𝑡

̂δ2IV)

Then define

𝑠2 = 1
𝑁

𝑛
∑
𝑖=1

𝑇𝑖

∑
𝑡=1

( 1
𝑇𝑖

𝑇𝑖

∑
𝑡=1

̂𝑒𝑖𝑡)
2

Hausman and Taylor (1981) showed that, for balanced panels,

plim𝑛→∞𝑠2 = 𝑇 𝜎2
𝜇 + 𝜎2

𝜖
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For unbalanced panels,

plim𝑛→∞𝑠2 = 𝑇𝜎2
𝜇 + 𝜎2

𝜖

where

𝑇 = 𝑛
∑𝑛

𝑖=1
1
𝑇𝑖

After we plug in �̂�2
𝜖 , our consistent estimate for 𝜎2

𝜖 , a little algebra suggests the estimate

�̂�2
𝜇 = (𝑠2 − �̂�2

𝜖 )(𝑇)−1

Define ̂𝜃𝑖 as

̂𝜃𝑖 = 1 − ( �̂�2
𝜖

�̂�2
𝜖 + 𝑇𝑖�̂�2

𝜇
)

1
2

With 𝜃𝑖 in hand, we can perform the standard random-effects GLS transform on each of the variables.

The transform is given by

𝑤∗
𝑖𝑡 = 𝑤𝑖𝑡 − 𝜃𝑖𝑤𝑖.

where 𝑤𝑖. is the within-panel mean.

We can then obtain the Hausman–Taylor estimates of the coefficients in (2) and the conventional

VCE by fitting an instrumental-variables regression of the GLS-transformed 𝑦∗
𝑖𝑡 on X∗

𝑖𝑡 and Z∗
𝑖𝑡, with

instruments X̃𝑖𝑡, X1𝑖., and Z1𝑖.

We can obtain Amemiya–MaCurdy estimates of the coefficients in (2) and the conventional VCE

by fitting an instrumental-variables regression of the GLS-transformed 𝑦∗
𝑖𝑡 on X∗

𝑖𝑡 and Z∗
𝑖𝑡, using X̃𝑖𝑡,

X̆1𝑖𝑡, and Z1𝑖 as instruments, where X̆1𝑖𝑡 = X1𝑖1,X1𝑖2, . . . ,X1𝑖𝑇𝑖
. The order condition for the

Amemiya–MaCurdy estimator is 𝑇 𝑘1 > 𝑔2, and this estimator is available only for balanced panels.
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