xtgee — Fit population-averaged panel-data models by using GEE

Description

xtgee fits population-averaged panel-data models. In particular, xtgee fits generalized linear models and allows you to specify the within-group correlation structure for the panels.

Quick start

Population-averaged linear regression of \(y \) on \(x_1 \) and \(x_2 \)

\[
\text{xtgee } y \ x_1 \ x_2
\]

As above, but estimate time-varying intragroup correlations

\[
\text{xtgee } y \ x_1 \ x_2, \ corr(\text{unstructured})
\]

As above, but estimate a common second-order autoregression structure for the within-panel correlation

\[
\text{xtgee } y \ x_1 \ x_2, \ corr(\text{ar } 2)
\]

Population-averaged negative binomial regression of \(y_2 \) on \(x_3 \) and \(x_4 \) equivalent to xtnbreg, pa

\[
\text{xtgee } y_2 \ x_3 \ x_4, \ family(nbinomial \ 1)
\]

Population-averaged logistic regression of \(y_3 \) on \(x_5 \) and \(x_6 \) when \(y_3 \) is the number of events out of 10 trials

\[
\text{xtgee } y_3 \ x_5 \ x_6, \ family(binomial \ 10)
\]

Menu

Statistics > Longitudinal/panel data > Generalized estimating equations (GEE) > Generalized estimating equations (GEE)
Syntax

```
xtgee depvar [ indepvars ] [ if ] [ in ] [ weight ] [ , options ]
```

options

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>family(family)</code></td>
<td>distribution of <code>depvar</code></td>
</tr>
<tr>
<td><code>link(link)</code></td>
<td>link function</td>
</tr>
</tbody>
</table>

Model 2

`exposure(varname)`	include `ln(varname)` in model with coefficient constrained to 1
`offset(varname)`	include `varname` in model with coefficient constrained to 1
`noconstant`	suppress constant term
`asis`	retain perfect predictor variables
`force`	estimate even if observations unequally spaced in time

Correlation

| `corr(correlation)` | within-group correlation structure |

SE/Robust

`vce(vcetype)`	`vcetype` may be `conventional`, `robust`, `bootstrap`, or `jackknife`
`nmp`	use divisor `N − P` instead of the default `N`
`rgf`	multiply the robust variance estimate by `(N − 1)/(N − P)`
`scale(parm)`	overrides the default scale parameter; `parm` may be `x2`, `dev`, `phi`, or `#`

Reporting

`level(#)`	set confidence level; default is `level(95)`
`eform`	report exponentiated coefficients
`display_options`	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Optimization

`optimize_options`	control the optimization process; seldom used
`nodisplay`	suppress display of header and coefficients
`coeflegend`	display legend instead of statistics

A panel variable must be specified. Correlation structures other than `exchangeable` and `independent` require that a time variable also be specified. Use `xtset`; see [XT] xtset.

`indepvars` may contain factor variables; see [U] 11.4.3 Factor variables.

`depvar` and `indepvars` may contain time-series operators; see [U] 11.4 varname and varlists.

by, `collect`, `mfp`, `mi estimate`, and `statsby` are allowed; see [U] 11.1.10 Prefix commands.

`vce(bootstrap)` and `vce(jackknife)` are not allowed with the `mi estimate` prefix; see [MI] mi estimate.

`iweights`, `fweights`, and `pweights` are allowed; see [U] 11.1.6 weight. Weights must be constant within panel. `nodisplay` and `coeflegend` do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
family	Description
gaussian | Gaussian (normal); family(normal) is a synonym
igaussian | inverse Gaussian
binomial[#| varname] | Bernoulli/binomial
poisson | Poisson
nbinomial[#] | negative binomial
gamma | gamma

link	Link function/definition
identity | identity; \(y = y \)
log | log; \(\ln(y) \)
logit | logit; \(\ln\{y/(1 - y)\} \), natural log of the odds
probit | probit; \(\Phi^{-1}(y) \), where \(\Phi() \) is the normal cumulative distribution
cloglog | cloglog; \(\ln\{-\ln(1 - y)\} \)
power[#] | power; \(y^k \) with \(k = # \); \(# = 1 \) if not specified
opower[#] | odds power; \(\{y/(1 - y)\}^k - 1\}/k \) with \(k = # \); \(# = 1 \) if not specified
nbinomial | negative binomial; \(\ln\{y/(y + \alpha)\} \)
reciprocal | reciprocal; \(1/y \)

correlation	Description
exchangeable | exchangeable
independent | independent
unstructured | unstructured
fixed matname | user-specified
ar # | autoregressive of order #
stationary # | stationary of order #
nonstationary # | nonstationary of order #

Options

family(family) specifies the distribution of \textit{depvar}; family(gaussian) is the default.

link(link) specifies the link function; the default is the canonical link for the family() specified (except for family(nbinomial)).

exposure(varname) and offset(varname) are different ways of specifying the same thing.
exposure() specifies a variable that reflects the amount of exposure over which the \textit{depvar} events were observed for each observation; \(\ln(varname) \) with coefficient constrained to be 1 is entered into the regression equation. offset() specifies a variable that is to be entered directly into the log-link function with its coefficient constrained to be 1; thus, exposure is assumed to be \(e^{varname} \). If you were fitting a Poisson regression model, family(poisson) link(log), for instance, you would account for exposure time by specifying offset() containing the log of exposure time.
noconstant specifies that the linear predictor has no intercept term, thus forcing it through the origin on the scale defined by the link function.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations and may produce instabilities in maximization; see [R] probit. This option is only allowed with option family(binomial) with a denominator of 1.

force specifies that estimation be forced even though the time variable is not equally spaced. This is relevant only for correlation structures that require knowledge of the time variable. These correlation structures require that observations be equally spaced so that calculations based on lags correspond to a constant time change. If you specify a time variable indicating that observations are not equally spaced, the (time dependent) model will not be fit. If you also specify force, the model will be fit, and it will be assumed that the lags based on the data ordered by the time variable are appropriate.

corr(correlation) specifies the within-group correlation structure; the default corresponds to the equal-correlation model, corr(exchangeable).

When you specify a correlation structure that requires a lag, you indicate the lag after the structure’s name with or without a blank; for example, corr(ar 1) or corr(ar1).

If you specify the fixed correlation structure, you specify the name of the matrix containing the assumed correlations following the word fixed, for example, corr(fixed myr).

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (conventional), that are robust to some kinds of misspecification (robust), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized least-squares regression.

vce(robust) specifies that the Huber/White/sandwich estimator of variance is to be used in place of the default conventional variance estimator (see Methods and formulas below). Use of this option causes xtgee to produce valid standard errors even if the correlations within group are not as hypothesized by the specified correlation structure. Under a noncanonical link, it does, however, require that the model correctly specifies the mean. The resulting standard errors are thus labeled “semirobust” instead of “robust” in this case. Although there is no vce(cluster clustvar) option, results are as if this option were included and you specified clustering on the panel variable.

rgf specifies that the robust variance estimate is multiplied by \((N - 1)/(N - P) \), where \(N \) is the total number of observations and \(P \) is the number of coefficients estimated. This option can be used only with family(gaussian) when vce(robust) is either specified or implied by the use of pweights. Using this option implies that the robust variance estimate is not invariant to the scale of any weights used.

scale(x2| dev | phi | #); see [XT] vce_options.

level(#); see [R] Estimation options.
eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals as described in [R] Maximize. For family(binomial) link(logit) (that is, logistic
regression), exponentiation results in odds ratios; for family(poisson) link(log) (that is,
Poisson regression), exponentiated coefficients are incidence-rate ratios.

display_options: noci, nopvalues, nomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fwrap(#), fwrapon(style), cformat(%fmt), pformat(%fmt),
sformat(%fmt), and nolstretch; see [R] Estimation options.

Optimization

optimize_options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by
default unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtgee but are not shown in the dialog box:

nodisplay is for programmers. It suppresses display of the header and coefficients.

tcoeflegend; see [R] Estimation options.

Remarks and examples

For a thorough introduction to GEE in the estimation of GLM, see Hardin and Hilbe (2013). More
information on linear models is presented in Nelder and Wedderburn (1972). Finally, there have
been several illuminating articles on various applications of GEE in Zeger, Liang, and Albert (1988);
analyzing clustered data in regard to binary response data. Our implementation follows that of Liang
and Zeger (1986).

xtgee fits generalized linear models of \(y_{it} \) with covariates \(x_{it} \)
\[
g \{ E(y_{it}) \} = x_{it} \beta, \quad y \sim F \text{ with parameters } \theta_{it}
\]
for \(i = 1, \ldots, m \) and \(t = 1, \ldots, n_i \), where there are \(n_i \) observations for each group identifier \(i \). \(g() \)
is called the link function, and \(F \) is the distributional family. Substituting various definitions for \(g() \)
and \(F \) results in a wide array of models. For instance, if \(y_{it} \) is distributed Gaussian (normal) and
\(g() \) is the identity function, we have
\[
E(y_{it}) = x_{it} \beta, \quad y \sim N()
\]
yielding linear regression, random-effects regression, or other regression-related models, depending
on what we assume for the correlation structure.

If \(g() \) is the logit function and \(y_{it} \) is distributed Bernoulli (binomial), we have
\[
\text{logit}\{ E(y_{it}) \} = x_{it} \beta, \quad y \sim \text{Bernoulli}
\]
or logistic regression. If \(g(\cdot) \) is the natural log function and \(y_{it} \) is distributed Poisson, we have

\[
\ln\left\{ E(y_{it}) \right\} = x_{it} \beta, \quad y \sim \text{Poisson}
\]
or Poisson regression, also known as the log-linear model. Other combinations are possible.

You specify the link function with the `link()` option, the distributional family with `family()`, and the assumed within-group correlation structure with `corr()`.

The binomial distribution can be specified as case 1 `family(binomial)`, case 2 `family(binomial #)`, or case 3 `family(binomial varname)`. In case 2, # is the value of the binomial denominator \(N \), the number of trials. Specifying `family(binomial 1)` is the same as specifying `family(binomial)`; both mean that \(y \) has the Bernoulli distribution with values 0 and 1 only. In case 3, `varname` is the variable containing the binomial denominator, thus allowing the number of trials to vary across observations.

The negative binomial distribution must be specified as `family(nbinomial #)`, where # denotes the value of the parameter \(\alpha \) in the negative binomial distribution. The results will be conditional on this value.

You do not have to specify both `family()` and `link()`; the default `link()` is the canonical link for the specified `family()` (excluding `family(nbinomial)`):

<table>
<thead>
<tr>
<th>Family</th>
<th>Default link</th>
</tr>
</thead>
<tbody>
<tr>
<td>family(binomial)</td>
<td>link(logit)</td>
</tr>
<tr>
<td>family(gamma)</td>
<td>link(reciprocal)</td>
</tr>
<tr>
<td>family(gaussian)</td>
<td>link(identity)</td>
</tr>
<tr>
<td>family(igaussian)</td>
<td>link(power -2)</td>
</tr>
<tr>
<td>family(nbinomial)</td>
<td>link(log)</td>
</tr>
<tr>
<td>family(poisson)</td>
<td>link(log)</td>
</tr>
</tbody>
</table>

The canonical link for the negative binomial family is obtained by specifying `link(nbinomial)`. If you specify both `family()` and `link()`, not all combinations make sense. You may choose among the following combinations:

<table>
<thead>
<tr>
<th>Gaussian</th>
<th>Inverse</th>
<th>Binomial</th>
<th>Poisson</th>
<th>Negative</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Log</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Logit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Probit</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. log-log</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Odds Power</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg. binom.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Reciprocal</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

You specify the assumed within-group correlation structure with the `corr()` option.

For example, call \(R \) the working correlation matrix for modeling the within-group correlation, a square \(\max\{n_i\} \times \max\{n_i\} \) matrix. `corr()` specifies the structure of \(R \). Let \(R_{t,s} \) denote the \(t, s \) element.

The independent structure is defined as

\[
R_{t,s} = \begin{cases}
1 & \text{if } t = s \\
0 & \text{otherwise}
\end{cases}
\]
The \texttt{corr(exchangeable)} structure (corresponding to equal-correlation models) is defined as
\[
R_{t,s} = \begin{cases}
1 & \text{if } t = s \\
\rho & \text{otherwise}
\end{cases}
\]

The \texttt{corr(ar g)} structure is defined as the usual correlation matrix for an AR(g) model. This is sometimes called multiplicative correlation. For example, an AR(1) model is given by
\[
R_{t,s} = \begin{cases}
1 & \text{if } t = s \\
\rho^{|t-s|} & \text{otherwise}
\end{cases}
\]

The \texttt{corr(stationary g)} structure is a stationary(g) model. For example, a stationary(1) model is given by
\[
R_{t,s} = \begin{cases}
1 & \text{if } t = s \\
\rho & \text{if } |t-s| = 1 \\
0 & \text{otherwise}
\end{cases}
\]

The \texttt{corr(nonstationary g)} structure is a nonstationary(g) model that imposes only the constraints that the elements of the working correlation matrix along the diagonal be 1 and the elements outside the gth band be zero,
\[
R_{t,s} = \begin{cases}
1 & \text{if } t = s \\
\rho_{ts} & \text{if } 0 < |t-s| \leq g, \rho_{ts} = \rho_{st} \\
0 & \text{otherwise}
\end{cases}
\]

\texttt{corr(unstructured)} imposes only the constraint that the diagonal elements of the working correlation matrix be 1.
\[
R_{t,s} = \begin{cases}
1 & \text{if } t = s \\
\rho_{ts} & \text{otherwise}, \rho_{ts} = \rho_{st}
\end{cases}
\]

The \texttt{corr(fixed matname)} specification is taken from the user-supplied matrix, such that
\[
R = \text{matname}
\]
Here the correlations are not estimated from the data. The user-supplied matrix must be a valid correlation matrix with 1s on the diagonal.

Full formulas for all the correlation structures are provided in the \textit{Methods and formulas} below.

\section*{Technical note}

Some \texttt{family()}, \texttt{link()}, and \texttt{corr()} combinations result in models already fit by Stata:

<table>
<thead>
<tr>
<th>family()</th>
<th>link()</th>
<th>corr()</th>
<th>Other Stata estimation command</th>
</tr>
</thead>
<tbody>
<tr>
<td>gaussian</td>
<td>identity</td>
<td>independent</td>
<td>\textit{regress}</td>
</tr>
<tr>
<td>gaussian</td>
<td>identity</td>
<td>exchangeable</td>
<td>\textit{xtreg}, \textit{re}</td>
</tr>
<tr>
<td>gaussian</td>
<td>identity</td>
<td>exchangeable</td>
<td>\textit{xtreg}, \textit{pa}</td>
</tr>
<tr>
<td>binomial</td>
<td>cloglog</td>
<td>independent</td>
<td>\textit{cloglog} (see note 1)</td>
</tr>
<tr>
<td>binomial</td>
<td>cloglog</td>
<td>exchangeable</td>
<td>\textit{xtcloglog}, \textit{pa}</td>
</tr>
<tr>
<td>binomial</td>
<td>logit</td>
<td>independent</td>
<td>\textit{logit} or \textit{logistic}</td>
</tr>
<tr>
<td>binomial</td>
<td>logit</td>
<td>exchangeable</td>
<td>\textit{xtlogit}, \textit{pa}</td>
</tr>
<tr>
<td>binomial</td>
<td>probit</td>
<td>independent</td>
<td>\textit{probit} (see note 2)</td>
</tr>
<tr>
<td>binomial</td>
<td>probit</td>
<td>exchangeable</td>
<td>\textit{xtprobit}, \textit{pa}</td>
</tr>
<tr>
<td>nbinomial</td>
<td>log</td>
<td>independent</td>
<td>\textit{nbreg} (see note 3)</td>
</tr>
<tr>
<td>poisson</td>
<td>log</td>
<td>independent</td>
<td>\textit{poisson}</td>
</tr>
<tr>
<td>poisson</td>
<td>log</td>
<td>exchangeable</td>
<td>\textit{xtpoisson}, \textit{pa}</td>
</tr>
<tr>
<td>gamma</td>
<td>log</td>
<td>independent</td>
<td>\textit{streg}, \textit{dist(exp)} \textit{nohr} (see note 4)</td>
</tr>
<tr>
<td>family</td>
<td>\textit{link}</td>
<td>independent</td>
<td>\textit{glm, irls} (see note 5)</td>
</tr>
</tbody>
</table>
Notes:

1. For cloglog estimation, \texttt{xtgee} with \texttt{corr(independent)} and \texttt{cloglog} (see \texttt{[R] cloglog}) will produce the same coefficients, but the standard errors will be only asymptotically equivalent because cloglog is not the canonical link for the binomial family.

2. For probit estimation, \texttt{xtgee} with \texttt{corr(independent)} and \texttt{probit} will produce the same coefficients, but the standard errors will be only asymptotically equivalent because probit is not the canonical link for the binomial family. If the binomial denominator is not 1, the equivalent maximum-likelihood command is \texttt{glm} with options \texttt{family(binomial #)} or \texttt{family(binomial varname and link(probit)); see [R] probit and [R] glm.}

3. Fitting a negative binomial model by using \texttt{xtgee} (or using \texttt{glm}) will yield results conditional on the specified value of α. The \texttt{nbreg} command, however, estimates that parameter and provides unconditional estimates; see \texttt{[R] nbreg}.

4. \texttt{xtgee} with \texttt{corr(independent)} can be used to fit exponential regressions, but this requires specifying \texttt{scale(1)}. As with probit, the \texttt{xtgee}-reported standard errors will be only asymptotically equivalent to those produced by \texttt{streg, dist(exp) nohr} (see \texttt{[ST] streg}) because log is not the canonical link for the gamma family. \texttt{xtgee} cannot be used to fit exponential regressions on censored data.

 Using the \texttt{independent} correlation structure, the \texttt{xtgee} command will fit the same model fit with the \texttt{glm, irls} command if the family–link combination is the same.

5. If the \texttt{xtgee} command is equivalent to another command, using \texttt{corr(independent)} and the \texttt{vce(robust)} option with \texttt{xtgee} corresponds to using the \texttt{vce(cluster clustvar)} option in the equivalent command, where \texttt{clustvar} corresponds to the panel variable.

\texttt{xtgee} is a generalization of the \texttt{glm, irls} command and gives the same output when the same family and link are specified together with an independent correlation structure. What makes \texttt{xtgee} useful is

- the number of statistical models that it generalizes for use with panel data, many of which are not otherwise available in Stata;
- the richer correlation structure \texttt{xtgee} allows, even when models are available through other \texttt{xt} commands; and
- the availability of robust standard errors (see \texttt{[U] 20.22 Obtaining robust variance estimates}), even when the model and correlation structure are available through other \texttt{xt} commands.

In the following examples, we illustrate the relationships of \texttt{xtgee} with other Stata estimation commands. Remember that, although \texttt{xtgee} generalizes many other commands, the computational algorithm is different; therefore, the answers you obtain will not be identical. The dataset we are using is a subset of the \texttt{nlswork} data (see \texttt{[XT] xt}); we are looking at observations before 1980.
Example 1

We can use `xtgee` to perform ordinary least squares by `regress`:

```
use https://www.stata-press.com/data/r17/nlswork2
(regression data for Young Women, 14-24 years old in 1968)
.
regress ln_w grade age c.age#c.age
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 16,085</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>597.54468</td>
<td>3</td>
<td>199.18156</td>
<td>F(3, 16081) = 1413.68</td>
</tr>
<tr>
<td>Residual</td>
<td>2265.74584</td>
<td>16,081</td>
<td>.14089583</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>2863.29052</td>
<td>16,084</td>
<td>.178021047</td>
<td>R-squared = 0.2087</td>
</tr>
</tbody>
</table>

```
ln_wage  Coefficient  Std. err.  t   P>|t|  [95% conf. interval]
grade    .0724483    .0014229  50.91 0.000  .0696592 - .0752374
age      .1064874    .0083644  12.73 0.000  .0900922 - .1228825
c.age#c.age -.0016931  .0001655  -10.23 0.000 -.0020174 - .0013688
_cons    -.8681487   .1024896  -8.47 0.000  -.106904 - .6672577
```

```
xtgee ln_w grade age c.age#c.age, corr(indep) nmp
```

Iteration 1: tolerance = 8.765e-13

GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: independent avg = 4.1
 max = 9

Wald chi2(3) = 4241.04 Prob > chi2 = 0.0000
Pearson chi2(16081) = 2265.75 Deviance = 2265.75
Dispersion (Pearson) = .1408958 Dispersion = .1408958

```
ln_wage  Coefficient  Std. err.  z   P>|z|  [95% conf. interval]
grade    .0724483    .0014229  50.91 0.000  .0696594 - .0752372
age      .1064874    .0083644  12.73 0.000  .0900935 - .1228812
c.age#c.age -.0016931  .0001655  -10.23 0.000 -.0020174 - .0013688
_cons    -.8681487   .1024896  -8.47 0.000  -.1069025 -.6672728
```

When `nmp` is specified, the coefficients and the standard errors produced by the estimators are the same. Moreover, the scale parameter estimate from the `xtgee` command equals the MSE calculation from `regress`; both are estimates of the variance of the residuals.
Example 2

The identity link and Gaussian family produce regression-type models. With the independent correlation structure, we reproduce ordinary least squares. With the exchangeable correlation structure, we produce an equal-correlation linear regression estimator.

`xtgee, fam(gauss) link(ident) corr(exch)` is asymptotically equivalent to the weighted-GLS estimator provided by `xtreg, re` and to the full maximum-likelihood estimator provided by `xtreg, mle`. In balanced data, `xtgee, fam(gauss) link(ident) corr(exch)` and `xtreg, mle` produce the same results. With unbalanced data, the results are close but differ because the two estimators handle unbalanced data differently. For both balanced and unbalanced data, the results produced by `xtgee, fam(gauss) link(ident) corr(exch)` and `xtreg, mle` differ from those produced by `xtreg, re`. Below we demonstrate the use of the three estimators with unbalanced data. We begin with `xtgee`; show the maximum likelihood estimator `xtreg, mle`; show the GLS estimator `xtreg, re`; and finally show `xtgee` with the `vce(robust)` option.

```
. xtgee ln_w grade age c.age#c.age, nolog
GEE population-averaged model
Group variable: idcode
Family: Gaussian
Link: Identity
Correlation: exchangeable

Number of obs = 16,085
Group variable: idcode
Number of groups = 3,913
Obs per group:
min = 1
avg = 4.1
max = 9
Wald chi2(3) = 2918.26
Scale parameter = .1416586
Prob > chi2 = 0.0000

|        | Coefficient | Std. err. | z    | P>|z| | [95% conf. interval] |
|--------|-------------|-----------|------|-----|---------------------|
| ln_w   |             |           |      |     |                     |
| grade  | .0717731    | .00211    | 34.02| 0.000| .0676377 - .0759086 |
| age    | .1077645    | .006885   | 15.65| 0.000| .0942701 - .1212589 |
| c.age#c.age | -.0016381 | .001362   | -12.03| 0.000| -.001905 - -.0013712 |
| _cons  | -.9480449   | .0869277  | -10.91| 0.000| -1.11842 - -.7776698 |
```
. xtreg ln_w grade age c.age#c.age, mle

Fitting constant-only model:
Iteration 0: log likelihood = -5868.3483
Iteration 1: log likelihood = -5858.8833
Iteration 2: log likelihood = -5858.8244

Fitting full model:
Iteration 0: log likelihood = -4591.9241
Iteration 1: log likelihood = -4562.4406
Iteration 2: log likelihood = -4562.3526
Iteration 3: log likelihood = -4562.3525

Random-effects ML regression
Number of obs = 16,085
Group variable: idcode
Number of groups = 3,913
Random effects u_i ~ Gaussian
Obs per group:
 min = 1
 avg = 4.1
 max = 9
LR chi2(3) = 2592.94
Log likelihood = -4562.3525
Prob > chi2 = 0.0000

| | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|---------|-------------|-----------|------|-----|---------------------|
| ln_w | | | | | |
| grade | 0.0717747 | 0.002142 | 33.51| 0.000| 0.0675765 - 0.075973|
| age | 0.1077899 | 0.0068266 | 15.79| 0.000| 0.0944101 - 0.1211697|
| c.age#c.age | -.0016364 | 0.000135 | -12.12| 0.000| -.0019011 - -.0013718|
| _cons | -.9500833 | 0.086384 | -11.00| 0.000| -1.119393 - -.7807737|
| /sigma_u| 0.2689639 | 0.040854 | .6192| 0.000| .2610748 - .2770915 |
| /sigma_e| 0.2669944 | 0.0017113 | 154.67| 0.000| .2636613 - .2703696 |
| rho | 0.5036748 | 0.0086449 | 58.25| 0.000| .4867329 - .52061 |

LR test of sigma_u=0: chibar2(01) = 4996.22
Prob >= chibar2 = 0.000
. xtreg ln_w grade age c.age#c.age, re

Random-effects GLS regression

Number of obs = 16,085
Group variable: idcode
Number of groups = 3,913

R-squared:
Within = 0.0983
min = 1
Between = 0.2946
avg = 4.1
Overall = 0.2076
max = 9

Wald chi2(3) = 2875.02
corr(u_i, X) = 0 (assumed)
Prob > chi2 = 0.0000

| ln_wage | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|----------|-------------|-----------|------|-------|---------------------|
| grade | .0717757 | .0021666 | 33.13| 0.000 | .0675294 to .0760221 |
| age | .1078042 | .0068125 | 15.82| 0.000 | .0944519 to .1211566 |
| c.age#c.age | -.0016355 | .0001347 | -12.14| 0.000 | -.0018996 to -.0013714 |
| _cons | -.9512118 | .0863139 | -11.02| 0.000 | -.1.120384 to -.7820397 |

sigma_u .27383747
sigma_e .26624266
rho .51405959 (fraction of variance due to u_i)

. xtgee ln_w grade age c.age#c.age, vce(robust) nolog

GEE population-averaged model

Number of obs = 16,085
Group variable: idcode
Number of groups = 3,913

Family: Gaussian
Obs per group:
Link: Identity
Correlation: exchangeable

Wald chi2(3) = 2031.28
Prob > chi2 = 0.0000

(Std. err. adjusted for clustering on idcode)

| ln_wage | Coefficient | std. err. | z | P>|z| | [95% conf. interval] |
|----------|-------------|-----------|------|-------|---------------------|
| grade | .0717731 | .0023341 | 30.75| 0.000 | .0671983 to .0763479 |
| age | .1077645 | .0098097 | 10.99| 0.000 | .0885379 to .1269911 |
| c.age#c.age | -.0016381 | .0001964 | -8.34| 0.000 | -.002023 to -.0012532 |
| _cons | -.9480449 | .1195009 | -7.93| 0.000 | -1.182262 to -.7138274 |

In [R] regress, regress, vce(cluster clustvar) may produce inefficient coefficient estimates with valid standard errors for random-effects models. These standard errors are robust to model misspecification. The vce(robust) option of xtgee, on the other hand, requires that the model correctly specify the mean and the link function when the noncanonical link is used.
Stored results

xtgee stores the following in _e()_:

Scalars

- `e(N)` number of observations
- `e(N_g)` number of groups
- `e(df_m)` model degrees of freedom
- `e(chi2)` χ^2
- `e(p)` p-value for model test
- `e(df_pear)` degrees of freedom for Pearson χ^2
- `e(chi2_dev)` χ^2 test of deviance
- `e(chi2_dis)` χ^2 test of deviance dispersion
- `e(deviance)` deviance
- `e(dispers)` deviance dispersion
- `e(phi)` scale parameter
- `e(g_min)` smallest group size
- `e(g_avg)` average group size
- `e(g_max)` largest group size
- `e(tol)` target tolerance
- `e(dif)` achieved tolerance
- `e(rank)` rank of `e(V)`
- `e(rc)` return code

Macros

- `e(cmd)` _xtgee_
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(ivar)` variable denoting groups
- `e(tvar)` variable denoting time within groups
- `e(model)` _pa_, _family_
- `e(link)` link function
- `e(corr)` correlation structure
- `e(scale)` _x2_, _dev_, _phi_, or _#_; scale parameter
- `e(wtype)` weight type
- `e(wexp)` weight expression
- `e(offset)` linear offset variable
- `e(chi2type)` Wald; type of model χ^2 test
- `e(vce)` vcetype specified in vce()
- `e(vcetype)` title used to label Std. err.
- `e(nmp)` _nmp_, if specified
- `e(properties)` _b_ _V_
- `e(estat_cmd)` program used to implement _estat_
- `e(predict)` program used to implement _predict_
- `e(marginsnotok)` predictions disallowed by _margins_
- `e(asbalanced)` factor variables _fvset_ as _asbalanced_
- `e(asobserved)` factor variables _fvset_ as _asobserved_

Matrices

- `e(b)` coefficient vector
- `e(R)` estimated working correlation matrix
- `e(V)` variance–covariance matrix of the estimators
- `e(V_modelbased)` model-based variance

Functions

- `e(sample)` marks estimation sample

In addition to the above, the following is stored in _r()_:

Matrices

- `r(table)` matrix containing the coefficients with their standard errors, test statistics, p-values, and confidence intervals

Note that results stored in _r()_ are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.
Methods and formulas

Methods and formulas are presented under the following headings:

- Introduction
- Calculating GEE for GLM
- Correlation structures
- Nonstationary and unstructured

Introduction

```
xtgee fits generalized linear models for panel data with the GEE approach described in 
Liang and Zeger (1986). A related method, referred to as GEE2, is described in 
Zhao and Prentice (1990) and Prentice and Zhao (1991). The GEE2 method attempts to 
gain efficiency in the estimation of \( \beta \) by specifying a parametric model for \( \alpha \) and then assumes that the models for both the mean 
and dependency parameters are correct. Thus there is a tradeoff in robustness for efficiency. 
The preliminary work of Liang, Zeger, and Qaqish (1992), however, indicates that there is little efficiency 
gained with this alternative approach.
```

In the GLM approach (see McCullagh and Nelder [1989]), we assume that

\[
\begin{align*}
 h(\mu_{i,j}) &= x_{i,j}^T \beta \\
 \text{Var}(y_{i,j}) &= g(\mu_{i,j}) \phi \\
 \mu_i &= E(y_i) = \{h^{-1}(x_{i,1}^T \beta), \ldots, h^{-1}(x_{i,n_i}^T \beta)\}^T \\
 A_i &= \text{diag}\{g(\mu_{i,1}), \ldots, g(\mu_{i,n_i})\} \\
 \text{Cov}(y_i) &= \phi A_i \quad \text{for independent observations.}
\end{align*}
\]

In the absence of a convenient likelihood function with which to work, we can rely on a multivariate
analog of the quasiscore function introduced by Wedderburn (1974):

\[
S_\beta(\beta, \alpha) = \sum_{i=1}^{m} \left(\frac{\partial \mu_i}{\partial \beta} \right)^T \text{Var}(y_i)^{-1}(y_i - \mu_i) = 0
\]

We can solve for correlation parameters \(\alpha \) by simultaneously solving

\[
S_\alpha(\beta, \alpha) = \sum_{i=1}^{m} \left(\frac{\partial \eta_i}{\partial \alpha} \right)^T H_i^{-1}(W_i - \eta_i) = 0
\]

In the GEE approach to GLM, we let \(R_i(\alpha) \) be a “working” correlation matrix depending on the
parameters in \(\alpha \) (see the Correlation structures section for the number of parameters), and we estimate
\(\beta \) by solving the GEE,

\[
U(\beta) = \sum_{i=1}^{m} \left(\frac{\partial \mu_i}{\partial \beta} \right)^T V_i^{-1}(\alpha)(y_i - \mu_i) = 0
\]

where \(V_i(\alpha) = A_i^{1/2} R_i(\alpha) A_i^{1/2} \)
To solve this equation, we need only a crude approximation of the variance matrix, which we can obtain from a Taylor series expansion, where

\[
\text{Cov}(y_i) = L_i Z_i D_i Z_i^T L_i + \phi A_i = \hat{V}_i
\]

\[
L_i = \text{diag}\{\partial h^{-1}(u)/\partial u, u = x_{i,j}^T \beta, j = 1, \ldots, n_i\}
\]

which allows that

\[
\hat{D}_i \approx (Z_i^T Z_i)^{-1} Z_i \hat{L}_i^{-1} \left\{ (y_i - \hat{\mu}_i)(y_i - \hat{\mu}_i)^T - \hat{\phi} A_i \right\} \hat{L}_i^{-1} Z_i^T (Z_i^T Z_i)^{-1}
\]

\[
\hat{\phi} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \frac{(y_{i,j} - \hat{\mu}_{i,j})^2 - (\hat{L}_{i,j})^2 Z_i^T D_i Z_{i,j}}{g(\hat{\mu}_{i,j})}
\]

Calculating GEE for GLM

Using the notation from Liang and Zeger (1986), let \(y_i = (y_{i,1}, \ldots, y_{i,n_i})^T \) be the \(n_i \times 1 \) vector of outcome values, and let \(X_i = (x_{i,1}, \ldots, x_{i,n_i})^T \) be the \(n_i \times p \) matrix of covariate values for the \(i \)th subject \(i = 1, \ldots, m \). We assume that the marginal density for \(y_{i,j} \) may be written in exponential family notation as

\[
f(y_{i,j}) = \exp \{\{y_{i,j} \theta_{i,j} - a(\theta_{i,j}) + b(y_{i,j})\}\} \phi
\]

where \(\theta_{i,j} = h(\eta_{i,j}), \eta_{i,j} = x_{i,j} \beta \). Under this formulation, the first two moments are given by

\[
E(y_{i,j}) = a'(\theta_{i,j}), \quad \text{Var}(y_{i,j}) = a''(\theta_{i,j})/\phi
\]

In what follows, we let \(n_i = n \) without loss of generality. We define the quantities, assuming that we have an \(n \times n \) working correlation matrix \(R(\alpha) \),

\[
\Delta_i = \text{diag}(d \theta_{i,j}/d \eta_{i,j}) \quad n \times n \text{ matrix}
\]

\[
A_i = \text{diag}\{a''(\theta_{i,j})\} \quad n \times n \text{ matrix}
\]

\[
S_i = y_i - a'(\theta_i) \quad n \times 1 \text{ matrix}
\]

\[
D_i = A_i \Delta_i X_i \quad n \times p \text{ matrix}
\]

\[
V_i = A_i^{1/2} R(\alpha) A_i^{1/2} \quad n \times n \text{ matrix}
\]

such that the GEE becomes

\[
\sum_{i=1}^{m} D_i^T V_i^{-1} S_i = 0
\]

We then have that

\[
\hat{\beta}_{j+1} = \hat{\beta}_j - \left\{ \sum_{i=1}^{m} D_i^T (\hat{\beta}_j) V_i^{-1} (\hat{\beta}_j) D_i (\hat{\beta}_j) \right\}^{-1} \left\{ \sum_{i=1}^{m} D_i^T (\hat{\beta}_j) V_i^{-1} (\hat{\beta}_j) S_i (\hat{\beta}_j) \right\}
\]

where the term

\[
\left\{ \sum_{i=1}^{m} D_i^T (\hat{\beta}_j) V_i^{-1} (\hat{\beta}_j) D_i (\hat{\beta}_j) \right\}^{-1}
\]
is what we call the conventional variance estimate. It is used to calculate the standard errors if the \texttt{vce(robust)} option is not specified. This command supports the clustered version of the Huber/White/sandwich estimator of the variance with panels treated as clusters when \texttt{vce(robust)} is specified. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas. Liang and Zeger (1986) also discuss the calculation of the robust variance estimator.

Define the following:

\[
D = (D_1^T, \ldots, D_m^T) \\
S = (S_1^T, \ldots, S_m^T)^T \\
\tilde{V} = nm \times nm \text{ block diagonal matrix with } \tilde{V}_i \\
Z = D\beta - S
\]

At a given iteration, the correlation parameters α and scale parameter ϕ can be estimated from the current Pearson residuals, defined by

\[
\hat{r}_{i,j} = \{ y_{i,j} - a'({\hat{\theta}_{i,j}}) \} / \{ a''({\hat{\theta}_{i,j}}) \}^{1/2}
\]

where $\hat{\theta}_{i,j}$ depends on the current value for $\hat{\beta}$. We can then estimate ϕ by

\[
\hat{\phi}^{-1} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \hat{r}_{i,j}^2 / (N - p)
\]

As this general derivation is complicated, let's follow the derivation of the Gaussian family with the identity link (regression) to illustrate the generalization. After making appropriate substitutions, we will see a familiar updating equation. First, we rewrite the updating equation for β as

\[
\hat{\beta}_{j+1} = \hat{\beta}_j - Z_1^{-1}Z_2
\]

and then derive Z_1 and Z_2.

\[
Z_1 = \sum_{i=1}^{m} D_i^T(\hat{\beta}_j)\tilde{V}_i^{-1}(\hat{\beta}_j)D_i(\hat{\beta}_j) = \sum_{i=1}^{m} X_i^T A_i^T A_i^{-1/2} R(\alpha) A_i^{1/2} - 1 A_i^T A_i X_i
\]

\[
= \sum_{i=1}^{m} X_i^T \text{diag} \left\{ \frac{\partial \theta_{i,j}}{\partial (X\beta)} \right\} \text{diag} \left\{ a''(\theta_{i,j}) \right\} \left[\text{diag} \left\{ a''(\theta_{i,j}) \right\}^{1/2} R(\alpha) \text{diag} \left\{ a''(\theta_{i,j}) \right\}^{1/2} \right]^{-1} \text{diag} \left\{ a''(\theta_{i,j}) \right\} \text{diag} \left\{ \frac{\partial \theta_{i,j}}{\partial (X\beta)} \right\} X_i
\]

\[
= \sum_{i=1}^{m} X_i^T \Pi(III)^{-1} IIX_i = \sum_{i=1}^{m} X_i^T X_i = X^T X
\]
\[
Z_2 = \sum_{i=1}^{m} D_i^T (\hat{\beta}_j) \tilde{V}_i^{-1} (\hat{\beta}_j) S_i (\hat{\beta}_j) = \sum_{i=1}^{m} X_i^T A_i^T A_i^T \{A_i^{1/2} R(\alpha) A_i^{1/2}\}^{-1} (y_i - X_i \hat{\beta}_j)
\]

\[
= \sum_{i=1}^{m} X_i^T \text{diag} \left\{ \frac{\partial \theta_{i,j}}{\partial (X \beta)} \right\} \text{diag} \left\{ a''(\theta_{i,j}) \right\} \left[\text{diag} \left\{ a''(\theta_{i,j}) \right\}^{1/2} R(\alpha) \text{diag} \left\{ a''(\theta_{i,j}) \right\}^{1/2} \right]^{-1} (y_i - X_i \hat{\beta}_j)
\]

\[
= \sum_{i=1}^{m} X_i^T \Pi(\Pi)^{-1} (y_i - X_i \hat{\beta}_j) = \sum_{i=1}^{m} X_i^T (y_i - X_i \hat{\beta}_j) = X^T \hat{s}_j
\]

So, we may write the update formula as

\[
\hat{\beta}_{j+1} = \hat{\beta}_j - (X^T X)^{-1} X^T \hat{s}_j
\]

which is the same formula for GLS in regression.

Correlation structures

The working correlation matrix \(R\) is a function of \(\alpha\) and is more accurately written as \(R(\alpha)\). Depending on the assumed correlation structure, \(\alpha\) might be

- **Independent**: no parameters to estimate
- **Exchangeable**: \(\alpha\) is a scalar
- **Autoregressive**: \(\alpha\) is a vector
- **Stationary**: \(\alpha\) is a vector
- **Nonstationary**: \(\alpha\) is a matrix
- **Unstructured**: \(\alpha\) is a matrix

Also, throughout the estimation of a general unbalanced panel, it is more proper to discuss \(R_i\), which is the upper left \(n_i \times n_i\) submatrix of the ultimately stored matrix in \(e(\mathbf{R})\) max\([n_i]\) \(\times\) max\([n_i]\).

The only panels that enter into the estimation for a lag-dependent correlation structure are those with \(n_i > g\) (assuming a lag of \(g\)). xtgee drops panels with too few observations (and mentions when it does so).

Independent

The working correlation matrix \(R\) is an identity matrix.

Exchangeable

\[
\alpha = \frac{\sum_{i=1}^{m} \left(\sum_{j=1}^{n_i} \sum_{k=1}^{n_i} \hat{r}_{i,j} \hat{r}_{i,k} - \sum_{j=1}^{n_i} \hat{r}_{i,j}^2 \right)}{\sum_{i=1}^{m} \{n_i (n_i - 1)\}} \left/ \sum_{i=1}^{m} \frac{\sum_{j=1}^{n_i} \hat{r}_{i,j}^2}{n_i} \right.
\]

and the working correlation matrix is given by

\[
R_{s,t} = \begin{cases} 1 & s = t \\ \alpha & \text{otherwise} \end{cases}
\]
Autoregressive and stationary

These two structures require \(g \) parameters to be estimated so that \(\alpha \) is a vector of length \(g + 1 \) (the first element of \(\alpha \) is 1).

\[
\alpha = \sum_{i=1}^{m} \left(\frac{\sum_{j=1}^{n_{i}} \hat{r}_{i,j}^2}{n_{i}}, \frac{\sum_{j=1}^{n_{i}-1} \hat{r}_{i,j} \hat{r}_{i,j+1}}{n_{i}}, \ldots, \frac{\sum_{j=1}^{n_{i}-g} \hat{r}_{i,j} \hat{r}_{i,j+g}}{n_{i}} \right) / \left(\sum_{i=1}^{m} \frac{\sum_{j=1}^{n_{i}} \hat{r}_{i,j}^2}{n_{i}} \right)
\]

The working correlation matrix for the AR model is calculated as a function of Toeplitz matrices formed from the \(\alpha \) vector; see Newton (1988). The working correlation matrix for the stationary model is given by

\[
R_{s,t} = \begin{cases}
\alpha_{1,|s-t|} & \text{if } |s-t| \leq g \\
0 & \text{otherwise}
\end{cases}
\]

Nonstationary and unstructured

These two correlation structures require a matrix of parameters. \(\alpha \) is estimated (where we replace \(\hat{r}_{i,j} = 0 \) whenever \(i > n_{i} \) or \(j > n_{i} \)) as

\[
\alpha = \sum_{i=1}^{m} \left(\begin{array}{cccc}
N_{1,1}^{-1} \hat{r}_{i,1}^{2} & N_{1,2}^{-1} \hat{r}_{i,1} \hat{r}_{i,2} & \cdots & N_{1,n_{i}}^{-1} \hat{r}_{i,1} \hat{r}_{i,n_{i}} \\
N_{2,1}^{-1} \hat{r}_{i,2} \hat{r}_{i,1} & N_{2,2}^{-1} \hat{r}_{i,2}^{2} & \cdots & N_{2,n_{i}}^{-1} \hat{r}_{i,2} \hat{r}_{i,n_{i}} \\
\vdots & \vdots & \ddots & \vdots \\
N_{n_{i},1}^{-1} \hat{r}_{i,n_{i}} \hat{r}_{i,1} & N_{n_{i},2}^{-1} \hat{r}_{i,n_{i}} \hat{r}_{i,2} & \cdots & N_{n_{i},n_{i}}^{-1} \hat{r}_{i,n_{i}}^{2} \\
\end{array} \right) / \left(\sum_{i=1}^{m} \frac{\sum_{j=1}^{n_{i}} \hat{r}_{i,j}^2}{n_{i}} \right)
\]

where \(N_{p,q} = \sum_{i=1}^{m} I(i, p, q) \) and

\[
I(i, p, q) = \begin{cases}
1 & \text{if panel } i \text{ has valid observations at times } p \text{ and } q \\
0 & \text{otherwise}
\end{cases}
\]

where \(N_{i,j} = \min(N_{i}, N_{j}) \), \(N_{i} = \text{number of panels observed at time } i \), and \(n = \max(n_{1}, n_{2}, \ldots, n_{m}) \).

The working correlation matrix for the nonstationary model is given by

\[
R_{s,t} = \begin{cases}
1 & \text{if } s = t \\
\alpha_{s,t} & \text{if } 0 < |s-t| \leq g \\
0 & \text{otherwise}
\end{cases}
\]

The working correlation matrix for the unstructured model is given by

\[
R_{s,t} = \begin{cases}
1 & \text{if } s = t \\
\alpha_{s,t} & \text{otherwise}
\end{cases}
\]

such that the unstructured model is equal to the nonstationary model at lag \(g = n - 1 \), where the panels are balanced with \(n_{i} = n \) for all \(i \).
References

Also see

[XT] xtgee postestimation — Postestimation tools for xtgee

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[XT] xtprobit — Random-effects and population-averaged probit models

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[XT] xtset — Declare data to be panel data

[MI] Estimation — Estimation commands for use with mi estimate

[R] glm — Generalized linear models

[R] logistic — Logistic regression, reporting odds ratios

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands