xtfrontier - Stochastic frontier models for panel data

Description Menu Options for time-invariant model Remarks and examples Methods and formulas Also see Quick start Syntax Options for time-varying decay model Stored results References

Description

xtfrontier fits stochastic production or cost frontier models for panel data where the disturbance term is a mixture of an inefficiency term and the idiosyncratic error. xtfrontier can fit a time-invariant model, in which the inefficiency term is assumed to have a truncated-normal distribution, or a timevarying decay model, in which the inefficiency term is modeled as a truncated-normal random variable multiplied by a function of time.

xtfrontier expects that the dependent variable and independent variables are on the natural logarithm scale; this transformation must be performed before estimation takes place.

Quick start

Stochastic production frontier regression of lny on lnx1 and lnx2 with time-invariant inefficiency using xtset data

xtfrontier lny lnx1 lnx2, ti

Stochastic cost frontier regression of lny on lnx1 and lnx2 with time-invariant inefficiency

xtfrontier lny lnx1 lnx2, ti cost

Time-varying decay model for production xtfrontier lny lnx1 lnx2, tvd

Menu

 $Statistics > Longitudinal/panel \; data > Frontier \; models$

Syntax

Time-invariant model

```
xtfrontier depvar [indepvars] [if] [in] [weight], ti [ti_options]
```

Time-varying decay model

xtfrontier depvar [indepvars] [if] [in] [weight], tvd [tvd_options]

<i>ti_options</i>	Description
Model	
<u>nocons</u> tant	suppress constant term
ti	use time-invariant model
cost	fit cost frontier model
<pre><u>const</u>raints(constraints)</pre>	apply specified linear constraints
SE	
vce(<i>vcetype</i>)	<i>vcetype</i> may be oim, <u>boot</u> strap, or <u>jackknife</u>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Maximization	
maximize_options	control the maximization process; seldom used
<u>col</u> linear <u>coefl</u> egend	keep collinear variables display legend instead of statistics

tvd_options	Description
Model	
<u>nocons</u> tant	suppress constant term
tvd	use time-varying decay model
cost	fit cost frontier model
<pre><u>const</u>raints(constraints)</pre>	apply specified linear constraints
SE	
vce(<i>vcetype</i>)	vcetype may be oim, <u>boot</u> strap, or <u>jackknife</u>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Maximization	
maximize_options	control the maximization process; seldom used
<u>col</u> linear	keep collinear variables
<u>coefl</u> egend	display legend instead of statistics

A panel variable must be specified. For xtfrontier, tvd, a time variable must also be specified. Use xtset; see [XT] xtset. *indepvars* may contain factor variables; see [U] **11.4.3 Factor variables**.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, fp, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights and iweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for time-invariant model

```
Model
```

noconstant; see [R] Estimation options.

ti specifies that the parameters of the time-invariant technical inefficiency model be estimated.

cost specifies that the frontier model be fit in terms of a cost function instead of a production function. By default, xtfrontier fits a production frontier model.

constraints (*constraints*); see [R] Estimation options.

∫ SE Ù

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim) and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options. Reporting

level(#); see [R] Estimation options.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec) iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used.

The following options are available with xtfrontier but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Options for time-varying decay model

Model

noconstant; see [R] Estimation options.

tvd specifies that the parameters of the time-varying decay model be estimated.

cost specifies that the frontier model be fit in terms of a cost function instead of a production function. By default, xtfrontier fits a production frontier model.

constraints(constraints); see [R] Estimation options.

SE

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim) and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

Reporting

level(#); see [R] Estimation options.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used. The following options are available with xtfrontier but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction Time-invariant model Time-varying decay model

Introduction

Stochastic production frontier models were introduced by Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977). Since then, stochastic frontier models have become a popular subfield in econometrics; see Kumbhakar and Lovell (2000) for an introduction. xtfrontier fits two stochastic frontier models with distinct specifications of the inefficiency term and can fit both production-and cost-frontier models.

Let's review the nature of the stochastic frontier problem. Suppose that a producer has a production function $f(\mathbf{z}_{it}, \boldsymbol{\beta})$. In a world without error or inefficiency, in time t, the *i*th firm would produce

$$q_{it} = f(\mathbf{z}_{it}, \boldsymbol{\beta})$$

A fundamental element of stochastic frontier analysis is that each firm potentially produces less than it might because of a degree of inefficiency. Specifically,

$$q_{it} = f(\mathbf{z}_{it}, \boldsymbol{\beta}) \xi_{it}$$

where ξ_{it} is the level of efficiency for firm *i* at time *t*; ξ_i must be in the interval (0, 1]. If $\xi_{it} = 1$, the firm is achieving the optimal output with the technology embodied in the production function $f(\mathbf{z}_{it}, \boldsymbol{\beta})$. When $\xi_{it} < 1$, the firm is not making the most of the inputs \mathbf{z}_{it} given the technology embodied in the production function $f(\mathbf{z}_{it}, \boldsymbol{\beta})$. Because the output is assumed to be strictly positive (that is, $q_{it} > 0$), the degree of technical efficiency is assumed to be strictly positive (that is, $\xi_{it} > 0$).

Output is also assumed to be subject to random shocks, implying that

$$q_{it} = f(\mathbf{z}_{it}, \boldsymbol{\beta}) \xi_{it} \exp(v_{it})$$

Taking the natural log of both sides yields

$$\ln(q_{it}) = \ln\{f(\mathbf{z}_{it}, \boldsymbol{\beta})\} + \ln(\xi_{it}) + v_{it}$$

Assuming that there are k inputs and that the production function is linear in logs, defining $u_{it} = -\ln(\xi_{it})$ yields

$$\ln(q_{it}) = \beta_0 + \sum_{j=1}^k \beta_j \ln(z_{jit}) + v_{it} - u_{it}$$
(1)

Because u_{it} is subtracted from $\ln(q_{it})$, restricting $u_{it} \ge 0$ implies that $0 < \xi_{it} \le 1$, as specified above.

Kumbhakar and Lovell (2000) provide a detailed version of this derivation, and they show that performing an analogous derivation in the dual cost function problem allows us to specify the problem as

$$\ln(c_{it}) = \beta_0 + \beta_q \ln(q_{it}) + \sum_{j=1}^k \beta_j \ln(p_{jit}) + v_{it} - su_{it}$$
(2)

where q_{it} is output, the z_{jit} are input quantities, c_{it} is cost, the p_{jit} are input prices, and

$$s = \begin{cases} 1, & \text{for production functions} \\ -1, & \text{for cost functions} \end{cases}$$

Intuitively, the inefficiency effect is required to lower output or raise expenditure, depending on the specification.

Technical note

The model that xtfrontier actually fits has the form

$$y_{it} = \beta_0 + \sum_{j=1}^k \beta_j x_{jit} + v_{it} - s u_{it}$$

so in the context of the discussion above, $y_{it} = \ln(q_{it})$ and $x_{jit} = \ln(z_{jit})$ for a production function; for a cost function, $y_{it} = \ln(c_{it})$, the x_{jit} are the $\ln(p_{jit})$, and $\ln(q_{it})$. You must perform the natural logarithm transformation of the data before estimation to interpret the estimation results correctly for a stochastic frontier production or cost model. xtfrontier does not perform any transformations on the data.

As shown above, the disturbance term in a stochastic frontier model is assumed to have two components. One component is assumed to have a strictly nonnegative distribution, and the other component is assumed to have a symmetric distribution. In the econometrics literature, the nonnegative component is often referred to as the *inefficiency term*, and the component with the symmetric distribution as the *idiosyncratic error*.

Equation (2) is a variant of a panel-data model in which v_{it} is the idiosyncratic error and u_{it} is a timevarying panel-level effect. Much of the literature on this model has focused on deriving estimators for different specifications of the u_{it} term. Kumbhakar and Lovell (2000) provide a survey of this literature.

xtfrontier provides estimators for two different specifications of u_{it} . To facilitate the discussion, let $N^+(\mu, \sigma^2)$ denote the truncated-normal distribution, which is truncated at zero with mean μ and variance σ^2 , and let $\stackrel{\text{iid}}{\sim}$ stand for independent and identically distributed.

Consider the simplest specification in which the inefficiency term u_{it} is a time-invariant truncatednormal random variable. In the time-invariant model, $u_{it} = u_i, u_i \stackrel{\text{iid}}{\sim} N^+(\mu, \sigma_u^2), v_{it} \stackrel{\text{iid}}{\sim} N(0, \sigma_v^2)$, and u_i and v_{it} are distributed independently of each other and the covariates in the model. Specifying the ti option causes xtfrontier to estimate the parameters of this model.

In the Battese–Coelli (1992) parameterization of time effects, the inefficiency term is modeled as a truncated-normal random variable multiplied by a specific function of time. In the time-varying decay specification,

$$u_{it} = \exp\{-\eta(t - T_i)\}u_i$$

where T_i is the last period in the *i*th panel, η is the decay parameter, $u_i \stackrel{\text{iid}}{\sim} N^+(\mu, \sigma_u^2)$, $v_{it} \stackrel{\text{iid}}{\sim} N(0, \sigma_v^2)$, and u_i and v_{it} are distributed independently of each other and the covariates in the model. Specifying the tvd option causes xtfrontier to estimate the parameters of this model.

Time-invariant model

Example 1

xtfrontier, ti provides maximum likelihood estimates for the parameters of the time-invariant decay model. In this model, the inefficiency effects are modeled as $u_{it} = u_i$, $u_i \stackrel{\text{iid}}{\sim} N^+(\mu, \sigma_u^2)$, $v_{it} \stackrel{\text{iid}}{\sim} N(0, \sigma_v^2)$, and u_i and v_{it} are distributed independently of each other and the covariates in the model. In this example, firms produce a product called a widget, using a constant-returns-to-scale technology. We have 948 observations—91 firms, with 6–14 observations per firm. Our dataset contains variables representing the quantity of widgets produced, the number of machine hours used in production, the number of labor hours used in production, and three additional variables that are the natural logarithm transformations of the three aforementioned variables.

We fit a time-invariant model using the transformed variables:

. use https://	www.stata-pre	ss.com/data	/r19/xtfi	contier1		
. xtfrontier 1	nwidgets lnma	chines lnwo	rkers, ti	Ĺ		
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	Log likelihoo Log likelihoo Log likelihoo Log likelihoo Log likelihoo	d = -1473.8 d = -1473.00 d = -1472.6 d = -1472.0 d = -1472.0	703 565 155 607 069			
Time-invariant Group variable	inefficiency : id	model		Nun Nun	ber of obs ber of group	= 948 s = 91
				Obs	s per group: mi av ma	n = 6 g = 10.4 x = 14
Log likelihood	l = -1472.6069			Wal Pro	ld chi2(2) bb > chi2	= 661.76 = 0.0000
lnwidgets	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lnmachines lnworkers _cons	.2904551 .2943333 3.030983	.0164219 .0154352 .1441022	17.69 19.07 21.03	0.000 0.000 0.000	.2582688 .2640808 2.748548	.3226415 .3245858 3.313418
/mu /lnsigma2 /lgtgamma	1.125667 1.421979 1.138685	.6479217 .2672745 .3562642	1.74 5.32 3.20	0.082 0.000 0.001	144236 .898131 .4404204	2.39557 1.945828 1.83695
sigma2 gamma sigma_u2 sigma v2	4.145318 .7574382 3.139822 1.005496	1.107938 .0654548 1.107235 .0484143			2.455011 .6083592 .9696821 .9106055	6.999424 .8625876 5.309962 1.100386

In addition to the coefficients, the output reports estimates for the parameters sigma_v2, sigma_u2, gamma, sigma2, lgtgamma, lnsigma2, and mu. sigma_v2 is the estimate of σ_v^2 . sigma_u2 is the estimate of σ_u^2 . gamma is the estimate of $\gamma = \sigma_u^2/\sigma_s^2$. sigma2 is the estimate of $\sigma_s^2 = \sigma_v^2 + \sigma_u^2$. Because γ must be between 0 and 1, the optimization is parameterized in terms of the logit of γ , and this estimate is reported as lgtgamma. Because σ_s^2 must be positive, the optimization is parameterized in terms of $\ln(\sigma_s^2)$, and this estimate is reported as lnsigma2. Finally, mu is the estimate of μ .

Technical note

Our simulation results indicate that this estimator requires relatively large samples to achieve any reasonable degree of precision in the estimates of μ and σ_u^2 .

4

Time-varying decay model

xtfrontier, tvd provides maximum likelihood estimates for the parameters of the time-varying decay model. In this model, the inefficiency effects are modeled as

$$u_{it} = \exp\{-\eta(t-T_i)\}u_i$$

where $u_i \stackrel{\text{iid}}{\sim} N^+(\mu, \sigma_u^2)$.

When $\eta > 0$, the degree of inefficiency decreases over time; when $\eta < 0$, the degree of inefficiency increases over time. Because $t = T_i$ in the last period, the last period for firm *i* contains the base level of inefficiency for that firm. If $\eta > 0$, the level of inefficiency decays toward the base level. If $\eta < 0$, the level of inefficiency increases to the base level.

Example 2

When $\eta = 0$, the time-varying decay model reduces to the time-invariant model. The following example illustrates this property and demonstrates how to specify constraints and starting values in these models.

Let's begin by fitting the time-varying decay model on the same data that were used in the previous example for the time-invariant model.

. xtfrontier	lnwidgets lnma	chines lnwo	rkers, tv	7d		
Iteration 0: Iteration 1:	Log likelihoo Log likelihoo	d = -1551.3 d = -1502.2	798 (not 637	conca	ve)	
Iteration 2:	Log likelihoo	d = -1476.3	093 (not	conca	ve)	
Iteration 3:	Log likelihoo	d = -1472.9	845			
Iteration 4:	Log likelihoo	d = -1472.5	365			
Iteration 5:	Log likelihoo	d = -1472.	529			
Iteration 6:	Log likelihoo	d = -1472.5	289			
Time-varying (decay ineffici	ency model		1	Number of obs	= 948
Group variable	e: id	0]	Number of group	s = 91
- Time variable	• +			(lhs per group.	
Time variable					mi.	n = 6
					av	$\sigma = 10.4$
					ma	x = 14
				1	J_{2} J_{2	- 661 03
Iog likelihoo	d = -14725289			1	Proh > chi2	= 0.001.93
lnwidgets	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lnmachines	.2907555	.0164376	17.69	0.000	.2585384	.3229725
lnworkers	.2942412	.0154373	19.06	0.000	.2639846	.3244978
_cons	3.028939	.1436046	21.09	0.000	2.74748	3.310399
/mu	1.110831	.6452809	1.72	0.085	1538967	2.375558
/eta	.0016764	.00425	0.39	0.693	0066535	.0100064
/lnsigma2	1.410723	.2679485	5.26	0.000	.885554	1.935893
/lgtgamma	1.123982	.3584243	3.14	0.002	.4214828	1.82648
sigma2	4.098919	1.098299			2.424327	6.930228
gamma	.7547265	.0663495			.603838	.8613419
sigma u2	3.093563	1.097606			.9422943	5.244832
sigma_v2	1.005356	.0484079			.9104785	1.100234
	1					

The estimate of η is close to zero, and the other estimates are not too far from those of the time-invariant model.

We can use constraint to constrain $\eta = 0$ and obtain the same results produced by the time-invariant model. Although there is only one statistical equation to be estimated in this model, the model fits five of Stata's [R] **ml** equations; see [R] **ml** or Pitblado, Poi, and Gould (2024). The equation names can be seen by listing the matrix of estimated coefficients.

```
. matrix list e(b)
e(b)[1,7]
    lnwidgets: lnwidgets: lnwidgets:
                                     lnsigma2:
                                                 lgtgamma:
                                                                 mu:
   lnmachines lnworkers
                          _cons
                                      cons
                                                   _cons
                                                               cons
    .29075546
               .2942412
                          3.0289395 1.4107233
                                                1.1239816
                                                          1.1108307
y1
         eta:
        cons
    .00167642
y1
```

To constrain a parameter to a particular value in any equation, except the first equation, you must specify both the equation name and the parameter name by using the syntax

```
constraint # [eqname]_b[varname] = value or
constraint # [eqname] coefficient = value
```

where *eqname* is the equation name, *varname* is the name of the variable in a linear equation, and *coef-ficient* refers to any parameter that has been estimated. More elaborate specifications with expressions are possible; see the example with constant returns to scale below, and see [R] constraint for general reference.

4

Suppose that we impose the constraint $\eta = 0$; we get the same results as those reported above for the time-invariant model, except for some minute differences attributable to an alternate convergence path in the optimization.

. constraint 1	1 [eta]_cons =	= 0				
. xtfrontier]	lnwidgets lnma	chines lnwo	rkers, tv	d cons	traints(1)	
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5: Iteration 6:	Log likelihoo Log likelihoo Log likelihoo Log likelihoo Log likelihoo Log likelihoo	d = -1540.7 $d = -1515.7$ $d = -1473.0$ $d = -1472.9$ $d = -1472.6$ $d = -1472.6$ $d = -1472.6$	124 (not 726 162 223 254 607 069	; conca	ve)	
Time-varying o Group variable	decay ineffici e: id	ency model			Number of obs Number of groups	= 948 = 91
Time variable:	: t				Obs per group: min avg max	= 6 = 10.4 = 14
Log likelihood (1) [eta]_d	d = -1472.6069 cons = 0)			Wald chi2(2) Prob > chi2	= 661.76 = 0.0000
lnwidgets	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
lnmachines	.2904551	.0164219	17.69	0.000	.2582688	.3226414
lnworkers	.2943332	.0154352	19.07	0.000	.2640807	.3245857
_cons	3.030963	.1440995	21.03	0.000	2.748534	3.313393
/mu /eta	1.125507 0	.6480444 (omitted)	1.74	0.082	1446369	2.39565
/lnsigma2	1.422039	.2673128	5.32	0.000	.8981155	1.945962
/lgtgamma	1.138764	.3563076	3.20	0.001	.4404135	1.837114
sigma2 gamma sigma u2	4.145565 .7574526 3.140068	1.108162 .0654602 1.107459			2.454972 .6083575 9694878	7.000366 .862607 5.310649
sigma_u2	1.005496	.0484143			.9106057	1.100386
0 -						

Stored results

	4	71	C 11	•	•	~>
xtirontier	stores	the	IOII	owing	in (e():

Saa	1000
SUd	lais

o varar o	
e(N)	number of observations
e(N_g)	number of groups
e(k)	number of parameters
e(k_eq)	number of equations in e(b)
e(k_eq_model)	number of equations in overall model test
e(k_dv)	number of dependent variables
e(df_m)	model degrees of freedom
e(11)	log likelihood
e(g_min)	minimum number of observations per group
e(g_avg)	average number of observations per group
e(g_max)	maximum number of observations per group
e(sigma2)	sigma2
e(gamma)	gamma
e(Tcon)	1 if panels balanced, 0 otherwise
e(sigma_u)	standard deviation of technical inefficiency
e(sigma_v)	standard deviation of random error
e(chi2)	χ^2
e(p)	<i>p</i> -value for model test
e(rank)	rank of e(V)
e(ic)	number of iterations
e(rc)	return code
e(converged)	1 if converged, 0 otherwise
Macros	
e(cmd)	xtfrontier
e(cmdline)	command as typed
e(depvar)	name of dependent variable
e(ivar)	variable denoting groups
e(tvar)	variable denoting time within groups
e(function)	production or cost
e(model)	ti, after time-invariant model; tvd, after time-varying decay model
e(wtype)	weight type
e(wexp)	weight expression
e(title)	title in estimation output
e(chi2type)	Wald; type of model χ^2 test
e(vce)	<i>vcetype</i> specified in vce()
e(opt)	type of optimization
e(which)	max or min; whether optimizer is to perform maximization or minimization
e(ml_method)	type of ml method
e(user)	name of likelihood-evaluator program
e(technique)	maximization technique
e(properties)	b V
e(predict)	program used to implement predict
e(asbalanced)	factor variables fvset as asbalanced
e(asobserved)	factor variables fvset as asobserved
Matrices	
e(b)	coefficient vector
e(Cns)	constraints matrix
e(ilog)	iteration log (up to 20 iterations)
e(gradient)	gradient vector
e(V)	variance–covariance matrix of the estimators
Functions	
e(sample)	marks estimation sample
C (Dumpro)	marke estimation sumple

In addition to the above, the following is stored in r():

Matrices

r(table)

matrix containing the coefficients with their standard errors, test statistics, *p*-values, and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

Methods and formulas

xtfrontier fits stochastic frontier models for panel data that can be expressed as

$$y_{it} = \beta_0 + \sum_{j=1}^k \beta_j x_{jit} + v_{it} - s u_{it}$$

where y_{it} is the natural logarithm of output, the x_{jit} are the natural logarithm of the input quantities for the production efficiency problem, y_{it} is the natural logarithm of costs, the x_{it} are the natural logarithm of input prices for the cost efficiency problem, and

$$s = \begin{cases} 1, & \text{for production functions} \\ -1, & \text{for cost functions} \end{cases}$$

For the time-varying decay model, the log-likelihood function is derived as

$$\begin{split} \ln L &= -\frac{1}{2} \left(\sum_{i=1}^{N} T_i \right) \left\{ \ln \left(2\pi \right) + \ln(\sigma_S^2) \right\} - \frac{1}{2} \sum_{i=1}^{N} \left(T_i - 1 \right) \ln(1 - \gamma) \\ &- \frac{1}{2} \sum_{i=1}^{N} \ln \left\{ 1 + \left(\sum_{t=1}^{T_i} \eta_{it}^2 - 1 \right) \gamma \right\} - N \ln \left\{ 1 - \Phi \left(-\tilde{z} \right) \right\} - \frac{1}{2} N \tilde{z}^2 \\ &+ \sum_{i=1}^{N} \ln \left\{ 1 - \Phi \left(-z_i^* \right) \right\} + \frac{1}{2} \sum_{i=1}^{N} z_i^{*2} - \frac{1}{2} \sum_{i=1}^{N} \sum_{t=1}^{T_i} \frac{\epsilon_{it}^2}{(1 - \gamma) \sigma_S^2} \end{split}$$

where $\sigma_S = (\sigma_u^2 + \sigma_v^2)^{1/2}$, $\gamma = \sigma_u^2 / \sigma_S^2$, $\epsilon_{it} = y_{it} - \mathbf{x}_{it} \boldsymbol{\beta}$, $\eta_{it} = \exp\{-\eta(t - T_i)\}$, $\tilde{z} = \mu / (\gamma \sigma_S^2)^{1/2}$, $\Phi()$ is the cumulative distribution function of the standard normal distribution, and

$$z_{i}^{*} = \frac{\mu\left(1-\gamma\right) - s\gamma\sum_{t=1}^{T_{i}}\eta_{it}\epsilon_{it}}{\left[\gamma\left(1-\gamma\right)\sigma_{S}^{2}\left\{1+\left(\sum_{t=1}^{T_{i}}\eta_{it}^{2}-1\right)\gamma\right\}\right]^{1/2}}$$

Maximizing the above log likelihood estimates the coefficients η , μ , σ_v , and σ_u .

References

- Aigner, D. J., C. A. K. Lovell, and P. Schmidt. 1977. Formulation and estimation of stochastic frontier production function models. *Journal of Econometrics* 6: 21–37. https://doi.org/10.1016/0304-4076(77)90052-5.
- Battese, G. E., and T. J. Coelli. 1992. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. *Journal of Productivity Analysis* 3: 153–169. https://doi.org/10.1007/BF00158774.

——. 1995. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics 20: 325–332. https://doi.org/10.1007/BF01205442.

Belotti, F., S. Daidone, G. Ilardi, and V. Atella. 2013. Stochastic frontier analysis using Stata. Stata Journal 13: 719-758.

- Caudill, S. B., J. M. Ford, and D. M. Gropper. 1995. Frontier estimation and firm-specific inefficiency measures in the presence of heteroscedasticity. *Journal of Business and Economic Statistics* 13: 105–111. https://doi.org/10.2307/ 1392525.
- Cococcioni, M., M. Grazzi, L. Li, and F. Ponchio. 2022. A toolbox for measuring heterogeneity and efficiency using zonotopes. Stata Journal 22: 25–59.
- Coelli, T. J. 1995. Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis. Journal of Productivity Analysis 6: 247–268. https://doi.org/10.1007/BF01076978.
- Coelli, T. J., D. S. P. Rao, C. J. O'Donnell, and G. E. Battese. 2005. An Introduction to Efficiency and Productivity Analysis. 2nd ed. New York: Springer. https://doi.org/10.1007/b136381.
- Fé, E., and R. Hofler. 2020. sfcount: Command for count-data stochastic frontiers and underreported and overreported counts. Stata Journal 20: 532–547.

Karakaplan, M. U. 2017. Fitting endogenous stochastic frontier models in Stata. Stata Journal 17: 39-55.

———. 2022. Panel stochastic frontier models with endogeneity. Stata Journal 22: 643–663.

- Kumbhakar, S. C., and C. A. K. Lovell. 2000. Stochastic Frontier Analysis. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139174411.
- Kumbhakar, S. C., H.-J. Wang, and A. P. Horncastle. 2015. A Practitioner's Guide to Stochastic Frontier Analysis Using Stata. New York: Cambridge University Press.
- Meeusen, W., and J. van den Broeck. 1977. Efficiency estimation from Cobb–Douglas production functions with composed error. International Economic Review 18: 435–444. https://doi.org/10.2307/2525757.
- Pitblado, J. S., B. P. Poi, and W. W. Gould. 2024. *Maximum Likelihood Estimation with Stata*. 5th ed. College Station, TX: Stata Press.
- Rovigatti, G., and V. Mollisi. 2018. Theory and practice of total-factor productivity estimation: The control function approach using Stata. *Stata Journal* 18: 618–662.
- Wang, D., K. Du, and N. Zhang. 2022. Measuring technical efficiency and total factor productivity change with undesirable outputs in Stata. Stata Journal 22: 103–124.
- Zellner, A., and N. S. Revankar. 1969. Generalized production functions. *Review of Economic Studies* 36: 241–250. https://doi.org/10.2307/2296840.

Also see

- [XT] **xtfrontier postestimation** Postestimation tools for xtfrontier
- [XT] **xtset** Declare data to be panel data
- [R] **frontier** Stochastic frontier models

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.