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Description
xtdpd fits a linear dynamic panel-data model where the unobserved panel-level effects are

correlated with the lags of the dependent variable. The command can fit Arellano–Bond and Arellano–
Bover/Blundell–Bond models like those fit by xtabond and xtdpdsys. However, it also allows models
with low-order moving-average correlation in the idiosyncratic errors or predetermined variables with
a more complicated structure than allowed for xtabond or xtdpdsys.

Quick start
Arellano–Bond model of y on L.y and x with the first difference of x as an instrument for the

difference equation using xtset data
xtdpd y L.y x, div(x) dgmmiv(y)

Add the first difference of the lag of x as an instrument for the level equation
xtdpd y L.y x, div(x) dgmmiv(y) lgmmiv(x)

Use lags 3 to 5 of x as instruments for the difference equation
xtdpd y L.y x, div(x) dgmmiv(y, lagrange(3 5))

Menu
Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Linear DPD estimation
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2 xtdpd — Linear dynamic panel-data estimation

Syntax
xtdpd depvar

[
indepvars

] [
if
] [

in
]
, dgmmiv(varlist

[
. . .
]
)
[

options
]

options Description

Model
∗dgmmiv(varlist

[
. . .
]
) GMM-type instruments for the difference equation;

can be specified more than once
lgmmiv(varlist

[
. . .
]
) GMM-type instruments for the level equation;

can be specified more than once
iv(varlist

[
. . .
]
) standard instruments for the difference and level equations;

can be specified more than once
div(varlist

[
. . .
]
) standard instruments for the difference equation only;

can be specified more than once
liv(varlist) standard instruments for the level equation only;

can be specified more than once
noconstant suppress constant term
twostep compute the two-step estimator instead of the one-step estimator
hascons check for collinearity only among levels of independent variables;

by default checks occur among levels and differences
fodeviation use forward-orthogonal deviations instead of first differences

SE/Robust

vce(vcetype) vcetype may be gmm or robust

Reporting

level(#) set confidence level; default is level(95)

artests(#) use # as maximum order for AR tests; default is artests(2)

display options control spacing and line width

coeflegend display legend instead of statistics

∗dgmmiv() is required.
A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
depvar, indepvars, and all varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

dgmmiv(varlist
[
, lagrange( flag

[
llag

]
)
]
) specifies GMM-type instruments for the difference

equation. Levels of the variables are used to form GMM-type instruments for the difference
equation. All possible lags are used, unless lagrange(flag llag) restricts the lags to begin with
flag and end with llag. You may specify as many sets of GMM-type instruments for the difference
equation as you need within the standard Stata limits on matrix size. Each set may have its own
flag and llag. dgmmiv() is required.

lgmmiv(varlist
[
, lag(#)

]
) specifies GMM-type instruments for the level equation. Differences of

the variables are used to form GMM-type instruments for the level equation. The first lag of the

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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differences is used unless lag(#) is specified, indicating that #th lag of the differences be used.
You may specify as many sets of GMM-type instruments for the level equation as you need within
the standard Stata limits on matrix size. Each set may have its own lag.

iv(varlist
[
, nodifference

]
) specifies standard instruments for both the differenced and level

equations. Differences of the variables are used as instruments for the differenced equations, unless
nodifference is specified, which requests that levels be used. Levels of the variables are used
as instruments for the level equations. You may specify as many sets of standard instruments for
both the differenced and level equations as you need within the standard Stata limits on matrix
size.

div(varlist
[
, nodifference

]
) specifies additional standard instruments for the difference equation.

Specified variables may not be included in iv() or in liv(). Differences of the variables are
used, unless nodifference is specified, which requests that levels of the variables be used as
instruments for the difference equation. You may specify as many additional sets of standard
instruments for the difference equation as you need within the standard Stata limits on matrix size.

liv(varlist) specifies additional standard instruments for the level equation. Specified variables may
not be included in iv() or in div(). Levels of the variables are used as instruments for the level
equation. You may specify as many additional sets of standard instruments for the level equation
as you need within the standard Stata limits on matrix size.

noconstant; see [R] Estimation options.

twostep specifies that the two-step estimator be calculated.

hascons specifies that xtdpd check for collinearity only among levels of independent variables; by
default checks occur among levels and differences.

fodeviation specifies that forward-orthogonal deviations be used instead of first differences. fode-
viation is not allowed when there are gaps in the data or when lgmmiv() is specified.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory and that are robust to some kinds of misspecification; see Methods and
formulas.

vce(gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.

vce(robust) uses the robust estimator. For the one-step estimator, this is the Arellano–Bond
robust VCE estimator. For the two-step estimator, this is the Windmeijer (2005) WC-robust estimator.

� � �
Reporting �

level(#); see [R] Estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtdpd postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
to the number of periods in the longest panel. The default is artests(2).

display options: vsquish and nolstretch; see [R] Estimation options.

The following option is available with xtdpd but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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4 xtdpd — Linear dynamic panel-data estimation

Remarks and examples stata.com

If you have not read [XT] xtabond and [XT] xtdpdsys, you should do so before continuing.

Linear dynamic panel-data models include p lags of the dependent variable as covariates and contain
unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level effects are
correlated with the lagged dependent variables, making standard estimators inconsistent. xtdpd fits a
dynamic panel-data model by using the Arellano–Bond (1991) or the Arellano–Bover/Blundell–Bond
(1995, 1998) estimator.

Consider the dynamic panel-data model

yit =

p∑
j=1

αjyi,t−j + xitβ1 + witβ2 + νi + εit i = {1, . . . , N}; t = {1, . . . , Ti} (1)

where

the α1, . . . , αp are p parameters to be estimated,

xit is a 1× k1 vector of strictly exogenous covariates,

β1 is a k1 × 1 vector of parameters to be estimated,

wit is a 1× k2 vector of predetermined covariates,

β2 is a k2 × 1 vector of parameters to be estimated,

νi are the panel-level effects (which may be correlated with xit or wit), and

and εit are i.i.d. or come from a low-order moving-average process, with variance σ2
ε .

Building on the work of Anderson and Hsiao (1981, 1982) and Holtz-Eakin, Newey, and
Rosen (1988), Arellano and Bond (1991) derived one-step and two-step GMM estimators using
moment conditions in which lagged levels of the dependent and predetermined variables were instru-
ments for the difference equation. Blundell and Bond (1998) show that the lagged-level instruments
in the Arellano–Bond estimator become weak as the autoregressive process becomes too persistent
or the ratio of the variance of the panel-level effect νi to the variance of the idiosyncratic error εit
becomes too large. Building on the work of Arellano and Bover (1995), Blundell and Bond (1998)
proposed a system estimator that uses moment conditions in which lagged differences are used as
instruments for the level equation in addition to the moment conditions of lagged levels as instru-
ments for the difference equation. The additional moment conditions are valid only if the initial
condition E[νi∆yi2] = 0 holds for all i; see Blundell and Bond (1998) and Blundell, Bond, and
Windmeijer (2000).

xtdpd fits dynamic panel-data models by using the Arellano–Bond or the Arellano–Bover/Blundell–
Bond system estimator. The parameters of many standard models can be more easily estimated using
the Arellano–Bond estimator implemented in xtabond or using the Arellano–Bover/Blundell–Bond
system estimator implemented in xtdpdsys; see [XT] xtabond and [XT] xtdpdsys. xtdpd can fit
more complex models at the cost of a more complicated syntax. That the idiosyncratic errors follow
a low-order MA process and that the predetermined variables have a more complicated structure than
accommodated by xtabond and xtdpdsys are two common reasons for using xtdpd instead of
xtabond or xtdpdsys.

The standard GMM robust two-step estimator of the VCE is known to be seriously biased. Windmei-
jer (2005) derived a bias-corrected robust estimator for two-step VCEs from GMM estimators known
as the WC-robust estimator, which is implemented in xtdpd.

The Arellano–Bond test of autocorrelation of order m and the Sargan test of overidentifying
restrictions derived by Arellano and Bond (1991) are computed by xtdpd but reported by estat
abond and estat sargan, respectively; see [XT] xtdpd postestimation.

http://stata.com
https://www.stata.com/manuals/xtxtabond.pdf#xtxtabond
https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsys
https://www.stata.com/manuals/xtxtabond.pdf#xtxtabond
https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsys
https://www.stata.com/manuals/xtxtdpdpostestimation.pdf#xtxtdpdpostestimation
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Because xtdpd extends xtabond and xtdpdsys, [XT] xtabond and [XT] xtdpdsys provide useful
background.

Example 1: An Arellano–Bond estimator

Arellano and Bond (1991) apply their new estimators and test statistics to a model of dynamic
labor demand that had previously been considered by Layard and Nickell (1986), using data from an
unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm i and
time t. In this dataset, nit is the log of employment in firm i inside the United Kingdom at time t,
wit is the natural log of the real product wage, kit is the natural log of the gross capital stock, and
ysit is the natural log of industry output. The model also includes time dummies yr1980, yr1981,
yr1982, yr1983, and yr1984. To gain some insight into the syntax for xtdpd, we reproduce the
first example from [XT] xtabond using xtdpd:

. use https://www.stata-press.com/data/r17/abdata

. xtdpd L(0/2).n L(0/1).w L(0/2).(k ys) yr1980-yr1984 year, noconstant
> div(L(0/1).w L(0/2).(k ys) yr1980-yr1984 year) dgmmiv(n)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group:
min = 4
avg = 4.364286
max = 6

Number of instruments = 41 Wald chi2(16) = 1757.07
Prob > chi2 = 0.0000

One-step results

n Coefficient Std. err. z P>|z| [95% conf. interval]

n
L1. .6862261 .1486163 4.62 0.000 .3949435 .9775088
L2. -.0853582 .0444365 -1.92 0.055 -.1724523 .0017358

w
--. -.6078208 .0657694 -9.24 0.000 -.7367265 -.4789151
L1. .3926237 .1092374 3.59 0.000 .1785222 .6067251

k
--. .3568456 .0370314 9.64 0.000 .2842653 .4294259
L1. -.0580012 .0583051 -0.99 0.320 -.172277 .0562747
L2. -.0199475 .0416274 -0.48 0.632 -.1015357 .0616408

ys
--. .6085073 .1345412 4.52 0.000 .3448115 .8722031
L1. -.7111651 .1844599 -3.86 0.000 -1.0727 -.3496304
L2. .1057969 .1428568 0.74 0.459 -.1741974 .3857912

yr1980 .0029062 .0212705 0.14 0.891 -.0387832 .0445957
yr1981 -.0404378 .0354707 -1.14 0.254 -.1099591 .0290836
yr1982 -.0652767 .048209 -1.35 0.176 -.1597646 .0292111
yr1983 -.0690928 .0627354 -1.10 0.271 -.1920521 .0538664
yr1984 -.0650302 .0781322 -0.83 0.405 -.2181665 .0881061

year .0095545 .0142073 0.67 0.501 -.0182912 .0374002

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980

D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

https://www.stata.com/manuals/xtxtabond.pdf#xtxtabond
https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsys
https://www.stata.com/manuals/xtxtabond.pdf#xtxtabondRemarksandexamplesex1
https://www.stata.com/manuals/xtxtabond.pdf#xtxtabond
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Unlike most instrumental-variables estimation commands, the independent variables in the varlist
are not automatically used as instruments. In this example, all the independent variables are strictly
exogenous, so we include them in div(), a list of variables whose first differences will be instruments
for the difference equation. We include the dependent variable in dgmmiv(), a list of variables whose
lagged levels will be used to create GMM-type instruments for the difference equation. (GMM-type
instruments are discussed in a technical note below.)

The footer in the output reports the instruments used. The first line indicates that xtdpd used
lags from 2 on back to create the GMM-type instruments described in Arellano and Bond (1991)
and Holtz-Eakin, Newey, and Rosen (1988). The second line says that the first difference of all the
variables included in the div() varlist were used as standard instruments for the difference equation.

Technical note

GMM-type instruments are built from lags of one variable. Ignoring the strictly exogenous variables
for simplicity, our model is

nit = α1nit−1 + α2nit−2 + νi + εit (2)

After differencing we have

∆nit = ∆α1nit−1 + ∆α2nit−2 + ∆εit (3)

Equation (3) implies that we need instruments that are not correlated with either εit or εit−1. Equation
(2) shows that L2.n is the first lag of n that is not correlated with εit or εit−1, so it is the first lag
of n that can be used to instrument the difference equation.

Consider the following data from one of the complete panels in the previous example:

. list id year n L2.n dl2.n if id==140

L2. L2D.
id year n n n

1023. 140 1976 .4324315 . .
1024. 140 1977 .3694925 . .
1025. 140 1978 .3541718 .4324315 .
1026. 140 1979 .3632532 .3694925 -.0629391
1027. 140 1980 .3371863 .3541718 -.0153207

1028. 140 1981 .285179 .3632532 .0090815
1029. 140 1982 .1756326 .3371863 -.026067
1030. 140 1983 .1275133 .285179 -.0520073
1031. 140 1984 .0889263 .1756326 -.1095464

The missing values in L2D.n show that we lose 3 observations because of lags and the difference that
removes the panel-level effects. The first nonmissing observation occurs in 1979 and observations
on n from 1976 and 1977 are available to instrument the 1979 difference equation. The table below
gives the observations available to instrument the differenced equation for the data above.
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Year of Years of Number of
difference errors instruments instruments

1979 1976–1977 2
1980 1976–1978 3
1981 1976–1979 4
1982 1976–1980 5
1983 1976–1981 6
1984 1976–1982 7

The table shows that there are a total of 27 GMM-type instruments.

The output in the example above informs us that there were a total of 41 instruments applied to the
difference equation. Because there are 14 standard instruments, there must have been 27 GMM-type
instruments, which matches our above calculation.

Example 2: An Arellano–Bond estimator with predetermined variables

Sometimes we cannot assume strict exogeneity. Recall that a variable xit is said to be strictly
exogenous if E[xitεis] = 0 for all t and s. If E[xitεis] 6= 0 for s < t but E[xitεis] = 0 for all s ≥ t,
the variable is said to be predetermined. Intuitively, if the error term at time t has some feedback
on the subsequent realizations of xit, xit is a predetermined variable. In the output below, we use
xtdpd to reproduce example 6 in [XT] xtabond.

https://www.stata.com/manuals/xtxtabond.pdf#xtxtabondRemarksandexamplesex6_xtabond
https://www.stata.com/manuals/xtxtabond.pdf#xtxtabond
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. xtdpd L(0/2).n L(0/1).(w ys) L(0/2).k yr1980-yr1984 year,
> div(L(0/1).(ys) yr1980-yr1984 year) dgmmiv(n) dgmmiv(L.w L2.k, lag(1 .))
> twostep noconstant vce(robust)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group:
min = 4
avg = 4.364286
max = 6

Number of instruments = 83 Wald chi2(15) = 958.30
Prob > chi2 = 0.0000

Two-step results
(Std. err. adjusted for clustering on id)

WC-robust
n Coefficient std. err. z P>|z| [95% conf. interval]

n
L1. .8580958 .1265515 6.78 0.000 .6100594 1.106132
L2. -.081207 .0760703 -1.07 0.286 -.2303022 .0678881

w
--. -.6910855 .1387684 -4.98 0.000 -.9630666 -.4191044
L1. .5961712 .1497338 3.98 0.000 .3026982 .8896441

ys
--. .6936392 .1728623 4.01 0.000 .3548354 1.032443
L1. -.8773678 .2183085 -4.02 0.000 -1.305245 -.449491

k
--. .4140654 .1382788 2.99 0.003 .1430439 .6850868
L1. -.1537048 .1220244 -1.26 0.208 -.3928681 .0854586
L2. -.1025833 .0710886 -1.44 0.149 -.2419143 .0367477

yr1980 -.0072451 .017163 -0.42 0.673 -.0408839 .0263938
yr1981 -.0609608 .030207 -2.02 0.044 -.1201655 -.0017561
yr1982 -.1130369 .0454826 -2.49 0.013 -.2021812 -.0238926
yr1983 -.1335249 .0600213 -2.22 0.026 -.2511645 -.0158853
yr1984 -.1623177 .0725434 -2.24 0.025 -.3045001 -.0201352

year .0264501 .0119329 2.22 0.027 .003062 .0498381

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L.w L(1/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back.

Example 3: A weaker definition of predetermined variables

As discussed in [XT] xtabond and [XT] xtdpdsys, xtabond and xtdpdsys both use a strict definition
of predetermined variables with lags. In the strict definition, the most recent lag of the variable in
pre() is considered predetermined. (Here specifying pre(w, lag(1, .)) to xtabond means that
L.w is a predetermined variable and pre(k, lag(2, .)) means that L2.k is a predetermined
variable.) In a weaker definition, the current observation is considered predetermined, but subsequent

https://www.stata.com/manuals/xtxtabond.pdf#xtxtabond
https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsys
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lags are included in the model. Here w and k would be predetermined instead of L.w and L2.w. The
output below implements this weaker definition for the previous example.

. xtdpd L(0/2).n L(0/1).(w ys) L(0/2).k yr1980-yr1984 year,
> div(L(0/1).(ys) yr1980-yr1984 year) dgmmiv(n) dgmmiv(w k, lag(1 .))
> twostep noconstant vce(robust)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group:
min = 4
avg = 4.364286
max = 6

Number of instruments = 101 Wald chi2(15) = 879.53
Prob > chi2 = 0.0000

Two-step results
(Std. err. adjusted for clustering on id)

WC-robust
n Coefficient std. err. z P>|z| [95% conf. interval]

n
L1. .6343155 .1221058 5.19 0.000 .3949925 .8736384
L2. -.0871247 .0704816 -1.24 0.216 -.2252661 .0510168

w
--. -.720063 .1133359 -6.35 0.000 -.9421973 -.4979287
L1. .238069 .1223186 1.95 0.052 -.0016712 .4778091

ys
--. .5999718 .1653036 3.63 0.000 .2759827 .923961
L1. -.5674808 .1656411 -3.43 0.001 -.8921314 -.2428303

k
--. .3931997 .0986673 3.99 0.000 .1998153 .5865842
L1. -.0019641 .0772814 -0.03 0.980 -.1534329 .1495047
L2. -.0231165 .0487317 -0.47 0.635 -.1186288 .0723958

yr1980 -.006209 .0162138 -0.38 0.702 -.0379875 .0255694
yr1981 -.0398491 .0313794 -1.27 0.204 -.1013516 .0216535
yr1982 -.0525715 .0397346 -1.32 0.186 -.1304498 .0253068
yr1983 -.0451175 .051418 -0.88 0.380 -.145895 .05566
yr1984 -.0437772 .0614391 -0.71 0.476 -.1641955 .0766412

year .0173374 .0108665 1.60 0.111 -.0039605 .0386352

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).w L(1/.).k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year

As expected, the output shows that the additional 18 instruments available under the weaker definition
can affect the magnitudes of the estimates. Applying the stricter definition when the true model was
generated by the weaker definition yielded consistent but inefficient results; there were some additional
moment conditions that could have been included but were not. In contrast, applying the weaker
definition when the true model was generated by the stricter definition yields inconsistent estimates.



10 xtdpd — Linear dynamic panel-data estimation

Example 4: A system estimator of a dynamic panel-data model

Here we use xtdpd to reproduce example 2 from [XT] xtdpdsys in which we used the system
estimator to fit a model with predetermined variables.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year, div(yr1980-yr1984 year)
> dgmmiv(n) dgmmiv(L2.(w k), lag(1 .)) lgmmiv(n L1.(w k)) vce(robust) hascons

Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year

Obs per group:
min = 5
avg = 5.364286
max = 7

Number of instruments = 95 Wald chi2(13) = 7562.80
Prob > chi2 = 0.0000

One-step results
(Std. err. adjusted for clustering on id)

Robust
n Coefficient std. err. z P>|z| [95% conf. interval]

n
L1. .913278 .0460602 19.83 0.000 .8230017 1.003554

w
--. -.728159 .1019044 -7.15 0.000 -.927888 -.5284301
L1. .5602737 .1939617 2.89 0.004 .1801156 .9404317
L2. -.0523028 .1487653 -0.35 0.725 -.3438774 .2392718

k
--. .4820097 .0760787 6.34 0.000 .3328983 .6311212
L1. -.2846944 .0831902 -3.42 0.001 -.4477442 -.1216446
L2. -.1394181 .0405709 -3.44 0.001 -.2189356 -.0599006

yr1980 -.0325146 .0216371 -1.50 0.133 -.0749226 .0098935
yr1981 -.0726116 .0346482 -2.10 0.036 -.1405207 -.0047024
yr1982 -.0477038 .0451914 -1.06 0.291 -.1362772 .0408696
yr1983 -.0396264 .0558734 -0.71 0.478 -.1491362 .0698835
yr1984 -.0810383 .0736648 -1.10 0.271 -.2254186 .063342

year .0192741 .0145326 1.33 0.185 -.0092092 .0477574
_cons -37.34972 28.77747 -1.30 0.194 -93.75253 19.05308

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L2.w L(1/.).L2.k
Standard: D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

Instruments for level equation
GMM-type: LD.n L2D.w L2D.k
Standard: _cons

The first lags of the variables included in lgmmiv() are used to create GMM-type instruments for
the level equation. Only the first lags of the variables in lgmmiv() are used because the moment
conditions using higher lags are redundant; see Blundell and Bond (1998) and Blundell, Bond, and
Windmeijer (2000).

https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsysRemarksandexamplesex2_xtdpdsys
https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsys
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Example 5: Allowing for MA(1) errors

All the previous examples have used moment conditions that are valid only if the idiosyncratic errors
are i.i.d. This example shows how to use xtdpd to estimate the parameters of a model with first-order
moving-average [MA(1)] errors using the Arellano–Bond estimator, the Arellano–Bover/Blundell–
Bond system estimator, or any other consistent GMM estimator you want to specify. For simplicity,
we assume that the independent variables are strictly exogenous. Also, to highlight the fact that we
can specify the instrument list flexibly, we only include the levels and first lags of the exogenous
variables in the instrument list. An Arellano–Bond estimator, for instance, would have included levels
and first and second lags of the exogenous variables.

We begin by noting that the Sargan test rejects the null hypothesis that the overidentifying restrictions
are valid in the model with i.i.d. errors.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n) hascons

(output omitted )
. estat sargan
Sargan test of overidentifying restrictions
H0: Overidentifying restrictions are valid

chi2(24) = 49.70094
Prob > chi2 = 0.0015
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Assuming that the idiosyncratic errors are MA(1) implies that only lags three or higher are valid
instruments for the difference equation. (See the technical note below.)

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n, lag(3 .)) hascons

Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year

Obs per group:
min = 5
avg = 5.364286
max = 7

Number of instruments = 32 Wald chi2(13) = 1195.04
Prob > chi2 = 0.0000

One-step results

n Coefficient Std. err. z P>|z| [95% conf. interval]

n
L1. .8696303 .2014473 4.32 0.000 .4748008 1.26446

w
--. -.5802971 .0762659 -7.61 0.000 -.7297756 -.4308187
L1. .2918658 .1543883 1.89 0.059 -.0107296 .5944613
L2. -.5903459 .2995123 -1.97 0.049 -1.177379 -.0033126

k
--. .3428139 .0447916 7.65 0.000 .2550239 .4306039
L1. -.1383918 .0825823 -1.68 0.094 -.3002502 .0234665
L2. -.0260956 .1535855 -0.17 0.865 -.3271177 .2749265

yr1980 -.0036873 .0301587 -0.12 0.903 -.0627973 .0554226
yr1981 .00218 .0592014 0.04 0.971 -.1138526 .1182125
yr1982 .0782939 .0897622 0.87 0.383 -.0976367 .2542246
yr1983 .1734231 .1308914 1.32 0.185 -.0831193 .4299655
yr1984 .2400685 .1734456 1.38 0.166 -.0998787 .5800157

year -.0354681 .0309963 -1.14 0.253 -.0962198 .0252836
_cons 73.13706 62.61443 1.17 0.243 -49.58496 195.8591

Instruments for differenced equation
GMM-type: L(3/.).n
Standard: D.w LD.w D.k LD.k D.yr1980 D.yr1981 D.yr1982 D.yr1983

D.yr1984 D.year
Instruments for level equation

Standard: _cons

The results from estat sargan no longer reject the null hypothesis that the overidentifying
restrictions are valid.

. estat sargan
Sargan test of overidentifying restrictions
H0: Overidentifying restrictions are valid

chi2(18) = 20.80081
Prob > chi2 = 0.2896

Moving on to the system estimator, we note that the Sargan test rejects the null hypothesis after
fitting the model with i.i.d. errors.
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. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n) lgmmiv(n) hascons

(output omitted )

. estat sargan
Sargan test of overidentifying restrictions
H0: Overidentifying restrictions are valid

chi2(31) = 59.22907
Prob > chi2 = 0.0017

Now we fit the model using the additional moment conditions constructed from the second lag of
n as an instrument for the level equation.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n, lag(3 .)) lgmmiv(n, lag(2))
> hascons

Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year

Obs per group:
min = 5
avg = 5.364286
max = 7

Number of instruments = 38 Wald chi2(13) = 3680.01
Prob > chi2 = 0.0000

One-step results

n Coefficient Std. err. z P>|z| [95% conf. interval]

n
L1. .9603675 .095608 10.04 0.000 .7729794 1.147756

w
--. -.5433987 .068835 -7.89 0.000 -.6783128 -.4084845
L1. .4356183 .0881727 4.94 0.000 .262803 .6084336
L2. -.2785721 .1115061 -2.50 0.012 -.4971201 -.0600241

k
--. .3139331 .0419054 7.49 0.000 .2317999 .3960662
L1. -.160103 .0546915 -2.93 0.003 -.2672963 -.0529096
L2. -.1295766 .0507752 -2.55 0.011 -.2290943 -.030059

yr1980 -.0200704 .0248954 -0.81 0.420 -.0688644 .0287236
yr1981 -.0425838 .0422155 -1.01 0.313 -.1253246 .040157
yr1982 .0048723 .0600938 0.08 0.935 -.1129093 .122654
yr1983 .0458978 .0785687 0.58 0.559 -.1080941 .1998897
yr1984 .0633219 .1026188 0.62 0.537 -.1378074 .2644511

year -.0075599 .019059 -0.40 0.692 -.0449148 .029795
_cons 16.20856 38.00619 0.43 0.670 -58.28221 90.69932

Instruments for differenced equation
GMM-type: L(3/.).n
Standard: D.w LD.w D.k LD.k D.yr1980 D.yr1981 D.yr1982 D.yr1983

D.yr1984 D.year
Instruments for level equation

GMM-type: L2D.n
Standard: _cons

The estimate of the coefficient on L.n is now 0.96. Blundell, Bond, and Windmeijer (2000, 63–65)
show that the moment conditions in the system estimator remain informative as the true coefficient
on L.n approaches unity. Holtz-Eakin, Newey, and Rosen (1988) show that because the large-sample
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distribution of the estimator is derived for fixed number of periods and a growing number of individuals
there is no “unit-root” problem.

The results from estat sargan no longer reject the null hypothesis that the overidentifying
restrictions are valid.

. estat sargan
Sargan test of overidentifying restrictions
H0: Overidentifying restrictions are valid

chi2(24) = 27.22585
Prob > chi2 = 0.2940

Technical note
To find the valid moment conditions for the model with MA(1) errors, we begin by writing the

model

nit = αnit−1 + βxit + νi + εit + γεit−1

where the εit are assumed to be i.i.d.

Because the composite error, εit + γεit−1, is MA(1), only lags two or higher are valid instruments
for the level equation, assuming the initial condition that E[νi∆ni2] = 0. The key to this point is that
lagging the above equation two periods shows that εit−2 and εit−3 appear in the equation for nit−2.
Because the εit are i.i.d., nit−2 is a valid instrument for the level equation with errors νi+εit+γεit−1.
(nit−2 will be correlated with nit−1 but uncorrelated with the errors νi+ εit+γεit−1.) An analogous
argument works for higher lags.

First-differencing the above equation yields

∆nit = α∆nit−1 + β∆xit + ∆εit + γ∆εit−1

Because εit−2 is the farthest lag of εit that appears in the difference equation, lags three or higher
are valid instruments for the differenced composite errors. (Lagging the level equation three periods
shows that only εit−3 and εit−4 appear in the equation for nit−3, which implies that nit−3 is a valid
instrument for the current difference equation. An analogous argument works for higher lags.)
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Stored results
xtdpd stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(t min) minimum time in sample
e(t max) maximum time in sample
e(chi2) χ2

e(arm#) test for autocorrelation of order #
e(artests) number of AR tests computed
e(sig2) estimate of σ2

ε

e(rss) sum of squared differenced residuals
e(sargan) Sargan test statistic
e(rank) rank of e(V)
e(zrank) rank of instrument matrix

Macros
e(cmd) xtdpd
e(cmdline) command as typed
e(depvar) name of dependent variable
e(twostep) twostep, if specified
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(system) system, if system estimator
e(transform) specified transform
e(diffvars) already-differenced exogenous variables
e(datasignature) checksum from datasignature
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
Consider dynamic panel-data models of the form

yit =

p∑
j=1

αjyi,t−j + xitβ1 + witβ2 + νi + εit

where the variables are as defined as in (1).

x and w may contain lagged independent variables and time dummies.

Let XL
it = (yi,t−1, yi,t−2, . . . , yi,t−p,xit,wit) be the 1×K vector of covariates for i at time t,

where K = p+ k1 + k2, p is the number of included lags, k1 is the number of strictly exogenous
variables in xit, and k2 is the number of predetermined variables in wit. (The superscript L stands
for levels.)

Now rewrite this relationship as a set of Ti equations for each individual,

yLi = XL
i δ + νiιi + εi

where Ti is the number of observations available for individual i; yi, ιi, and εi are Ti × 1, whereas
Xi is Ti ×K.

The estimators use both the levels and a transform of the variables in the above equation. Denote
the transformed variables by an ∗, so that y∗i is the transformed yLi and X∗i is the transformed XL

i .
The transform may be either the first difference or the forward-orthogonal deviations (FOD) transform.
The (i, t)th observation of the FOD transform of a variable x is given by

x∗it = ct

{
xit −

1

T − t
(xit+1 + xit+2 + · · ·+ xiT )

}
where c2t = (T − t)/(T − t + 1) and T is the number of observations on x; see Arellano and
Bover (1995) and Arellano (2003).

Here we present the formulas for the Arellano–Bover/Blundell–Bond system estimator. The for-
mulas for the Arellano–Bond estimator are obtained by setting the additional level matrices in the
system estimator to null matrices.

Stacking the transformed and untransformed vectors of the dependent variable for a given i yields

yi =

(
y∗i
yLi

)

Similarly, stacking the transformed and untransformed matrices of the covariates for a given i
yields

Xi =

(
X∗i
XL
i

)
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Zi is a matrix of instruments,

Zi =

(
Zdi 0 Di 0 Idi
0 ZLi 0 Li ILi

)
where Zdi is the matrix of GMM-type instruments created from the dgmmiv() options, ZLi is the
matrix of GMM-type instruments created from the lgmmiv() options, Di is the matrix of standard
instruments created from the div() options, Li is the matrix of standard instruments created from
the liv() options, Idi is the matrix of standard instruments created from the iv() options for the
differenced errors, and ILi is the matrix of standard instruments created from the iv() options for
the level errors.

div(), liv(), and iv() simply add columns to instrument matrix. The GMM-type instruments
are more involved. Begin by considering a simple balanced-panel example in which our model is

yit = α1yi,t−1 + α2yi,t−2 + νi + εit

We do not need to consider covariates because strictly exogenous variables are handled using div(),
iv(), or liv(), and predetermined or endogenous variables are handled analogous to the dependent
variable.

Assume that the data come from a balanced panel in which there are no missing values. After
first-differencing the equation, we have

∆yit = α1∆yi,t−1 + α2∆yi,t−2 + ∆εit

The first 3 observations are lost to lags and differencing. If we assume that the εit are not autocorrelated,
for each i at t = 4, yi1 and yi2 are valid instruments for the differenced equation. Similarly, at t = 5,
yi1, yi2, and yi3 are valid instruments. We specify dgmmiv(y) to obtain an instrument matrix with
one row for each period that we are instrumenting:

Zdi =


yi1 yi2 0 0 0 . . . 0 0 0
0 0 yi1 yi2 yi3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 yi1 . . . yi,T−2


Because p = 2, Zdi has T − p− 1 rows and

∑T−2
m=pm columns.

Specifying lgmmiv(y) creates the instrument matrix

ZLi =


∆.yi2 0 0 . . . 0

0 ∆.yi3 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ∆.yi(Ti−1)


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This extends to other lag structures with complete data. Unbalanced data and missing observations
are handled by dropping the rows for which there are no data and filling in zeros in columns where
missing data are required. Suppose that, for some i, the t = 1 observation was missing but was not
missing for some other panels. dgmmiv(y) would then create the instrument matrix

Zdi =


0 0 0 yi2 yi3 0 0 0 0 . . . 0 0 0
0 0 0 0 0 0 yi2 yi3 0 . . . 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 . . . 0 yi2 . . . yiT−2


Zdi has Ti − p − 1 rows and

∑τ−2
m=pm columns, where τ = maxiτi and τi is the number of

nonmissing observations in panel i.

After defining

Qxz =
∑
i

X′iZi

Qzy =
∑
i

Z′iyi

W1 = QxzA1Q
′
xz

A1 =

(∑
i

Z′iH1iZi

)−1

and

H1i =

(
Hdi 0
0 HLi

)
the one-step estimates are given by

β̂1 = W−1
1 QxzA1Qzy

When using the first-difference transform Hdi, is given by

Hdi =


1 −.5 0 . . . 0 0
−.5 1 −.5 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 −.5
0 0 0 . . . −.5 1


and HLi is given by 0.5 times the identity matrix. When using the FOD transform, both Hdi and
HLi are equal to the identity matrix.
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The transformed one-step residuals are given by

ε̂∗1i = y∗i − β̂1X
∗
i

which are used to compute

σ̂2
1 = {1/(N −K)}

N∑
i

ε̂∗′1iε̂
∗
1i

The GMM one-step VCE is then given by

V̂GMM[β̂1] = σ̂2
1W

−1
1

The one-step level residuals are given by

ε̂L1i = yLi − β̂1X
L
i

Stacking the residual vectors yields

ε̂1i =

(
ε̂∗1i
ε̂L1i

)
which is used to compute H2i = ε̂′1iε̂1i, which is used in

A2 =

(∑
i

Z′iH2iZi

)−1

and the robust one-step VCE is given by

V̂robust[β̂1] = W−1
1 QxzA1A

−1
2 A1Q

′
xzW

−1
1

V̂robust[β̂1] is robust to heteroskedasticity in the errors.

After defining

W2 = QxzA2Q
′
xz

the two-step estimates are given by

β̂2 = W−1
2 QxzA2Qzy

The GMM two-step VCE is then given by

V̂GMM[β̂2] = W−1
2
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The GMM two-step VCE is known to be severely biased. Windmeijer (2005) derived the Windmeijer
bias-corrected (WC) estimator for the robust VCE of two-step GMM estimators. xtdpd implements this
WC-robust estimator of the VCE. The formulas for this method are involved; see Windmeijer (2005).
The WC-robust estimator of the VCE is robust to heteroskedasticity in the errors.
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