
quadchk — Check sensitivity of quadrature approximation

Description Quick start Menu Syntax
Options Remarks and examples

Description
quadchk checks the quadrature approximation used in the random-effects estimators of the following

commands:

xtcloglog
xtintreg
xtlogit
xtmlogit
xtologit
xtoprobit
xtpoisson, re with the normal option

xtprobit
xtstreg
xttobit

quadchk refits the model for different numbers of quadrature points and then compares the different

solutions. quadchk respects all options supplied to the original model except or, vce(), and the maxi-

mize options.

Quick start
Check quadrature approximation using the default range of quadrature points

quadchk

Same as above, but use 8 and 16 quadrature points

quadchk 8 16

Same as above, but suppress the iteration log and output of the refitted models

quadchk 8 16, nooutput

Refit the model instead of using original estimates

quadchk 8 16, nooutput nofrom

Menu
Statistics > Longitudinal/panel data > Setup and utilities > Check sensitivity of quadrature approximation

1

https://www.stata.com/manuals/xtxtcloglog.pdf#xtxtcloglog
https://www.stata.com/manuals/xtxtintreg.pdf#xtxtintreg
https://www.stata.com/manuals/xtxtlogit.pdf#xtxtlogit
https://www.stata.com/manuals/xtxtmlogit.pdf#xtxtmlogit
https://www.stata.com/manuals/xtxtologit.pdf#xtxtologit
https://www.stata.com/manuals/xtxtoprobit.pdf#xtxtoprobit
https://www.stata.com/manuals/xtxtpoisson.pdf#xtxtpoisson
https://www.stata.com/manuals/xtxtprobit.pdf#xtxtprobit
https://www.stata.com/manuals/xtxtstreg.pdf#xtxtstreg
https://www.stata.com/manuals/xtxttobit.pdf#xtxttobit
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Syntax
quadchk [ #1 #2 ] [ , nooutput nofrom ]

#1 and #2 specify the number of quadrature points to use in the comparison runs of the previous model.

The default is to use approximately 2𝑛𝑞/3 and 4𝑛𝑞/3 points, where 𝑛𝑞 is the number of quadrature

points used in the original estimation.

Options
nooutput suppresses the iteration log and output of the refitted models.

nofrom forces the refitted models to start from scratch rather than starting from the previous estimation

results. Specifying the nofrom option can level the playing field in testing estimation results.

Remarks and examples
Remarks are presented under the following headings:

What makes a good random-effects model fit?
How do I know whether I have a good quadrature approximation?
What can I do to improve my results?

What makes a good random-effects model fit?
Some random-effects estimators in Stata use adaptive or nonadaptive Gauss–Hermite quadrature to

compute the log likelihood and its derivatives. As a rule, adaptive quadrature, which is the default inte-

gration method, is much more accurate. The quadchk command provides a means to look at the numer-

ical accuracy of either quadrature approximation. A good random-effects model fit depends on both the

goodness of the quadrature approximation and the goodness of the data.

The accuracy of the quadrature approximation depends on three factors. The first and second are how

many quadrature points are used and where the quadrature points fall. These two factors directly influ-

ence the accuracy of the quadrature approximation. The number of quadrature points may be specified

with the intpoints() option. However, once the number of points is specified, their abscissas (loca-

tions) and corresponding weights are completely determined. Increasing the number of points expands

the range of the abscissas and, to a lesser extent, increases the density of the abscissas. For this reason,

a function that undulates between the abscissas can be difficult to approximate.

Third, the smoothness of the function being approximated influences the accuracy of the quadrature

approximation. Gauss–Hermite quadrature estimates integrals of the type

∫
∞

−∞
𝑒−𝑥2𝑓(𝑥)𝑑𝑥

and the approximation is exact if 𝑓(𝑥) is a polynomial of degree less than the number of integration

points. Therefore, 𝑓(𝑥) that are well approximated by polynomials of a given degree have integrals that
are well approximated by Gauss–Hermite quadrature with that given number of integration points. Both

large panel sizes and high 𝜌 can reduce the accuracy of the quadrature approximation.

A final factor affects the goodness of the random-effects model: the data themselves. For high 𝜌,
for example, there is high intrapanel correlation, and panels look like observations. The model becomes

unidentified. Here, even with exact quadrature, fitting the model would be difficult.
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How do I know whether I have a good quadrature approximation?
quadchk is intended as a tool to help you know whether you have a good quadrature approximation.

As a rule of thumb, if the coefficients do not change by more than a relative difference of 10−4 (0.01%),

the choice of quadrature points does not significantly affect the outcome, and the results may be confi-

dently interpreted. However, if the results do change appreciably—greater than a relative difference of

10−2 (1%)—then quadrature is not reliably approximating the likelihood.

What can I do to improve my results?
If the quadchk command indicates that the estimation results are sensitive to the number of quadrature

points, there are several things you can do. First, if you are not using adaptive quadrature, switch to

adaptive quadrature.

Adaptive quadrature can improve the approximation by transforming the integrand so that the ab-

scissas and weights sample the function on a more suitable range. Details of this transformation are in

Methods and formulas for the given commands; for example, see [XT] xtprobit.

If the model still shows sensitivity to the number of quadrature points, increase the number of quadra-

ture points with the intpoints() option. This option will increase the range and density of the sampling
used for the quadrature approximation.

If neither of these works, you may then want to consider an alternative model, such as a fixed-effects,

pooled, or population-averaged model. Alternatively, a different random-effects model whose likelihood

is not approximated via quadrature (for example, xtpoisson, re) may be a better choice.

https://www.stata.com/manuals/xtxtprobit.pdf#xtxtprobit
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Example 1
Here we synthesize data according to the model

𝐸(𝑦) = 0.05𝑥1 + 0.08𝑥2 + 0.08𝑥3 + 0.1𝑥4 + 0.1𝑥5 + 0.1𝑥6 + 0.1𝜖

𝑧 = {1 if 𝑦 ≥ 0
0 if 𝑦 < 0

where the intrapanel correlation is 0.5 and the x1 variable is constant within panels. We first fit a random-

effects probit model, and then we check the stability of the quadrature calculation:

. use https://www.stata-press.com/data/r19/quad1

. xtset id
Panel variable: id (balanced)
. xtprobit z x1-x6
(output omitted )

Random-effects probit regression Number of obs = 6,000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group:

min = 20
avg = 20.0
max = 20

Integration method: mvaghermite Integration pts. = 12
Wald chi2(6) = 29.24

Log likelihood = -3347.1097 Prob > chi2 = 0.0001

z Coefficient Std. err. z P>|z| [95% conf. interval]

x1 .0043068 .0607058 0.07 0.943 -.1146743 .1232879
x2 .1000742 .066331 1.51 0.131 -.0299323 .2300806
x3 .1503539 .0662503 2.27 0.023 .0205057 .2802021
x4 .123015 .0377089 3.26 0.001 .0491069 .196923
x5 .1342988 .0657222 2.04 0.041 .0054856 .263112
x6 .0879933 .0455753 1.93 0.054 -.0013325 .1773192

_cons .0757067 .060359 1.25 0.210 -.0425948 .1940083

/lnsig2u -.0329916 .1026847 -.23425 .1682667

sigma_u .9836395 .0505024 .889474 1.087774
rho .4917528 .0256642 .4417038 .5419677

LR test of rho=0: chibar2(01) = 1582.67 Prob >= chibar2 = 0.000
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. quadchk
Refitting model intpoints() = 8
(output omitted )

Refitting model intpoints() = 16
(output omitted )

Quadrature check
Fitted Comparison Comparison

quadrature quadrature quadrature
12 points 8 points 16 points

Log -3347.1097 -3347.1153 -3347.1099
likelihood -.00561484 -.00014288 Difference

1.678e-06 4.269e-08 Relative difference

z: .0043068 .0043068 .00430541
x1 2.300e-12 -1.388e-06 Difference

5.340e-10 -.00032222 Relative difference

z: .10007418 .10007418 .10007431
x2 6.513e-13 1.362e-07 Difference

6.508e-12 1.361e-06 Relative difference

z: .15035391 .15035391 .15035406
x3 1.625e-12 1.520e-07 Difference

1.080e-11 1.011e-06 Relative difference

z: .12301495 .12301495 .12301506
x4 1.059e-12 1.099e-07 Difference

8.611e-12 8.931e-07 Relative difference

z: .13429881 .13429881 .13429896
x5 1.257e-12 1.471e-07 Difference

9.361e-12 1.096e-06 Relative difference

z: .08799332 .08799332 .08799346
x6 8.576e-13 1.363e-07 Difference

9.746e-12 1.549e-06 Relative difference

z: .07570675 .07570675 .07570423
_cons 5.024e-12 -2.516e-06 Difference

6.636e-11 -.00003323 Relative difference

/: -.03299164 -.03299164 -.03298184
lnsig2u 1.861e-11 9.798e-06 Difference

-5.640e-10 -.00029699 Relative difference

We see that the largest difference is in the x1 variable with a relative difference of 0.03% between the

model with 12 integration points and 16. This example is somewhat rare in that the differences between

eight quadrature points and 12 are smaller than those between 12 and 16. Usually the opposite occurs:

the model results converge as you add quadrature points. Here we have an indication that perhaps some

minor feature of the model was missed with eight points and 12 but seen with 16. Because all differences

are very small, we could accept this model as is. We would like to have a largest relative difference of

about 0.01%, and this is close. The differences and relative differences are small, indicating that refitting

the random-effects probit model with a fewmore integration points will yield a satisfactory result. Indeed,

refitting the model with the intpoints(20) option yields completely satisfactory results when checked

with quadchk.
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Nonadaptive Gauss–Hermite quadrature does not yield such robust results.

. xtprobit z x1-x6, intmethod(ghermite) nolog
Random-effects probit regression Number of obs = 6,000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group:

min = 20
avg = 20.0
max = 20

Integration method: ghermite Integration pts. = 12
Wald chi2(6) = 36.15

Log likelihood = -3349.6926 Prob > chi2 = 0.0000

z Coefficient Std. err. z P>|z| [95% conf. interval]

x1 .1156763 .0554925 2.08 0.037 .0069131 .2244396
x2 .1005555 .066227 1.52 0.129 -.0292469 .230358
x3 .1542187 .0660852 2.33 0.020 .0246941 .2837433
x4 .1257616 .0375776 3.35 0.001 .0521108 .1994123
x5 .1366003 .0654696 2.09 0.037 .0082823 .2649182
x6 .0870325 .0453489 1.92 0.055 -.0018497 .1759147

_cons .1098393 .0500514 2.19 0.028 .0117404 .2079382

/lnsig2u -.0791821 .0971063 -.2695071 .1111428

sigma_u .9611824 .0466685 .8739313 1.057145
rho .4802148 .0242386 .4330281 .5277571

LR test of rho=0: chibar2(01) = 1577.50 Prob >= chibar2 = 0.000
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. quadchk, nooutput
Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check
Fitted Comparison Comparison

quadrature quadrature quadrature
12 points 8 points 16 points

Log -3349.6926 -3354.6372 -3348.3881
likelihood -4.9446636 1.3045063 Difference

.00147615 -.00038944 Relative difference

z: .11567633 .16153998 .07007833
x1 .04586365 -.045598 Difference

.39648262 -.39418608 Relative difference

z: .10055552 .10317831 .09937417
x2 .00262279 -.00118135 Difference

.02608297 -.01174825 Relative difference

z: .1542187 .15465369 .15150516
x3 .00043499 -.00271354 Difference

.00282062 -.0175954 Relative difference

z: .12576159 .12880254 .1243974
x4 .00304096 -.00136418 Difference

.02418032 -.01084739 Relative difference

z: .13660028 .13475211 .13707075
x5 -.00184817 .00047047 Difference

-.01352978 .00344411 Relative difference

z: .08703252 .08568342 .08738135
x6 -.0013491 .00034883 Difference

-.0155011 .00400809 Relative difference

z: .10983928 .11031299 .09654975
_cons .00047371 -.01328953 Difference

.00431274 -.12099067 Relative difference

/: -.07918212 -.18133821 -.05815644
lnsig2u -.10215609 .02102568 Difference

1.2901408 -.26553572 Relative difference

Here we see that the x1 variable (the one that was constant within panel) changed with a relative

difference of nearly 40%! This example clearly demonstrates the benefit of adaptive quadrature methods.
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Example 2
Here we rerun the previous nonadaptive quadrature model, but using the intpoints(120) option to

increase the number of integration points to 120. We get results close to those from adaptive quadra-

ture and an acceptable quadchk. This example demonstrates the efficacy of increasing the number of

integration points to improve the quadrature approximation.

. xtprobit z x1-x6, intmethod(ghermite) intpoints(120) nolog
Random-effects probit regression Number of obs = 6,000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group:

min = 20
avg = 20.0
max = 20

Integration method: ghermite Integration pts. = 120
Wald chi2(6) = 29.24

Log likelihood = -3347.1099 Prob > chi2 = 0.0001

z Coefficient Std. err. z P>|z| [95% conf. interval]

x1 .0043059 .0607087 0.07 0.943 -.114681 .1232929
x2 .1000743 .0663311 1.51 0.131 -.0299322 .2300808
x3 .1503541 .0662503 2.27 0.023 .0205058 .2802023
x4 .1230151 .0377089 3.26 0.001 .049107 .1969232
x5 .134299 .0657223 2.04 0.041 .0054856 .2631123
x6 .0879935 .0455753 1.93 0.054 -.0013325 .1773194

_cons .0757054 .0603621 1.25 0.210 -.0426021 .1940128

/lnsig2u -.0329832 .1026863 -.2342446 .1682783

sigma_u .9836437 .0505034 .8894764 1.08778
rho .491755 .0256646 .4417052 .5419706

LR test of rho=0: chibar2(01) = 1582.67 Prob >= chibar2 = 0.000

https://www.stata.com/manuals/xtquadchk.pdf#xtquadchkRemarksandexamplesnonadaptive
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. quadchk, nooutput
Refitting model intpoints() = 80
Refitting model intpoints() = 160

Quadrature check
Fitted Comparison Comparison

quadrature quadrature quadrature
120 points 80 points 160 points

Log -3347.1099 -3347.1099 -3347.1099
likelihood -.00007138 2.440e-07 Difference

2.133e-08 -7.289e-11 Relative difference

z: .00430592 .00431318 .00430553
x1 7.259e-06 -3.871e-07 Difference

.00168592 -.00008991 Relative difference

z: .10007431 .10007415 .10007431
x2 -1.519e-07 5.585e-09 Difference

-1.517e-06 5.580e-08 Relative difference

z: .15035406 .15035407 .15035406
x3 1.699e-08 7.636e-09 Difference

1.130e-07 5.078e-08 Relative difference

z: .12301506 .12301512 .12301506
x4 6.036e-08 5.353e-09 Difference

4.907e-07 4.352e-08 Relative difference

z: .13429895 .13429962 .13429896
x5 6.646e-07 4.785e-09 Difference

4.949e-06 3.563e-08 Relative difference

z: .08799345 .08799334 .08799346
x6 -1.123e-07 3.049e-09 Difference

-1.276e-06 3.465e-08 Relative difference

z: .07570536 .07570205 .07570442
_cons -3.305e-06 -9.405e-07 Difference

-.00004365 -.00001242 Relative difference

/: -.03298317 -.03298909 -.03298186
lnsig2u -5.919e-06 1.304e-06 Difference

.00017945 -.00003952 Relative difference

Example 3
Here we synthesize data the same way as in the previous example, but we make the intrapanel corre-

lation equal to 0.1 instead of 0.5. We again fit a random-effects probit model and check the quadrature:

https://www.stata.com/manuals/xtquadchk.pdf#xtquadchkRemarksandexamplesex2
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. use https://www.stata-press.com/data/r19/quad2

. xtset id
Panel variable: id (balanced)
. xtprobit z x1-x6
Fitting comparison model:
Iteration 0: Log likelihood = -4142.2915
Iteration 1: Log likelihood = -4120.4109
Iteration 2: Log likelihood = -4120.4099
Iteration 3: Log likelihood = -4120.4099
Fitting full model:
rho = 0.0 Log likelihood = -4120.4099
rho = 0.1 Log likelihood = -4065.7986
rho = 0.2 Log likelihood = -4087.7703
Iteration 0: Log likelihood = -4065.7986
Iteration 1: Log likelihood = -4065.3157
Iteration 2: Log likelihood = -4065.3144
Iteration 3: Log likelihood = -4065.3144
Random-effects probit regression Number of obs = 6,000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group:

min = 20
avg = 20.0
max = 20

Integration method: mvaghermite Integration pts. = 12
Wald chi2(6) = 39.43

Log likelihood = -4065.3144 Prob > chi2 = 0.0000

z Coefficient Std. err. z P>|z| [95% conf. interval]

x1 .0246943 .025112 0.98 0.325 -.0245243 .0739129
x2 .1300123 .0587906 2.21 0.027 .0147847 .2452398
x3 .1190409 .0579539 2.05 0.040 .0054533 .2326284
x4 .139197 .0331817 4.19 0.000 .0741621 .2042319
x5 .077364 .0578454 1.34 0.181 -.036011 .1907389
x6 .0862028 .0401185 2.15 0.032 .007572 .1648336

_cons .0922653 .0244392 3.78 0.000 .0443653 .1401652

/lnsig2u -2.343939 .1575275 -2.652687 -2.035191

sigma_u .3097563 .0243976 .2654461 .3614631
rho .0875487 .0125839 .0658236 .1155574

LR test of rho=0: chibar2(01) = 110.19 Prob >= chibar2 = 0.000
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. quadchk, nooutput
Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check
Fitted Comparison Comparison

quadrature quadrature quadrature
12 points 8 points 16 points

Log -4065.3144 -4065.3144 -4065.3144
likelihood -2.268e-08 6.366e-12 Difference

5.578e-12 -1.566e-15 Relative difference

z: .02469427 .02469427 .02469427
x1 -7.290e-12 -8.007e-12 Difference

-2.952e-10 -3.242e-10 Relative difference

z: .13001229 .13001229 .13001229
x2 -3.131e-11 -6.880e-13 Difference

-2.408e-10 -5.292e-12 Relative difference

z: .11904089 .11904089 .11904089
x3 -1.291e-11 -3.030e-13 Difference

-1.085e-10 -2.546e-12 Relative difference

z: .13919697 .13919697 .13919697
x4 2.885e-12 1.693e-13 Difference

2.072e-11 1.216e-12 Relative difference

z: .07736398 .07736398 .07736398
x5 -1.160e-11 -4.557e-13 Difference

-1.500e-10 -5.891e-12 Relative difference

z: .08620282 .08620282 .08620282
x6 1.181e-11 3.191e-13 Difference

1.370e-10 3.702e-12 Relative difference

z: .09226527 .09226527 .09226527
_cons -5.700e-12 -1.837e-11 Difference

-6.177e-11 -1.991e-10 Relative difference

/: -2.3439389 -2.3439389 -2.3439389
lnsig2u -5.892e-09 -2.172e-10 Difference

2.514e-09 9.267e-11 Relative difference

Here we see that the quadrature approximation is stable. With this result, we can confidently interpret

the results. Satisfactory results are also obtained in this case with nonadaptive quadrature.
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