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2 [ U ] 20 Estimation and postestimation commands

20.1 All estimation commands work the same way

All Stata commands that fit statistical models—commands such as regress, logit, and
sureg—work similarly. Most single-equation estimation commands have the syntax

command varlist
[

if
] [

in
] [

weight
] [

, options
]

and most multiple-equation estimation commands have the syntax

command (varlist) (varlist) . . . (varlist)
[

if
] [

in
] [

weight
] [

, options
]

Adopt a loose definition of single and multiple equation in interpreting this. For instance, heckman is a
two-equation system, mathematically speaking, yet we categorize it, syntactically, with single-equation
commands because most researchers think of it as a linear regression with an adjustment for the
censoring. The important thing is that most estimation commands have one or the other of these two
syntaxes.

In single-equation commands, the first variable in the varlist is the dependent variable, and the
remaining variables are the independent variables, with some exceptions. For instance, mixed allows
special variable prefixes to identify random factors.

Prefix commands may be specified in front of an estimation command to modify or extend what
it does. The syntax is

prefix: command . . .

See [U] 11.1.10 Prefix commands for the full list of prefix commands. To find out which prefix
commands are available for an estimation command, see the command’s syntax section.

Also, all estimation commands—whether single or multiple equation—share the following features:

1. You can use the standard features of Stata’s syntax—if exp and in range—to specify the
estimation subsample; you do not have to make a special dataset.

2. You can retype the estimation command without arguments to redisplay the most recent estimation
results. For instance, after fitting a model with regress, you can see the estimates again by
typing regress by itself. You do not have to do this immediately—any number of commands
can occur between the estimation and the replaying, and, in fact, you can even replay the last
estimates after the data have changed or you have dropped the data altogether. Stata never
forgets (unless you type discard; see [P] discard).

3. You can specify the level() option at the time of estimation, or when you redisplay results
if that makes sense, to specify the width of the confidence intervals for the coefficients. The
default is level(95), meaning 95% confidence intervals. You can reset the default with set
level; see [R] level.

4. You can use the postestimation command margins to display model results in terms of marginal
effects (dy/dx or even df(y)/dx), which can be displayed as either derivatives or elasticities;
see [R] margins.

5. You can use the postestimation command margins to obtain tables of estimated marginal
means, adjusted predictions, and predictive margins; see [U] 20.17 Obtaining conditional and
average marginal effects and [R] margins.

6. You can use the postestimation command pwcompare to obtain pairwise comparisons across levels
of factor variables. You can compare estimated cell means, marginal means, intercepts, marginal
intercepts, slopes, or marginal slopes—collectively called margins. See [U] 20.18 Obtaining
pairwise comparisons, [R] margins, and [R] margins, pwcompare.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/pdiscard.pdf#pdiscard
https://www.stata.com/manuals/rlevel.pdf#rlevel
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmarginspwcompare.pdf#rmargins,pwcompare
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7. You can use the postestimation command contrast to obtain contrasts, which is to say,
to compare levels of factor variables and their interactions. This command can also produce
ANOVA-style tests of main effects, interactions effects, simple effects, and nested effects; and
it can be used after most estimation commands. See [U] 20.19 Obtaining contrasts, tests of
interactions, and main effects, [R] contrast, and [R] margins, contrast.

8. You can use the postestimation command marginsplot to graph any of the results produced
by margins. And because margins can replicate any result produced by pwcompare and
contrast, you can graph any result produced by them, too. See [R] marginsplot.

9. You can use the postestimation command estat to obtain common statistics associated with
the model. The available statistics are documented in the postestimation section following the
documentation of the estimation command, for instance, in [R] regress postestimation following
[R] regress.

You can always use the postestimation command estat vce to obtain the variance–covariance
matrix of the estimators (VCE), presented as either a correlation matrix or a covariance matrix.
(You can also obtain the estimated coefficients and covariance matrix as vectors and matrices
and manipulate them with Stata’s matrix capabilities; see [U] 14.5 Accessing matrices created
by Stata commands.)

10. You can use the postestimation command predict to obtain predictions, residuals, influence
statistics, and the like, either for the data on which you just estimated or for some other data.
You can use postestimation command predictnl to obtain point estimates, standard errors,
etc., for customized predictions. See [R] predict and [R] predictnl.

11. You can use the postestimation command forecast to perform dynamic and static forecasts,
with optional forecast confidence intervals. This includes the ability to produce forecasts from
multiple estimation commands, even when estimates imply simultaneous systems. An example
of a simultaneous system is when y2 predicts y1 in estimation 1 and y1 predicts y2 in
estimation 2. forecast provides many facilities for creating comparative forecast scenarios.
See [TS] forecast.

12. You can refer to the values of coefficients and standard errors in expressions (such as with
generate) by using standard notation; see [U] 13.5 Accessing coefficients and standard
errors. You can refer in expressions to the values of other estimation-related statistics by using
e(resultname). For instance, all commands define e(N) recording the number of observations
in the estimation subsample. After estimation, type ereturn list to see a list of all that is
available. See the Stored results section in the estimation command’s documentation for their
definitions.

An especially useful e() result is e(sample): it returns 1 if an observation was used in the
estimation and 0 otherwise, so you can add if e(sample) to the end of other commands
to restrict them to the estimation subsample. You could type, for instance, summarize if
e(sample).

13. You can use the postestimation command test to perform tests on the estimated parameters
(Wald tests of linear hypotheses), testnl to perform Wald tests of nonlinear hypotheses, and
lrtest to perform likelihood-ratio tests. You can use the postestimation command lincom
to obtain point estimates and confidence intervals for linear combinations of the estimated
parameters and the postestimation command nlcom to obtain nonlinear combinations.

14. You can specify the coeflegend option at the time of estimation or when you redisplay results
to see how to type your coefficients in postestimation commands, such as test and lincom
(see [R] test and [R] lincom), and in expressions.

https://www.stata.com/manuals/rcontrast.pdf#rcontrast
https://www.stata.com/manuals/rmarginscontrast.pdf#rmargins,contrast
https://www.stata.com/manuals/rmarginsplot.pdf#rmarginsplot
https://www.stata.com/manuals/restat.pdf#restat
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/u14.pdf#u14.5AccessingmatricescreatedbyStatacommands
https://www.stata.com/manuals/u14.pdf#u14.5AccessingmatricescreatedbyStatacommands
https://www.stata.com/manuals/rpredict.pdf#rpredict
https://www.stata.com/manuals/rpredictnl.pdf#rpredictnl
https://www.stata.com/manuals/tsforecast.pdf#tsforecast
https://www.stata.com/manuals/u13.pdf#u13.5Accessingcoefficientsandstandarderrors
https://www.stata.com/manuals/u13.pdf#u13.5Accessingcoefficientsandstandarderrors
https://www.stata.com/manuals/rtest.pdf#rtest
https://www.stata.com/manuals/rtestnl.pdf#rtestnl
https://www.stata.com/manuals/rlrtest.pdf#rlrtest
https://www.stata.com/manuals/rlincom.pdf#rlincom
https://www.stata.com/manuals/rnlcom.pdf#rnlcom
https://www.stata.com/manuals/rtest.pdf#rtest
https://www.stata.com/manuals/rlincom.pdf#rlincom
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15. You can use the statsby prefix command (see [D] statsby) to fit models over each category
in a categorical variable and collect the results in a Stata dataset.

16. You can use the collect suite of commands to collect estimation results and create customized
tables from those results. See [TABLES] Intro.

17. You can use the postestimation command etable to easily create a table of estimation results
from one or multiple estimation commands. See [R] etable.

18. You can use the postestimation command estimates to store estimation results by name for
later retrieval or for displaying/comparing multiple models by using estimates, or to save
estimation results in a file; see [R] estimates.

19. You can use the postestimation command estimates to hold estimates, perform other
estimation commands, and then restore the prior estimates. This is of particular interest to
programmers. See [P] estimates.

20. You can use the postestimation command suest to obtain the joint parameter vector and
variance–covariance matrix for coefficients from two different models by using seemingly
unrelated estimation. This is especially useful for testing the equality, say, of coefficients across
models. See [R] suest.

21. You can use the postestimation command hausman to perform Hausman model-specification
tests by using hausman; see [R] hausman.

22. With some exceptions, you can specify the vce(robust) option at the time of estimation to obtain
the Huber/White/robust alternate estimate of variance, or you can specify the vce(cluster
clustvar) option to relax the assumption of independence of the observations; see [R] vce option.

Most estimation commands also allow a vce(vcetype) option to specify other alternative variance
estimators—the allowed alternative variance estimators are documented with the estimator—and
usually vce(opg), vce(bootstrap), and vce(jackknife) are available.

Where vce(bootstrap) and vce(jackknife) are available, we recommend using them
instead of the prefix commands bootstrap and jackknife.

As a rule, the points discussed briefly above and in more detail later in this entry do not apply to the
Bayesian analysis or the Bayesian model averaging commands. For more information about Bayesian
analysis commands, see the Stata Bayesian Analysis Reference Manual. For more information about
Bayesian model averaging commands, see the Stata Bayesian Model Averaging Reference Manual.

https://www.stata.com/manuals/dstatsby.pdf#dstatsby
https://www.stata.com/manuals/tablesintro.pdf#tablesIntro
https://www.stata.com/manuals/retable.pdf#retable
https://www.stata.com/manuals/restimates.pdf#restimates
https://www.stata.com/manuals/p_estimates.pdf#p_estimates
https://www.stata.com/manuals/rsuest.pdf#rsuest
https://www.stata.com/manuals/rhausman.pdf#rhausman
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesBayesianAnalysis
https://www.stata.com/manuals/bmabma.pdf#bmabmaBayesianModelAveraging
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20.2 Standard syntax
You can combine Stata’s if exp and in range with any estimation command. Estimation commands

also allow by varlist:, where it would be sensible.

Example 1

We have data on 74 automobiles that record the mileage rating (mpg), weight (weight), and
whether the car is domestic or foreign produced (foreign). We can fit a linear regression model of
mpg on weight and the square of weight, using just the foreign-made automobiles, by typing

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)

. regress mpg weight c.weight#c.weight if foreign

Source SS df MS Number of obs = 22
F(2, 19) = 8.31

Model 428.256889 2 214.128444 Prob > F = 0.0026
Residual 489.606747 19 25.7687762 R-squared = 0.4666

Adj R-squared = 0.4104
Total 917.863636 21 43.7077922 Root MSE = 5.0763

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0132182 .0275711 -0.48 0.637 -.0709252 .0444888

c.weight#
c.weight 5.50e-07 5.41e-06 0.10 0.920 -.0000108 .0000119

_cons 52.33775 34.1539 1.53 0.142 -19.14719 123.8227

We use the factor-variable notation c.weight#c.weight to add the square of weight to our
regression; see [U] 11.4.3 Factor variables.

We can run separate regressions for the domestic and foreign-produced automobiles with the by
varlist: prefix:

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables


6 [ U ] 20 Estimation and postestimation commands

. by foreign: regress mpg weight c.weight#c.weight

-> foreign = Domestic

Source SS df MS Number of obs = 52
F(2, 49) = 91.64

Model 905.395466 2 452.697733 Prob > F = 0.0000
Residual 242.046842 49 4.93973146 R-squared = 0.7891

Adj R-squared = 0.7804
Total 1147.44231 51 22.4988688 Root MSE = 2.2226

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0131718 .0032307 -4.08 0.000 -.0196642 -.0066794

c.weight#
c.weight 1.11e-06 4.95e-07 2.25 0.029 1.19e-07 2.11e-06

_cons 50.74551 5.162014 9.83 0.000 40.37205 61.11896

-> foreign = Foreign

Source SS df MS Number of obs = 22
F(2, 19) = 8.31

Model 428.256889 2 214.128444 Prob > F = 0.0026
Residual 489.606747 19 25.7687762 R-squared = 0.4666

Adj R-squared = 0.4104
Total 917.863636 21 43.7077922 Root MSE = 5.0763

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0132182 .0275711 -0.48 0.637 -.0709252 .0444888

c.weight#
c.weight 5.50e-07 5.41e-06 0.10 0.920 -.0000108 .0000119

_cons 52.33775 34.1539 1.53 0.142 -19.14719 123.8227

Although all estimation commands allow if exp and in range, only some allow the by varlist:
prefix. For by(), the duration of Stata’s memory is limited: it remembers the last set of estimates
only. This means that, if we were to use any of the other features described below, they would use the
last regression estimated, which right now is mpg on weight and square of weight for the Foreign
subsample.

We can instead collect the statistics from each of the by-groups by using the statsby prefix; see
[D] statsby.

. statsby, by(foreign): regress mpg weight c.weight#c.weight
(running regress on estimation sample)

Command: regress mpg weight c.weight#c.weight
By: foreign

Statsby groups:
..

statsby runs the regression first on domestic cars and then on foreign cars, and it saves the
coefficients by overwriting our dataset. Do not worry; if the dataset has not been previously saved,
statsby will refuse to run unless we also specify the clear option.

https://www.stata.com/manuals/dstatsby.pdf#dstatsby
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Here is what we now have in memory.
. list

foreign _b_weight _stat_2 _b_cons

1. Domestic -.0131718 1.11e-06 50.74551
2. Foreign -.0132182 5.50e-07 52.33775

These are the coefficients from the two regressions above. statsby does not know how to name the
coefficient for c.weight#c.weight, so it labels the coefficient with the generic name stat 2. We
can also save the standard errors and other statistics from the regressions; see [D] statsby.

20.3 Replaying prior results
When you type an estimation command without arguments, it redisplays prior results.

Example 2

To perform a regression of mpg on the variables weight and displacement, we could type
. use https://www.stata-press.com/data/r18/auto2, clear
(1978 automobile data)

. regress mpg weight displacement

Source SS df MS Number of obs = 74
F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602

_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

We now go on to do other things—summarizing data, listing observations, performing hypothesis
tests, or anything else. If we decide that we want to see the last set of estimates again, we type the
estimation command without arguments.

. regress

Source SS df MS Number of obs = 74
F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602

_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

https://www.stata.com/manuals/dstatsby.pdf#dstatsby
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We can also specify most reporting options on replay. For example, if we want to see a legend of
terms with which to refer to the estimated coefficients in subsequent commands, we can type

. regress, coeflegend
(output omitted )

See [U] 20.12 Accessing estimated coefficients for an example using legend terms.

These features work with every estimation command, so we could just as well have used, say,
stcox or logit.

20.4 Cataloging estimation results
Stata keeps only the results of the most recently fit model in active memory. You can use Stata’s

estimates command, however, to temporarily store estimation results for displaying, comparing,
cross-model testing, etc., during the same session. You can also save estimation results to disk, but
that will be the subject of the next section. You may temporarily store up to 300 sets of estimation
results.

Example 3

Continuing with our automobile data, we fit four models, give each one a title, and then store
them. We fit the models quietly to minimize output.

. quietly regress mpg weight displ

. estimates title: Linear regression, base model

. estimates store r_base

. quietly regress mpg weight displ foreign

. estimates title: Linear regression, alternate model

. estimates store r_alt

. quietly qreg mpg weight displ

. estimates title: Quantile regression, base model

. estimates store q_base

. quietly qreg mpg weight displ foreign

. estimates title: Quantile regression, alternate model

. estimates store q_alt

We saved the four models under the names r base, r alt, q base, and q alt, but if we forget,
we can ask to see a directory of what is stored:

. estimates dir

Dependent Number of
Name Command variable param. Title

r_base regress mpg 3 Linear regression, base model
r_alt regress mpg 4 Linear regression, alternate

model
q_base qreg mpg 3 Quantile regression, base model
q_alt qreg mpg 4 Quantile regression, alternate

model
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We can ask Stata to replay any of the previous models:

. estimates replay r_base

Model r_base (Linear regression, base model)

Source SS df MS Number of obs = 74
F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602

_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

Or we can ask to see all the models in a combined table:

. estimates table _all

Variable r_base r_alt q_base q_alt

weight -.00656711 -.00677449 -.00581172 -.00595056
displacement .00528078 .00192865 .0042841 .00018552

foreign -1.6006312 -2.1326005
_cons 40.084522 41.847949 37.559865 39.213348

estimates displayed just the coefficients, but we could ask for other statistics.

We can also select one of the stored estimates to be made active, making it as if we had just fit
the model:

. estimates restore r_alt
(results r_alt are active now)

. regress

Source SS df MS Number of obs = 74
F(3, 70) = 45.88

Model 1619.71935 3 539.906448 Prob > F = 0.0000
Residual 823.740114 70 11.7677159 R-squared = 0.6629

Adj R-squared = 0.6484
Total 2443.45946 73 33.4720474 Root MSE = 3.4304

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0067745 .0011665 -5.81 0.000 -.0091011 -.0044479
displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129

foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699
_cons 41.84795 2.350704 17.80 0.000 37.15962 46.53628

You can do a lot more with estimates; see [R] estimates. In particular, estimates makes it
easy to perform cross-model tests, such as the Hausman specification test.

https://www.stata.com/manuals/restimates.pdf#restimates
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20.5 Saving estimation results
estimates can also save estimation results into a file.

. estimates save alt
file alt.ster saved

That saved the active estimation results, meaning the ones we just estimated or, in our case, the ones
we just restored. Later, even in another Stata session, we could reload our estimates:

. estimates use alt

. regress

Source SS df MS Number of obs = 74
F(3, 70) = 45.88

Model 1619.71935 3 539.906448 Prob > F = 0.0000
Residual 823.740114 70 11.7677159 R-squared = 0.6629

Adj R-squared = 0.6484
Total 2443.45946 73 33.4720474 Root MSE = 3.4304

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0067745 .0011665 -5.81 0.000 -.0091011 -.0044479
displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129

foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699
_cons 41.84795 2.350704 17.80 0.000 37.15962 46.53628

There is one important difference between storing results in memory and saving them in a file:
e(sample) is lost. We have not discussed e(sample) yet, but it allows us to identify the observations
among those currently in memory that were used in the estimation. For instance, after estimation, we
could type

. summarize mpg weight displ foreign if e(sample)

and see the summary statistics of the relevant data. We could do that after estimates restore, too.
But we cannot do it after estimates use. Part of the reason is that we might not even have the
relevant data in memory. Even if we do, however, here is what will happen:

. summarize mpg weight displ foreign if e(sample)

Variable Obs Mean Std. dev. Min Max

mpg 0
weight 0

displacement 0
foreign 0

Stata will just assume that none of the data in memory played a role in obtaining the estimation
results.

There is more worth knowing. You could, for instance, type estimates describe to see the
command line that produced the estimates. See [R] estimates.

https://www.stata.com/manuals/restimates.pdf#restimates
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20.6 Specification search tools
Stata’s lasso commands select covariates and fit models for continuous, binary, and count outcomes.

See [LASSO] Lasso intro for an overview of lasso features.

The commands stepwise, fp, and mfp are not really estimation commands but are combined
with estimation commands to assist in specification searches.

stepwise, one of Stata’s prefix commands, provides stepwise estimation. You can use the stepwise
prefix with some, but not all, estimation commands. See [R] stepwise for a list of supported estimation
commands.

fp and mfp are commands to assist you in performing fractional-polynomial functional specification
searches. See [R] fp and [R] mfp for additional information.

20.7 Specifying the estimation subsample
You specify the estimation subsample—the sample to be used in estimation—by specifying the

if exp and in range qualifiers with the estimation command.

Once an estimation command has been run or previous estimates restored, Stata remembers the
estimation subsample, and you can use the qualifier if e(sample) on the end of other Stata commands.
The term estimation subsample refers to the set of observations used to produce the active estimation
results. That might turn out to be all the observations (as it was in the above example) or only some
of the observations:

. regress mpg weight 5.rep78 if foreign

Source SS df MS Number of obs = 21
F(2, 18) = 10.21

Model 423.317154 2 211.658577 Prob > F = 0.0011
Residual 372.96856 18 20.7204756 R-squared = 0.5316

Adj R-squared = 0.4796
Total 796.285714 20 39.8142857 Root MSE = 4.552

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0131402 .0029684 -4.43 0.000 -.0193765 -.0069038

rep78
Excellent 5.052676 2.13492 2.37 0.029 .5673764 9.537977

_cons 52.86088 6.540147 8.08 0.000 39.12054 66.60122

. summarize mpg weight 5.rep78 if e(sample)

Variable Obs Mean Std. dev. Min Max

mpg 21 25.28571 6.309856 17 41
weight 21 2263.333 364.7099 1760 3170

rep78
Excellent 21 .4285714 .5070926 0 1

Twenty-one observations were used in the above regression, and we subsequently obtained the means
for those same 21 observations by typing summarize . . . if e(sample). Observations were dropped
for two reasons: we specified if foreign when we ran the regression, and there were observations
for which 5.rep78 was missing. The reason does not matter; e(sample) is true if the observation
was used and is false otherwise.

You can use if e(sample) on the end of any Stata command that allows if exp.

https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/rstepwise.pdf#rstepwise
https://www.stata.com/manuals/rfp.pdf#rfp
https://www.stata.com/manuals/rmfp.pdf#rmfp
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Here, Stata has a shorthand command that produces the same results as summarize . . . if
e(sample):

. estat summarize, label

Estimation sample regress Number of obs = 21

Variable Mean Std. dev. Min Max Label

mpg 25.28571 6.309856 17 41 Mileage (mpg)
weight 2263.333 364.7099 1760 3170 Weight (lbs.)
rep78 Repair record 1978

Excellent .4285714 .5070926 0 1

See [R] estat summarize.

20.8 Specifying the width of confidence intervals
You can specify the width of the confidence intervals for the coefficients by using the level()

option at estimation or when you play back the results.

Example 4

To obtain narrower, 90% confidence intervals when we fit the model, we type

. regress mpg weight displ, level(90)

Source SS df MS Number of obs = 74
F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [90% conf. interval]

weight -.0065671 .0011662 -5.63 0.000 -.0085108 -.0046234
displacement .0052808 .0098696 0.54 0.594 -.0111679 .0217294

_cons 40.08452 2.02011 19.84 0.000 36.71781 43.45124

If we subsequently typed regress without arguments, 95% confidence intervals would be reported
because that is the default. If we initially fit the model with 95% confidence intervals, we could later
type regress, level(90) to redisplay results with 90% confidence intervals.

Also, we could type set level 90 to make 90% intervals our default; see [R] level.
Stata allows noninteger confidence intervals between 10.00 and 99.99, with a maximum of two

digits following the decimal point. For instance, we could type

https://www.stata.com/manuals/restatsummarize.pdf#restatsummarize
https://www.stata.com/manuals/rlevel.pdf#rlevel
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. regress mpg weight displ, level(92.5)

Source SS df MS Number of obs = 74
F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [92.5% conf. interval]

weight -.0065671 .0011662 -5.63 0.000 -.0086745 -.0044597
displacement .0052808 .0098696 0.54 0.594 -.0125535 .023115

_cons 40.08452 2.02011 19.84 0.000 36.43419 43.73485

20.9 Formatting the coefficient table
You can change the formatting of the coefficient table with the sformat(), pformat(), and

cformat() options. The sformat() option changes the output format of test statistics; pformat()
changes p-values; and cformat() changes coefficients, standard errors, and confidence limits. We
can reduce the number of decimal places by specifying %f fixed-width formats:

. regress mpg weight displ, cformat(%6.3f) sformat(%4.1f) pformat(%4.2f)

Source SS df MS Number of obs = 74
F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -0.007 0.001 -5.6 0.00 -0.009 -0.004
displacement 0.005 0.010 0.5 0.59 -0.014 0.025

_cons 40.085 2.020 19.8 0.00 36.057 44.113

The option cformat(%6.3f), for example, fixes a width of six characters with three digits to the
right of the decimal point. For more information on formats, see [U] 12.5.1 Numeric formats.

The formatting options may also be specified when replaying results, so you can try different
formats without refitting the model:

. regress, cformat(%7.4f)

Source SS df MS Number of obs = 74
F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -0.0066 0.0012 -5.63 0.000 -0.0089 -0.0042
displacement 0.0053 0.0099 0.54 0.594 -0.0144 0.0250

_cons 40.0845 2.0201 19.84 0.000 36.0565 44.1125

https://www.stata.com/manuals/u12.pdf#u12.5.1Numericformats
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20.10 Obtaining the variance–covariance matrix

Typing estat vce displays the variance–covariance matrix of the estimators in active memory.

Example 5

In example 2, we typed regress mpg weight displacement. The full variance–covariance
matrix of the estimators can be displayed at any time after estimation:

. estat vce

Covariance matrix of coefficients of regress model

e(V) weight displace~t _cons

weight 1.360e-06
displacement -.0000103 .00009741

_cons -.00207455 .01188356 4.0808455

Typing estat vce with the corr option presents this matrix as a correlation matrix:

. estat vce, corr

Correlation matrix of coefficients of regress model

e(V) weight displa~t _cons

weight 1.0000
displacement -0.8949 1.0000

_cons -0.8806 0.5960 1.0000

See [R] estat vce.

Also, Stata’s matrix commands understand that e(V) refers to the matrix:

. matrix list e(V)

symmetric e(V)[3,3]
weight displacement _cons

weight 1.360e-06
displacement -.0000103 .00009741

_cons -.00207455 .01188356 4.0808455

. matrix Vinv = invsym(e(V))

. matrix list Vinv

symmetric Vinv[3,3]
weight displacement _cons

weight 60175851
displacement 4081161.2 292709.46

_cons 18706.732 1222.3339 6.1953911

See [U] 14.5 Accessing matrices created by Stata commands.

20.11 Obtaining predicted values
Our discussion below, although cast in terms of predicted values, applies equally to the other statistics
generated by predict; see [R] predict.

When Stata fits a model, whether it is regression or anything else, it internally stores the results,
including the estimated coefficients and the variable names. The predict command allows you to
use that information.

https://www.stata.com/manuals/restatvce.pdf#restatvce
https://www.stata.com/manuals/u14.pdf#u14.5AccessingmatricescreatedbyStatacommands
https://www.stata.com/manuals/rpredict.pdf#rpredict
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Example 6

Let’s perform a linear regression of mpg on weight and the square of weight:
. regress mpg weight c.weight#c.weight

Source SS df MS Number of obs = 74
F(2, 71) = 72.80

Model 1642.52197 2 821.260986 Prob > F = 0.0000
Residual 800.937487 71 11.2808097 R-squared = 0.6722

Adj R-squared = 0.6630
Total 2443.45946 73 33.4720474 Root MSE = 3.3587

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0141581 .0038835 -3.65 0.001 -.0219016 -.0064145

c.weight#
c.weight 1.32e-06 6.26e-07 2.12 0.038 7.67e-08 2.57e-06

_cons 51.18308 5.767884 8.87 0.000 39.68225 62.68392

After the regression, predict is defined to be

−0.0141581weight+ 1.32× 10−6weight2 + 51.18308

(Actually, it is more precise because the coefficients are internally stored at much higher precision
than shown in the output.) Thus, we can create a new variable—let’s call it fitted—equal to the
prediction by typing predict fitted and then use scatter to display the fitted and actual values
separately for domestic and foreign automobiles:

. predict fitted
(option xb assumed; fitted values)

. scatter mpg fitted weight, by(foreign, total style(altleg)) c(. l) m(o i) sort
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2,000 3,000 4,000 5,000

2,000 3,000 4,000 5,000

Domestic Foreign

Total

Mileage (mpg) Fitted values

Weight (lbs.)

Graphs by Car origin

predict can calculate much more than just predicted values. For predict after linear regression,
predict can calculate residuals, standardized residuals, Studentized residuals, influence statistics, and
more. In any case, we specify what is to be calculated via an option, so if we wanted the residuals
stored in new variable r, we would type

. predict r, resid
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The options that may be specified following predict vary according to the estimation command
previously used; the predict options are documented along with the estimation command. For
instance, to discover all the things predict can do following regress, see [R] regress.

20.11.1 Using predict
The use of predict is not limited to linear regression. predict can be used after any estimation
command.

Example 7

You fit a logistic regression model of whether a car is manufactured outside the United States on
the basis of its weight and mileage rating using either the logistic or the logit command; see
[R] logistic and [R] logit. We will use logit.

. use https://www.stata-press.com/data/r18/auto2, clear
(1978 automobile data)

. logit foreign weight mpg

Iteration 0: Log likelihood = -45.03321
Iteration 1: Log likelihood = -29.238536
Iteration 2: Log likelihood = -27.244139
Iteration 3: Log likelihood = -27.175277
Iteration 4: Log likelihood = -27.175156
Iteration 5: Log likelihood = -27.175156

Logistic regression Number of obs = 74
LR chi2(2) = 35.72
Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

weight -.0039067 .0010116 -3.86 0.000 -.0058894 -.001924
mpg -.1685869 .0919175 -1.83 0.067 -.3487418 .011568

_cons 13.70837 4.518709 3.03 0.002 4.851859 22.56487

After logit, predict without options calculates the probability of a positive outcome (we learned
that by looking at [R] logit). To obtain the predicted probabilities that each car is manufactured outside
the United States, we type

. predict probhat
(option pr assumed; Pr(foreign))

. summarize probhat

Variable Obs Mean Std. dev. Min Max

probhat 74 .2972973 .3052979 .000729 .8980594

. list make mpg weight foreign probhat in 1/5

make mpg weight foreign probhat

1. AMC Concord 22 2,930 Domestic .1904363
2. AMC Pacer 17 3,350 Domestic .0957767
3. AMC Spirit 22 2,640 Domestic .4220815
4. Buick Century 20 3,250 Domestic .0862625
5. Buick Electra 15 4,080 Domestic .0084948

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
https://www.stata.com/manuals/rlogit.pdf#rlogit
https://www.stata.com/manuals/rlogit.pdf#rlogit
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20.11.2 Making in-sample predictions

predict does not retrieve a vector of prerecorded values—it calculates the predictions on the
basis of the recorded coefficients and the data currently in memory. In the above examples, when we
typed things like

. predict probhat

predict filled in the prediction everywhere that it could be calculated.

We sometimes have more data in memory than were used by the estimation command, either
because we explicitly ignored some of the observations by specifying an if exp with the estimation
command or because there are missing values. In such cases, if we want to restrict the calculation to
the estimation subsample, we would do that in the usual way by adding if e(sample) to the end
of the command:

. predict probhat if e(sample)

20.11.3 Making out-of-sample predictions

Because predict makes its calculations on the basis of the recorded coefficients and the data in
memory, predict can do more than calculate predicted values for the data on which the estimation
took place—it can make out-of-sample predictions, as well.

If you fit your model on a subset of the observations, you could then predict the outcome for all
the observations:

. logit foreign weight mpg if rep78 > 3

. predict pall

If you do not specify if e(sample) at the end of the predict command, predict calculates the
predictions for all observations possible.

In fact, because predict works from the active estimation results, you can use predict with
any dataset that contains the necessary variables.

Example 8

Continuing with our previous logit example, assume that we have a second dataset containing
the mpg and weight of a different sample of cars. We have just fit your model and now continue:

. use otherdat, clear
(Different cars)

. predict probhat Stata remembers the previous model
(option pr assumed; Pr(foreign))

. summarize probhat foreign

Variable Obs Mean Std. dev. Min Max

probhat 12 .2505068 .3187104 .0084948 .8920776
foreign 12 .1666667 .3892495 0 1
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Example 9

We can obtain out-of-sample predictions in many ways. Above, we estimated on one dataset and
then used another. If our first dataset had contained both sets of cars, marked, say, by the variable
difcars being 0 if from the first sample and 1 if from the second, we could type

. logit foreign weight mpg if difcars==0
same output as above appears
. predict probhat
(option pr assumed; Pr(foreign))

. summarize probhat foreign if difcars==1
same output as directly above appears

If we just had a few additional cars, we could even input them after estimation. Assume that
our data once again contain only the first sample of cars, and assume that we are interested in an
additional sample of only two cars; we could type

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)

. keep make mpg weight foreign

. logit foreign weight mpg
same output as above appears
. input

make mpg weight foreign
75. "Merc. Zephyr" 20 2830 0 we type in our new data
76. "VW Dasher" 23 2160 1
77. end

. predict probhat obtain all the predictions
(option pr assumed; Pr(foreign))

. list in -2/l

make mpg weight foreign probhat

75. Merc. Zephyr 20 2,830 Domestic .3275397
76. VW Dasher 23 2,160 Foreign .8009743

20.11.4 Obtaining standard errors, tests, and confidence intervals for predictions
When you use predict, you create, for each observation in the prediction sample, a statistic that

is a function of the data and the estimated model parameters. You also could have generated your
own customized predictions by using generate. In either case, to get standard errors, Wald tests,
and confidence intervals for your predictions, use predictnl. For example, if we want the standard
errors for our predicted probabilities, we could type

. drop probhat

. predictnl probhat = predict(), se(phat_se)

. list in 1/5

make mpg weight foreign probhat phat_se

1. AMC Concord 22 2,930 Domestic .1904363 .0658387
2. AMC Pacer 17 3,350 Domestic .0957767 .0536297
3. AMC Spirit 22 2,640 Domestic .4220815 .0892845
4. Buick Century 20 3,250 Domestic .0862625 .0461928
5. Buick Electra 15 4,080 Domestic .0084948 .0093079
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Comparing this output with our previous listing of the first five predicted probabilities, you will notice
that the output is identical except that we now have an additional variable, phat se, which contains
the estimated standard error for each predicted probability.

We first had to drop probhat because predictnl will regenerate it. Note also the use of
predict() within predictnl—it specified that we wanted to generate a point estimate (and
standard error) for the default prediction after logit; see [R] predictnl for more details.

20.12 Accessing estimated coefficients
You can access coefficients and standard errors after estimation by referring to b[name] and

se[name]; see [U] 13.5 Accessing coefficients and standard errors.

Example 10

Let’s return to linear regression. We are doing a study of earnings of men and women at a particular
company. In addition to each person’s earnings, we have information on their educational attainment
and tenure with the company. We type the following:

. regress lnearn ed tenure i.female female#(c.ed c.tenure)
(output omitted )

If you are not familiar with the # notation, see [U] 11.4.3 Factor variables.

We now wish to predict everyone’s income as if they were male and then compare these as-if
earnings with the actual earnings:

. generate asif = _b[_cons] + _b[ed]*ed + _b[tenure]*tenure

Example 11

We are analyzing the mileage of automobiles and are using a slightly more sophisticated model
than any we have used so far. As we have previously, we will fit a linear regression model of mpg on
weight and the square of weight, but we also add the interaction of foreign with weight, the car’s
gear ratio (gear ratio), and foreign interacted with gear ratio. We will use factor-variable
notation to create the squared term and the interactions; see [U] 11.4.3 Factor variables.

https://www.stata.com/manuals/rpredictnl.pdf#rpredictnl
https://www.stata.com/manuals/u13.pdf#u13.5Accessingcoefficientsandstandarderrors
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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. use https://www.stata-press.com/data/r18/auto2, clear
(1978 automobile data)

. regress mpg weight c.weight#c.weight i.foreign#c.weight gear_ratio
> i.foreign#c.gear_ratio

Source SS df MS Number of obs = 74
F(5, 68) = 33.44

Model 1737.05293 5 347.410585 Prob > F = 0.0000
Residual 706.406534 68 10.3883314 R-squared = 0.7109

Adj R-squared = 0.6896
Total 2443.45946 73 33.4720474 Root MSE = 3.2231

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0118517 .0045136 -2.63 0.011 -.0208584 -.002845

c.weight#
c.weight 9.81e-07 7.04e-07 1.39 0.168 -4.25e-07 2.39e-06

foreign#
c.weight
Foreign -.0032241 .0015577 -2.07 0.042 -.0063326 -.0001157

gear_ratio 1.159741 1.553418 0.75 0.458 -1.940057 4.259539

foreign#
c.gear_ratio

Foreign 1.597462 1.205313 1.33 0.189 -.8077036 4.002627

_cons 44.61644 8.387943 5.32 0.000 27.87856 61.35432

If you are not experienced in both regression technology and automobile technology, you may find it
difficult to interpret this regression. Putting aside issues of statistical significance, we find that mileage
decreases with a car’s weight but increases with the square of weight; decreases even more rapidly
with weight for foreign cars; increases with higher gear ratio; and increases even more rapidly with
higher gear ratio in foreign cars.

Thus, do foreign cars yield better or worse gas mileage? Results are mixed. As the foreign cars’
weight increases, they do more poorly in relation to domestic cars, but they do better at higher gear
ratios. One way to compare the results is to predict what mileage foreign cars would have if they
were manufactured domestically. The regression provides all the information necessary for making
that calculation. Mileage for domestic cars is estimated to be

−0.012 weight+ 9.81× 10−7 weight2 + 1.160 gear ratio+ 44.6

We can use that equation to predict the mileage of foreign cars and then compare it with the true
outcome. The b[ ] function simplifies reference to the estimated coefficients. We can type

. generate asif=_b[weight]*weight + _b[c.weight#c.weight]*c.weight#c.weight +
> _b[gear_ratio]*gear_ratio + _b[_cons]

b[weight] refers to the estimated coefficient on weight, b[c.weight#c.weight] to the estimated
coefficient on c.weight#c.weight, and so on.
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We might now ask how the actual mileage of a Honda compares with the asif prediction:

. list make asif mpg if strpos(make,"Honda")

make asif mpg

61. Honda Accord 26.52597 25
62. Honda Civic 30.62202 28

Notice the way we constructed our if clause to select Hondas. strpos() is the string function that
returns the location in the first string where the second string is found or, if the second string does
not occur in the first, returns 0. Thus any recorded make that contains the string “Honda” anywhere
in it would be listed; see [FN] String functions.

We find that both Honda models yield slightly lower gas mileage than the asif domestic car–based
prediction. (We do not endorse this model as a complete model of the determinants of mileage, nor
do we single out Honda for any special scorn. In fact, please note that the observed values are within
the root mean squared error of the average prediction.)

We might wish to compare the overall average mpg and the asif prediction over all foreign cars
in the data:

. summarize mpg asif if foreign

Variable Obs Mean Std. dev. Min Max

mpg 22 24.77273 6.611187 14 41
asif 22 26.67124 3.142912 19.70466 30.62202

We find that, on average, foreign cars yield slightly lower mileage than our asif prediction. This
might lead us to ask if any foreign cars do better than the asif prediction:

. list make asif mpg if foreign & mpg>asif, sep(0)

make asif mpg

55. BMW 320i 24.31697 25
57. Datsun 210 28.96818 35
63. Mazda GLC 29.32015 30
66. Subaru 28.85993 35
68. Toyota Corolla 27.01144 31
71. VW Diesel 28.90355 41

We find six such automobiles.

https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstrpos()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctions
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20.13 Performing hypothesis tests on the coefficients

20.13.1 Linear tests
After estimation, test is used to perform tests of linear hypotheses on the basis of the variance–

covariance matrix of the estimators (Wald tests).

Example 12

Using the automobile data, we perform the following regression:

. use https://www.stata-press.com/data/r18/auto2, clear
(1978 automobile data)

. generate weightsq=weight^2

. regress mpg weight weightsq foreign

Source SS df MS Number of obs = 74
F(3, 70) = 52.25

Model 1689.15372 3 563.05124 Prob > F = 0.0000
Residual 754.30574 70 10.7757963 R-squared = 0.6913

Adj R-squared = 0.6781
Total 2443.45946 73 33.4720474 Root MSE = 3.2827

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0165729 .0039692 -4.18 0.000 -.0244892 -.0086567
weightsq 1.59e-06 6.25e-07 2.55 0.013 3.45e-07 2.84e-06
foreign -2.2035 1.059246 -2.08 0.041 -4.3161 -.0909002

_cons 56.53884 6.197383 9.12 0.000 44.17855 68.89913

(Note: test has many syntaxes and features, so do not use this example as an excuse for not reading
[R] test.) We can use the test command to calculate the joint significance of weight and weightsq:

. test weight weightsq

( 1) weight = 0
( 2) weightsq = 0

F( 2, 70) = 60.83
Prob > F = 0.0000

We are not limited to testing whether the coefficients are 0. We can test whether the coefficient
on foreign is −2 by typing

. test foreign = -2

( 1) foreign = -2

F( 1, 70) = 0.04
Prob > F = 0.8482

We can even test more complicated hypotheses because test can perform basic algebra. Here is
an absurd hypothesis:

. test 2*(weight+weightsq)=-3*(foreign-(weight-weightsq))

( 1) - weight + 5*weightsq + 3*foreign = 0

F( 1, 70) = 4.31
Prob > F = 0.0416

test simplified the algebra of our hypothesis and then presented the test results. We can also use
test’s accumulate option to combine this test with another test:

https://www.stata.com/manuals/rtest.pdf#rtest
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. test foreign+weight=0, accum

( 1) - weight + 5*weightsq + 3*foreign = 0
( 2) weight + foreign = 0

F( 2, 70) = 9.12
Prob > F = 0.0003

There are limitations. test can test only linear hypotheses. If we attempt to test a nonlinear
hypothesis, test will tell us that it is not possible:

. test weight/foreign=0
not possible with test

r(131);

Testing nonlinear hypotheses is discussed in [U] 20.13.4 Nonlinear Wald tests below.

20.13.2 Using test

test bases its results on the estimated variance–covariance matrix of the estimators (that is, it
performs a Wald test), so it can be used after any estimation command. For maximum likelihood
estimation, test’s results for a single variable are generally equivalent to the asymptotic z statistic
presented in the coefficient table for that variable because test bases its results on the information
matrix.

Example 13

Let’s examine the repair records of the cars in our automobile data as rated by Consumer Reports:

. tabulate rep78 foreign

Repair
record Car origin

1978 Domestic Foreign Total

Poor 2 0 2
Fair 8 0 8

Average 27 3 30
Good 9 9 18

Excellent 2 9 11

Total 48 21 69

The values are coded 1–5, corresponding to Poor, Fair, Average, Good, and Excellent. We will fit
this variable by using a maximum-likelihood ordered logit model (the nolog option suppresses the
iteration log, saving some space):

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(131)
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. ologit rep78 price foreign weight weightsq displ, nolog

Ordered logistic regression Number of obs = 69
LR chi2(5) = 33.12
Prob > chi2 = 0.0000

Log likelihood = -77.133082 Pseudo R2 = 0.1767

rep78 Coefficient Std. err. z P>|z| [95% conf. interval]

price -.000034 .0001188 -0.29 0.775 -.0002669 .000199
foreign 2.685647 .9320404 2.88 0.004 .8588817 4.512413
weight -.0037447 .0025609 -1.46 0.144 -.0087639 .0012745

weightsq 7.87e-07 4.50e-07 1.75 0.080 -9.43e-08 1.67e-06
displacement -.0108919 .0076805 -1.42 0.156 -.0259455 .0041617

/cut1 -9.417196 4.298202 -17.84152 -.992874
/cut2 -7.581864 4.234091 -15.88053 .7168028
/cut3 -4.82209 4.14768 -12.95139 3.307214
/cut4 -2.793441 4.156221 -10.93948 5.352602

We now wonder whether all our variables other than foreign are jointly significant. We test the
hypothesis just as we would after linear regression:

. test weight weightsq displ price

( 1) [rep78]weight = 0
( 2) [rep78]weightsq = 0
( 3) [rep78]displacement = 0
( 4) [rep78]price = 0

chi2( 4) = 3.63
Prob > chi2 = 0.4590

You will have to decide whether you want to perform tests on the basis of the information matrix
instead of constraining the equation, reestimating it, and then calculating the likelihood-ratio test. To
compare this with the results performed by a likelihood-ratio test, see [U] 20.13.3 Likelihood-ratio
tests below. Results will differ little.

20.13.3 Likelihood-ratio tests
After maximum likelihood estimation, you can obtain likelihood-ratio tests by fitting both the

unconstrained and the constrained models, storing the results using estimates store, and then
running lrtest. See [R] lrtest for the full details.

Example 14

In [U] 20.13.2 Using test above, we fit an ordered logit on rep78 and then tested the significance
of all the explanatory variables except foreign.

To obtain the likelihood-ratio test, sometime after fitting the full model, we type estimates store
full model name, where full model name is just a label that we assign to these results.

. ologit rep78 price foreign weight weightsq displ
(output omitted )

. estimates store myfullmodel

This command saves the current model results with the name myfullmodel.

https://www.stata.com/manuals/rlrtest.pdf#rlrtest
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Next, we fit the constrained model. After that, typing ‘lrtest myfullmodel .’ compares the
current model with the model we saved:

. ologit rep78 foreign

Iteration 0: Log likelihood = -93.692061
Iteration 1: Log likelihood = -79.696089
Iteration 2: Log likelihood = -79.034005
Iteration 3: Log likelihood = -79.029244
Iteration 4: Log likelihood = -79.029243

Ordered logistic regression Number of obs = 69
LR chi2(1) = 29.33
Prob > chi2 = 0.0000

Log likelihood = -79.029243 Pseudo R2 = 0.1565

rep78 Coefficient Std. err. z P>|z| [95% conf. interval]

foreign 2.98155 .6203644 4.81 0.000 1.765658 4.197442

/cut1 -3.158382 .7224269 -4.574313 -1.742452
/cut2 -1.362642 .3557343 -2.059868 -.6654154
/cut3 1.232161 .3431227 .5596532 1.90467
/cut4 3.246209 .5556657 2.157124 4.335293

. lrtest myfullmodel .

Likelihood-ratio test
Assumption: . nested within myfullmodel

LR chi2(4) = 3.79
Prob > chi2 = 0.4348

When we tested the same constraint with test (which performed a Wald test), we obtained a χ2 of
3.63 and a significance level of 0.4590. We used . (the dot) to specify the results in active memory,
although we could have stored them with estimates store and referred to them by name instead.
Also, the order in which you specify the two models to lrtest doesn’t matter; lrtest is smart
enough to know the full model from the constrained model.

Two other postestimation commands work in the same way as lrtest, meaning that they accept
names of stored estimation results as their input: hausman for performing Hausman specification
tests and suest for seemingly unrelated estimation. We do not cover these commands here; see
[R] hausman and [R] suest for more details.

20.13.4 Nonlinear Wald tests

testnl can be used to test nonlinear hypotheses about the parameters of the active estimation
results. testnl, like test, bases its results on the variance–covariance matrix of the estimators (that
is, it performs a Wald test), so it can be used after any estimation command; see [R] testnl.

Example 15

We fit the model

. regress price mpg weight foreign
(output omitted )

https://www.stata.com/manuals/rhausman.pdf#rhausman
https://www.stata.com/manuals/rsuest.pdf#rsuest
https://www.stata.com/manuals/rtestnl.pdf#rtestnl
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and then type

. testnl (38*_b[mpg]^2 = _b[foreign]) (_b[mpg]/_b[weight]=4)

(1) 38*_b[mpg]^2 = _b[foreign]
(2) _b[mpg]/_b[weight] = 4

chi2(2) = 0.04
Prob > chi2 = 0.9806

We performed this test on linear regression estimates, but tests of this type could be performed after
any estimation command.

A concept of a p-value is fundamental to classical hypothesis testing; see Wasserstein and
Lazar (2016) for a useful discussion about its interpretation and use in practice. Also see
[U] 27.34 Bayesian analysis for an alternative to classical hypothesis testing.

20.14 Obtaining linear combinations of coefficients
lincom computes point estimates, standard errors, t or z statistics, p-values, and confidence

intervals for a linear combination of coefficients after any estimation command. Results can optionally
be displayed as odds ratios, incidence-rate ratios, or relative-risk ratios.

Example 16

We fit a linear regression:

. use https://www.stata-press.com/data/r18/regress, clear

. regress y x1 x2 x3

Source SS df MS Number of obs = 148
F(3, 144) = 96.12

Model 3259.3561 3 1086.45203 Prob > F = 0.0000
Residual 1627.56282 144 11.3025196 R-squared = 0.6670

Adj R-squared = 0.6600
Total 4886.91892 147 33.2443464 Root MSE = 3.3619

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 1.457113 1.07461 1.36 0.177 -.666934 3.581161
x2 2.221682 .8610358 2.58 0.011 .5197797 3.923583
x3 -.006139 .0005543 -11.08 0.000 -.0072345 -.0050435

_cons 36.10135 4.382693 8.24 0.000 27.43863 44.76407

Suppose that we want to see the difference of the coefficients of x2 and x1. We type

. lincom x2 - x1

( 1) - x1 + x2 = 0

y Coefficient Std. err. t P>|t| [95% conf. interval]

(1) .7645682 .9950282 0.77 0.444 -1.20218 2.731316

lincom is handy for computing the odds ratio of one covariate group relative to another.

https://www.stata.com/manuals/u27.pdf#u27.34Bayesiananalysis


[ U ] 20 Estimation and postestimation commands 27

Example 17

We estimate the parameters of a logistic model of low birthweight:

. use https://www.stata-press.com/data/r18/lbw3
(Hosmer & Lemeshow data)

. logit low age lwd i.race smoke ptd ht ui

Iteration 0: Log likelihood = -117.336
Iteration 1: Log likelihood = -99.3982
Iteration 2: Log likelihood = -98.780418
Iteration 3: Log likelihood = -98.777998
Iteration 4: Log likelihood = -98.777998

Logistic regression Number of obs = 189
LR chi2(8) = 37.12
Prob > chi2 = 0.0000

Log likelihood = -98.777998 Pseudo R2 = 0.1582

low Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0464796 .0373888 -1.24 0.214 -.1197603 .0268011
lwd .8420615 .4055338 2.08 0.038 .0472299 1.636893

race
Black 1.073456 .5150753 2.08 0.037 .0639273 2.082985
Other .815367 .4452979 1.83 0.067 -.0574008 1.688135

smoke .8071996 .404446 2.00 0.046 .0145001 1.599899
ptd 1.281678 .4621157 2.77 0.006 .3759478 2.187408
ht 1.435227 .6482699 2.21 0.027 .1646414 2.705813
ui .6576256 .4666192 1.41 0.159 -.2569313 1.572182

_cons -1.216781 .9556797 -1.27 0.203 -3.089878 .656317

Level 1 of race designates white, level 2 designates black, and level 3 designates other.

If we want to obtain the odds ratio for black smokers relative to white nonsmokers (the reference
group), we type

. lincom 2.race + smoke, or

( 1) [low]2.race + [low]smoke = 0

low Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) 6.557805 4.744692 2.60 0.009 1.588176 27.07811

lincom computed exp(β2.race + βsmoke) = 6.56.

20.15 Obtaining nonlinear combinations of coefficients
lincom is limited to estimating linear combinations of coefficients, for example, 2.race + smoke,

or exponentiated linear combinations, as in the above. For general nonlinear combinations, use nlcom.
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Example 18

Continuing our previous example, suppose that we want the ratio of the coefficients (and standard
errors, Wald test, confidence interval, etc.) of blacks and races other than white and black:

. nlcom _b[2.race]/_b[3.race]

_nl_1: _b[2.race]/_b[3.race]

low Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.316531 .7359262 1.79 0.074 -.1258574 2.75892

The Wald test given is that of the null hypothesis that the nonlinear combination is 0 versus the
two-sided alternative—this is probably not informative for a ratio. If we would instead like to test
whether this ratio is 1, we can rerun nlcom, this time subtracting 1 from our ratio estimate.

. nlcom _b[2.race]/_b[3.race] - 1

_nl_1: _b[2.race]/_b[3.race] - 1

low Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 .3165314 .7359262 0.43 0.667 -1.125857 1.75892

We can interpret this as not much evidence that the ratio minus 1 is different from 0, meaning that
we cannot reject the null hypothesis that the ratio equals 1.

When using nlcom, we needed to refer to the model coefficients by their “proper” names, for
example, b[2.race], and not by the shorthand 2.race, such as when using lincom. If we had
typed

. nlcom 2.race/3.race

Stata would have reported an error.

If you have difficulty determining what to type for a coefficient when using lincom or nlcom,
replay your results by using the coeflegend option. Here are the results for our current estimates:

. logit, coeflegend

Logistic regression Number of obs = 189
LR chi2(8) = 37.12
Prob > chi2 = 0.0000

Log likelihood = -98.777998 Pseudo R2 = 0.1582

low Coefficient Legend

age -.0464796 _b[age]
lwd .8420615 _b[lwd]

race
Black 1.073456 _b[2.race]
Other .815367 _b[3.race]

smoke .8071996 _b[smoke]
ptd 1.281678 _b[ptd]
ht 1.435227 _b[ht]
ui .6576256 _b[ui]

_cons -1.216781 _b[_cons]

https://www.stata.com/manuals/uobtaininglinearcombinationsofcoefficients.pdf#uObtaininglinearcombinationsofcoefficientsObtaininglinearcombinationsofcoefficientsex17
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20.16 Obtaining marginal means, adjusted predictions, and predictive
margins

predict uses the current estimation results (the coefficients and the VCE) to estimate the value of
statistics for observations in the data. lincom and nlcom use the current estimation results to estimate
a specific linear or nonlinear expression of the coefficients. The margins command combines aspects
of both and estimates margins of responses.

margins answers the question “What does my model have to say about such-and-such”, where
such-and-such might be

• my estimation sample or another sample

• a sample with the values of some covariates fixed

• a sample evaluated at each level of a treatment

• a population represented by a complex survey sample

• someone who looks like the fifth person in my sample

• someone who looks like the mean of the covariates in my sample

• someone who looks like the median of the covariates in my sample

• someone who looks like the 25th percentile of the covariates in my sample

• someone who looks like some other function of the covariates in my sample

• a standardized population

• a balanced experimental design

• any combination of the above

• any comparison of the above

margins answers these questions either conditionally on fixed values of all covariates or averaged
over the observations in a sample. It answers these questions about almost any predictions or any
other response that you can calculate as a function of your estimated parameters—linear responses,
probabilities, hazards, survival times, odds ratios, risk differences, etc. You can even make multiple
predictions at the same time when appropriate. For example, you may want the predicted probabilities
and the linear prediction after logit.

margins answers these questions in terms of the response given covariate levels, or in terms of
the change in the response for a change in levels (also known as marginal effects). It answers these
questions providing standard errors, test statistics, and confidence intervals; and those statistics can
take the covariates as given or adjust for sampling, also known as predictive margins and survey
statistics.

A margin is a statistic based on a response for a fitted model calculated over a dataset in which
some of or all the covariates are fixed at values different from what they really are.

Margins go by different names in different fields, and they can estimate many interesting statistics
related to a fitted model. We discuss some common uses below; see [R] margins for more applications.

20.16.1 Obtaining estimated marginal means

A classic application of margins is to estimate the expected marginal means from a linear estimator
as though the design for the covariates were balanced—assuming an equal number of observations
for each unique combination of levels for the factor-variable covariates. These means have a long
history in the study of ANOVA and MANOVA but are of limited use with nonexperimental data. For a

https://www.stata.com/manuals/rmargins.pdf#rmargins
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discussion, see Obtaining margins as though the data were balanced in [R] margins and example 4
in [R] anova.

Estimated marginal means are also called least-squares means.

Consider an analysis of variance of the change in systolic blood pressure as determined by one of
four drug treatments and adjusting for the patient’s disease (Afifi and Azen 1979).

. use https://www.stata-press.com/data/r18/systolic
(Systolic blood pressure data)

. tabulate drug disease

Patient’s disease
Drug used 1 2 3 Total

1 6 4 5 15
2 5 4 6 15
3 3 5 4 12
4 5 6 5 16

Total 19 19 20 58

. anova systolic drug##disease

Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob>F

Model 4259.3385 11 387.21259 3.51 0.0013

drug 2997.4719 3 999.15729 9.05 0.0001
disease 415.87305 2 207.93652 1.88 0.1637

drug#disease 707.26626 6 117.87771 1.07 0.3958

Residual 5080.8167 46 110.45254

Total 9340.1552 57 163.86237

Despite having randomized on drug, we see in the tabulation that our data are not balanced—for
example, 12 patients were administered drug 3, whereas 16 were administered drug 4. The diseases
are also not balanced across drugs. To estimate the marginal mean for each level of drug while treating
the design as though it were balanced, we type

. margins drug, asbalanced

Adjusted predictions Number of obs = 58

Expression: Linear prediction, predict()
At: drug (asbalanced)

disease (asbalanced)

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 25.99444 2.751008 9.45 0.000 20.45695 31.53194
2 26.55556 2.751008 9.65 0.000 21.01806 32.09305
3 9.744444 3.100558 3.14 0.003 3.503344 15.98554
4 13.54444 2.637123 5.14 0.000 8.236191 18.8527

Assuming everyone in the sample were treated with drug 4 and that the diseases were equally
distributed across the drug treatments, the expected mean change in pressure resulting from treatment
with drug 4 is 13.54. Because we are treating the data as balanced, we could also say that 13.54 is

https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesObtainingmarginsasthoughthedatawerebalanced
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex_anova_systolic
https://www.stata.com/manuals/ranova.pdf#ranova
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the expected mean change resulting from drug 4 for any sample where an equal number of patients
has each of the three diseases.

If we want an estimate of the mean that uses the distribution of diseases observed in the sample,
we would remove the asbalanced option:

. margins drug

Predictive margins Number of obs = 58

Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 25.89799 2.750533 9.42 0.000 20.36145 31.43452
2 26.41092 2.742762 9.63 0.000 20.89003 31.93181
3 9.722989 3.099185 3.14 0.003 3.484652 15.96132
4 13.55575 2.640602 5.13 0.000 8.24049 18.871

We can now say that a pressure change of 13.56 is expected if everyone in the sample is given drug
4 and the distribution of diseases is as observed in the sample.

The second set of margins are not usually called estimated marginal means because they do not
impose a balanced design when estimating the mean. They are adjusted predictions that just happen
to be means because the response is linear.

Neither of these values is the average pressure change for those taking drug 4 in our sample
because margins treats everyone in the sample as having taken drug 4. Treating everyone as though
they have taken each drug is what makes the means comparable. We are essentially standardizing on
the values of all the other covariates in our model (in this example, just disease).

To obtain the observed mean for those taking drug 4, we must tell margins to treat drug 4 as its
sample, which we do with the over() option.

. summarize systolic if drug==4

Variable Obs Mean Std. dev. Min Max

systolic 16 13.5 9.323805 -5 27

. margins, over(drug)

Predictive margins Number of obs = 58

Expression: Linear prediction, predict()
Over: drug

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 26.06667 2.713577 9.61 0.000 20.60452 31.52881
2 25.53333 2.713577 9.41 0.000 20.07119 30.99548
3 8.75 3.033872 2.88 0.006 2.643133 14.85687
4 13.5 2.62741 5.14 0.000 8.211298 18.7887

The margin in the last line of the table matches the mean from summarize.

For many questions, we prefer one of the first two estimates of margins to the last one. If we
compare drugs 3 and 4 from the last results, the 8.75 and 13.5 include both the effect from the drug
and the differing distribution of diseases among patients taking drug 3 and drug 4 in our sample.
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Our first set of margins, those from margins drug, asbalanced, assumed that for both drug 3 and
drug 4, we had an equal number of patients with each disease. Our second set of margins, those
from margins drug, assumed that for both drug 3 and drug 4, we wanted the observed distribution
of patients from the whole sample. By assuming a common distribution of diseases across the drugs,
our first two sets of margins remove the effect of disease when we compare across drugs.

20.16.2 Obtaining adjusted predictions

We will use the term adjusted predictions to refer to margins that are evaluated at fixed values for
all covariates. The margins command has a great deal of flexibility in letting you choose what those
fixed values are. Consider a model of high blood pressure as a function of sex, age group, and body
mass index (BMI, a common measure of weight relative to height; variable bmi). We will allow the
effect of age to differ for males and females by interacting the age group and sex variables. We will
also allow the effect of BMI to differ across all combinations of age group and sex by specifying a
full factorial model.
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. use https://www.stata-press.com/data/r18/nhanes2

. logistic highbp sex##agegrp##c.bmi

Logistic regression Number of obs = 10,351
LR chi2(23) = 2521.83
Prob > chi2 = 0.0000

Log likelihood = -5789.851 Pseudo R2 = 0.1788

highbp Odds ratio Std. err. z P>|z| [95% conf. interval]

sex
Female .4012124 .2695666 -1.36 0.174 .107515 1.497199

agegrp
30--39 .8124869 .6162489 -0.27 0.784 .1837399 3.592768
40--49 1.346976 1.101181 0.36 0.716 .2713222 6.687051
50--59 5.415758 4.254136 2.15 0.032 1.161532 25.2515
60--69 16.31623 10.09529 4.51 0.000 4.852423 54.86321

70+ 161.2491 130.7332 6.27 0.000 32.9142 789.9717

sex#agegrp
Female#30--39 1.441256 1.44721 0.36 0.716 .2013834 10.31475
Female#40--49 6.29497 6.575021 1.76 0.078 .8126879 48.75998
Female#50--59 4.377185 4.43183 1.46 0.145 .6016818 31.84366
Female#60--69 1.790026 1.502447 0.69 0.488 .3454684 9.27492

Female#70+ .1958758 .2165763 -1.47 0.140 .0224297 1.710562

bmi 1.18539 .0221872 9.09 0.000 1.142692 1.229684

sex#c.bmi
Female .9809543 .0250973 -0.75 0.452 .9329775 1.031398

agegrp#c.bmi
30--39 1.021812 .0299468 0.74 0.462 .9647712 1.082225
40--49 1.00982 .0315328 0.31 0.754 .9498702 1.073554
50--59 .979291 .0298836 -0.69 0.493 .9224373 1.039649
60--69 .9413883 .0228342 -2.49 0.013 .8976813 .9872234

70+ .8738056 .0278416 -4.23 0.000 .8209061 .930114

sex#agegrp#
c.bmi

Female#30--39 1.000676 .0377954 0.02 0.986 .9292736 1.077564
Female#40--49 .9702656 .0382854 -0.76 0.444 .8980559 1.048281
Female#50--59 .9852929 .0380345 -0.38 0.701 .9134969 1.062732
Female#60--69 1.028896 .0330473 0.89 0.375 .9661212 1.09575

Female#70+ 1.12236 .0480541 2.70 0.007 1.032019 1.220609

_cons .0052191 .0024787 -11.07 0.000 .0020575 .0132388

Note: _cons estimates baseline odds.
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We can evaluate the probability of having high blood pressure for each age group while holding
the proportion of males and females and the value of bmi to its average by specifying the covariate
agegrp to margins and including the option atmeans:

. margins agegrp, atmeans

Adjusted predictions Number of obs = 10,351
Model VCE: OIM

Expression: Pr(highbp), predict()
At: 1.sex = .4748333 (mean)

2.sex = .5251667 (mean)
1.agegrp = .2241329 (mean)
2.agegrp = .1566998 (mean)
3.agegrp = .1228867 (mean)
4.agegrp = .1247222 (mean)
5.agegrp = .2763018 (mean)
6.agegrp = .0952565 (mean)
bmi = 25.5376 (mean)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

agegrp
20--29 .1611491 .0091135 17.68 0.000 .1432869 .1790113
30--39 .2487466 .0121649 20.45 0.000 .2249038 .2725893
40--49 .3679695 .0144456 25.47 0.000 .3396567 .3962823
50--59 .5204507 .0146489 35.53 0.000 .4917394 .549162
60--69 .5714605 .0095866 59.61 0.000 .5526711 .5902499

70+ .6637982 .0154566 42.95 0.000 .6335038 .6940927

The header of the table showed us the mean values of each covariate. These are the values at which
the probabilities were evaluated. The mean values for the levels of agegrp appear in the header even
though they were not used. agegrp assumed the values 1, 2, 3, 4, 5, and 6, as shown in the table.
The means of the levels of agegrp are shown because we might have asked for more margins in the
table, for example, margins sex agegrp.

The modeled probability is just below 25% for those under 40 years of age, and it then increases
fairly rapidly to 52% in the 50–59 age group. Above age 59, the probability remains under 67%. It is
often easier for nonstatisticians to interpret the statistics computed by margins than it is to interpret
the coefficients of a fitted model.

20.16.3 Obtaining predictive margins

Rather than evaluate the probability of having high blood pressure at one fixed point (the means),
as we did above, we can evaluate the probability at the covariate values for each observation in our
data and average those probabilities. Here is the modeled probability averaged over our sample:

. margins

Predictive margins Number of obs = 10,351
Model VCE: OIM

Expression: Pr(highbp), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_cons .4227611 .0042939 98.46 0.000 .4143451 .4311771
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If we fix the level of agegrp to 1, compute the probability for each observation, and then average
those probabilities, the result is the predictive margin for level 1 of agegrp. margins, by default,
computes these margins for each level of each variable specified on the command line. Let’s compute
the predictive margins for agegrp:

. margins agegrp

Predictive margins Number of obs = 10,351
Model VCE: OIM

Expression: Pr(highbp), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

agegrp
20--29 .2030932 .0087166 23.30 0.000 .1860089 .2201774
30--39 .2829091 .010318 27.42 0.000 .2626862 .3031319
40--49 .3769536 .0128744 29.28 0.000 .3517202 .4021871
50--59 .5153439 .0136201 37.84 0.000 .4886491 .5420387
60--69 .5641065 .009136 61.75 0.000 .5462003 .5820127

70+ .6535679 .0151371 43.18 0.000 .6238997 .683236

One way of looking at predictive margins is that they answer the question “What would the average
response (probability) be in my sample if everyone were in one age group?” Another way of looking
at predictive margins is that they standardize the effect of being in an age group with the distribution
of other covariate values in our sample. The margins above are comparable because only the level of
agegrp is changing across the margins. They represent our sample because all the other covariates
take on their values in the sample when the margins are evaluated.

The predictive margins in this table differ from the adjusted predictions we estimated in
[U] 20.16.2 Obtaining adjusted predictions because the probability is a nonlinear function of
the coefficients in a logistic model; see Example 3: Average response versus response at average in
[R] margins for details.

Our analysis so far has been a bit naı̈ve. The dataset we are using is from the Second National
Health and Nutrition Examination Survey (NHANES II). It has weights to make it representative of
the population from which it was drawn as well as other survey characteristics—strata and primary
sampling units. The data have already been svyset; see [SVY] svyset. We should take note of these
characteristics and use the svy prefix when fitting our model.

. svy: logistic highbp sex##agegrp##c.bmi
(output omitted )

If we were to repeat the command margins agegrp, we would see that our point estimates differ
only a little, but our standard errors are generally larger.

We are not restricted to margining over a single factor variable. Let’s see if the pattern of high
blood pressure over age groups differs for men and women. We do that by specifying the interaction
of sex and agegrp to margins. We add the vce(unconditional) option to accommodate the
survey design.

https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesExample3Averageresponseversusresponseataverage
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
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. margins sex#agegrp, vce(unconditional)

Predictive margins

Number of strata = 31 Number of obs = 10,351
Number of PSUs = 62 Population size = 117,157,513

Design df = 31

Expression: Pr(highbp), predict()

Linearized
Margin std. err. t P>|t| [95% conf. interval]

sex#agegrp
Male#20--29 .2931664 .0204899 14.31 0.000 .251377 .3349557
Male#30--39 .3664032 .0241677 15.16 0.000 .3171128 .4156936
Male#40--49 .3945619 .0240343 16.42 0.000 .3455435 .4435802
Male#50--59 .5376423 .0295377 18.20 0.000 .4773997 .5978849
Male#60--69 .5780997 .0224681 25.73 0.000 .5322756 .6239237

Male#70+ .6507023 .0209322 31.09 0.000 .6080109 .6933938
Female#20--29 .1069761 .0135978 7.87 0.000 .0792432 .1347091
Female#30--39 .1898006 .0143975 13.18 0.000 .1604367 .2191646
Female#40--49 .3250246 .0236775 13.73 0.000 .276734 .3733152
Female#50--59 .4855339 .03364 14.43 0.000 .4169247 .5541431
Female#60--69 .5441773 .0186243 29.22 0.000 .5061928 .5821618

Female#70+ .6195342 .0275568 22.48 0.000 .5633317 .6757367

Each line in the table corresponds to holding both sex and agegrp to fixed values while using
the observed level of bmi to evaluate the probability and then averaging over the observations in the
sample. To calculate the results in the first line of the table, margins fixed sex = 1 and agegrp = 1,
evaluated the probability for each observation, and then averaged the probabilities. All of these margins
reflect the observed distribution of bmi in the sample.

The first six lines represent males, and the second six lines represent females. Comparing males
with females for the same age groups, males are almost three times as likely to have high blood
pressure in the first age group (0.293/0.107 = 2.7); they are almost twice as likely in the second
age group; and while the relative gap narrows, it is not until above age 70 that the probability for
males drops below the probability for females.

Can the pattern of probabilities be affected by controlling one’s bmi? Let’s reevaluate the proba-
bilities while holding bmi to two levels—20 (which is well within the normal range) and 30 (which
is at the boundary between overweight and obese). We add the option at(bmi=(20 30)) to set bmi
first to 20 and then to 30.
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. margins sex#agegrp, at(bmi=(20 30)) vce(unconditional)

Adjusted predictions

Number of strata = 31 Number of obs = 10,351
Number of PSUs = 62 Population size = 117,157,513

Design df = 31

Expression: Pr(highbp), predict()
1._at: bmi = 20
2._at: bmi = 30

Linearized
Margin std. err. t P>|t| [95% conf. interval]

_at#sex#
agegrp

1#Male#20--29 .1392353 .0217328 6.41 0.000 .094911 .1835596
1#Male#30--39 .1714727 .0241469 7.10 0.000 .1222249 .2207205
1#Male#40--49 .1914061 .0366133 5.23 0.000 .1167329 .2660794
1#Male#50--59 .3380778 .0380474 8.89 0.000 .2604797 .4156759
1#Male#60--69 .4311378 .0371582 11.60 0.000 .3553532 .5069225

1#Male#70+ .6131166 .0521657 11.75 0.000 .506724 .7195092
1 #

Female #
20--29 .0439911 .0061833 7.11 0.000 .0313802 .056602

1 #
Female #
30--39 .075806 .0134771 5.62 0.000 .0483193 .1032926

1 #
Female #
40--49 .1941274 .0231872 8.37 0.000 .1468367 .2414181

1 #
Female #
50--59 .3493224 .0405082 8.62 0.000 .2667055 .4319394

1 #
Female #
60--69 .3897998 .0226443 17.21 0.000 .3436165 .4359831

1#Female#70+ .4599175 .0338926 13.57 0.000 .3907931 .5290419
2#Male#20--29 .4506376 .0370654 12.16 0.000 .3750422 .526233
2#Male#30--39 .569466 .04663 12.21 0.000 .4743635 .6645686
2#Male#40--49 .6042078 .039777 15.19 0.000 .5230821 .6853334
2#Male#50--59 .7268547 .0339618 21.40 0.000 .657589 .7961203
2#Male#60--69 .7131811 .0271145 26.30 0.000 .6578807 .7684816

2#Male#70+ .6843337 .0357432 19.15 0.000 .611435 .7572323
2 #

Female #
20--29 .1638185 .024609 6.66 0.000 .1136282 .2140088

2 #
Female #
30--39 .3038899 .0271211 11.20 0.000 .2485761 .3592037

2 #
Female #
40--49 .4523337 .0364949 12.39 0.000 .3779019 .5267655

2 #
Female #
50--59 .6132219 .0376898 16.27 0.000 .536353 .6900908

2 #
Female #
60--69 .68786 .0274712 25.04 0.000 .631832 .7438879

2#Female#70+ .7643662 .0343399 22.26 0.000 .6943296 .8344029
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That is a lot of margins, but they are in sets of six age groups. The first six margins are men
with a BMI of 20, the second six are women with a BMI of 20, the third six are men with a BMI
of 30, and the last six are women with a BMI of 30. These margins tell a more complete story. The
probability of high blood pressure is much lower for both men and women who maintain a BMI of 20.
More interesting is that the relationship between men and women differs depending on BMI. While
young men who maintain a BMI of 20 are still twice as likely as young women to have high blood
pressure (0.139/0.044) and youngish men are over 50% more likely (0.171/0.076), the gap narrows
substantially for men in the four older groups. The story is worse for those with a BMI of 30. Both
men and women with a high BMI have a substantially increased risk of high blood pressure, with men
ages 50–69 almost 10 percentage points higher than women. Before you dismiss these differences as
caused by the usual attenuation of the logistic curve in the tails, recall that when we fit the model,
we allowed the effect of bmi to be different for each combination of sex and agegrp.

You may have noticed that the header of the prior results says “Adjusted predictions” rather than
“Predictive margins”. That is because our model has only three covariates, and we have fixed the
values of each. margins is no longer averaging over the data, but is instead evaluating the margins
at fixed points that we have requested. It lets us know that by changing the header.

We could post the results of margins and form linear combinations or perform tests about any of
the assertions above; see Example 10: Testing margins—contrasts of margins in [R] margins.

There is much more to know about margins and the margins command. See Remarks and examples
in [R] margins for more details.

20.17 Obtaining conditional and average marginal effects
Marginal effects measure the change in a response given a change in a covariate, which is to say

that marginal effects are derivatives. As used here, marginal effects can also be the discrete change
in a response as an indicator goes from 0 to 1. Some authors reserve the term marginal effect for
the continuous change and use the term partial effect for the discrete change. We will not make that
distinction. Regardless, marginal effects are most often used to make it easier to interpret how changes
in covariates affect a nonlinear response from a fitted model—a probability, a censored dependent
variable, a survival time, a hazard, etc.

Marginal effects can either be evaluated at a specified point for all the covariates in our model
(conditional marginal effects) or be evaluated at the observed values of the covariates in a dataset
and then averaged (average marginal effects).

To Stata, marginal effects are just margins whose response happens to be the derivative of another
response. Those interested in marginal effects will be interested in all or most of [R] margins.

20.17.1 Obtaining conditional marginal effects

We call a marginal effect conditional when we fix the values of all the covariates and then take
the derivative of the response with respect to a covariate. The mean of all covariates is often used as
the fixed point, and this is sometimes called the marginal effect at the means.

Consider a simple probit model of union membership for women as a function of having graduated
from college (collgrad), living in the South (south), tenure on the job (tenure), and the interaction
of south and tenure. We are interested in how being in the South affects union membership. We fit
the model by using an extract from 1988 of the U.S. National Longitudinal Survey of Labor Market
Experience (see [XT] xt).

https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesExample10Testingmargins---contrastsofmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamples
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/xtxt.pdf#xtxt
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. use https://www.stata-press.com/data/r18/nlsw88b, clear
(NLSW, 1988 extract)

. probit union i.collgrad i.south tenure south#c.tenure

Iteration 0: Log likelihood = -1042.6816
Iteration 1: Log likelihood = -997.71809
Iteration 2: Log likelihood = -997.60984
Iteration 3: Log likelihood = -997.60983

Probit regression Number of obs = 1,868
LR chi2(4) = 90.14
Prob > chi2 = 0.0000

Log likelihood = -997.60983 Pseudo R2 = 0.0432

union Coefficient Std. err. z P>|z| [95% conf. interval]

collgrad
not grad .2783278 .0726167 3.83 0.000 .1360018 .4206539

1.south -.2534964 .1050552 -2.41 0.016 -.4594008 -.0475921
tenure .0362944 .0068205 5.32 0.000 .0229264 .0496624

south#
c.tenure

1 -.0239785 .0119533 -2.01 0.045 -.0474065 -.0005504

_cons -.8497418 .0664524 -12.79 0.000 -.9799862 -.7194974

Clearly, being located in the South decreases union membership. Using the dydx() and atmeans
options of margins, we can ask how much it decreases membership by evaluating the marginal effect
of being southern at the means of all covariates:

. margins, dydx(south) atmeans

Conditional marginal effects Number of obs = 1,868
Model VCE: OIM

Expression: Pr(union), predict()
dy/dx wrt: 1.south
At: 0.collgrad = .7521413 (mean)

1.collgrad = .2478587 (mean)
0.south = .5744111 (mean)
1.south = .4255889 (mean)
tenure = 6.571065 (mean)

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

1.south -.1236055 .019431 -6.36 0.000 -.1616896 -.0855215

Note: dy/dx for factor levels is the discrete change from the base level.

At the means of all the covariates, southern women are 12 percentage points less likely to be members
of a union. This marginal effect includes both the direct effect of i.south and the interaction
south#c.tenure.

As margins reports below the table, this change in the response is for the discrete change of
going from not southern (0) to southern (1).

The header of margins tells us where the marginal effect was estimated. This margin fixes tenure
to be 6.6 years. There is nothing special about this point. We could also evaluate the marginal effect
at the median of tenure:
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. margins, dydx(south) atmeans at((medians) _continuous)

Conditional marginal effects Number of obs = 1,868
Model VCE: OIM

Expression: Pr(union), predict()
dy/dx wrt: 1.south
At: 0.collgrad = .7521413 (mean)

1.collgrad = .2478587 (mean)
0.south = .5744111 (mean)
1.south = .4255889 (mean)
tenure = 4.666667 (median)

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

1.south -.1061338 .0201722 -5.26 0.000 -.1456706 -.066597

Note: dy/dx for factor levels is the discrete change from the base level.

With tenure at its median of 4.67, the marginal effect is about 2 percentage points less than it
was at the mean of 6.6.

When examining conditional marginal effects, it is often useful to evaluate them at a range of values
for the covariates. We can do that by asking both for values of the indicator covariate collgrad and
for a range of values for tenure:

. margins collgrad, dydx(south) at(tenure=(0(5)25))

Conditional marginal effects Number of obs = 1,868
Model VCE: OIM

Expression: Pr(union), predict()
dy/dx wrt: 1.south
1._at: tenure = 0
2._at: tenure = 5
3._at: tenure = 10
4._at: tenure = 15
5._at: tenure = 20
6._at: tenure = 25

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

0.south (base outcome)

1.south
_at#collgrad

1#grad -.0627725 .0254161 -2.47 0.014 -.112587 -.0129579
1#not grad -.0791483 .0321151 -2.46 0.014 -.1420928 -.0162038

2#grad -.1031957 .0189184 -5.45 0.000 -.140275 -.0661164
2#not grad -.1256566 .0232385 -5.41 0.000 -.1712031 -.0801101

3#grad -.1496772 .022226 -6.73 0.000 -.1932392 -.1061151
3#not grad -.1760137 .0266874 -6.60 0.000 -.2283202 -.1237073

4#grad -.2008801 .036154 -5.56 0.000 -.2717407 -.1300196
4#not grad -.2282 .0419237 -5.44 0.000 -.310369 -.146031

5#grad -.2549707 .0546355 -4.67 0.000 -.3620543 -.1478872
5#not grad -.2799495 .0613127 -4.57 0.000 -.4001201 -.1597789

6#grad -.3097656 .0747494 -4.14 0.000 -.4562717 -.1632594
6#not grad -.3289702 .0816342 -4.03 0.000 -.4889703 -.1689701

Note: dy/dx for factor levels is the discrete change from the base level.

We now have a more complete picture of the effect that being in the South has on union participation.
For those with no tenure and without a college degree (the first line in the table), being in the South
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decreases union participation by only 6 percentage points. For those with 25 years of tenure and with
a college degree (the last line in the table), being in the South decreases participation by almost 33
percentage points. We can read the effect for any combination of tenure and college graduation status
from the other lines in the table.

20.17.2 Obtaining average marginal effects

To compute average marginal effects, the marginal effect is first computed for each observation
in the dataset and then averaged. If the sample over which we compute the average marginal effect
represents a population, then we have estimated the marginal effect for the population.

We continue with our example of labor union participation.
. use https://www.stata-press.com/data/r18/nlsw88b
(NLSW, 1988 extract)

. probit union i.collgrad i.south tenure south#c.tenure
(output omitted )

To estimate the average marginal effect for each of our regressors, we type
. margins, dydx(*)

Average marginal effects Number of obs = 1,868
Model VCE: OIM

Expression: Pr(union), predict()
dy/dx wrt: 1.collgrad 1.south tenure

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

collgrad
not grad .0878847 .0238065 3.69 0.000 .0412248 .1345447

1.south -.126164 .0191504 -6.59 0.000 -.1636981 -.0886299
tenure .0083571 .0016521 5.06 0.000 .005119 .0115951

Note: dy/dx for factor levels is the discrete change from the base level.

For this sample, the average marginal effect is very close to the marginal effect at the mean that
we computed earlier. That is not always true; it depends on the distribution of the other covariates.
The results also tell us that on average, for populations like the one from which our sample was
drawn, union participation increases 0.8 percentage points for every year of tenure on the job. College
graduates are, on average, 8.8 percentage points more likely to participate.

In the examples above, we treated the covariates in the sample as fixed and known. We could have
accounted for the fact that this sample was drawn from a population and the covariates represent just
one sample from that population. We do that by adding the vce(robust) or vce(cluster clustvar)
option when fitting the model and the vce(unconditional) option when estimating the margins;
see Obtaining margins with survey data and representative samples in [R] margins. It makes little
difference in the examples above.

20.18 Obtaining pairwise comparisons
pwcompare performs pairwise comparisons across the levels of factor variables. pwcompare can

compare estimated cell means, marginal means, intercepts, marginal intercepts, slopes, or marginal
slopes—collectively called margins. pwcompare reports comparisons as contrasts (differences) of
margins along with significance tests or confidence intervals for the contrasts. The tests and confidence
intervals can be adjusted for multiple comparisons.

https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesObtainingmarginswithsurveydataandrepresentativesamples
https://www.stata.com/manuals/rmargins.pdf#rmargins
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pwcompare is for use after an estimation command in which you have used factor variables in
specifying the model. You could not use pwcompare after typing

. regress yield fertilizer1-fertilizer5

but you could use pwcompare after typing

. regress yield i.fertilizer

Below, we fit a linear regression of wheat yield on type of fertilizer, and then we compare the mean
yields for each pair of fertilizers and obtain p-values and confidence intervals adjusted for multiple
comparisons by using Tukey’s honestly significant difference.

. use https://www.stata-press.com/data/r18/yield
(Artificial wheat yield dataset)

. regress yield i.fertilizer

Source SS df MS Number of obs = 200
F(4, 195) = 5.33

Model 1078.84207 4 269.710517 Prob > F = 0.0004
Residual 9859.55334 195 50.561812 R-squared = 0.0986

Adj R-squared = 0.0801
Total 10938.3954 199 54.9668111 Root MSE = 7.1107

yield Coefficient Std. err. t P>|t| [95% conf. interval]

fertilizer
10-08-22 3.62272 1.589997 2.28 0.024 .4869212 6.758518
16-04-08 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
18-24-06 4.922803 1.589997 3.10 0.002 1.787005 8.058602
29-03-04 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747

_cons 41.36243 1.124298 36.79 0.000 39.14509 43.57977

. pwcompare fertilizer, effects mcompare(tukey)

Pairwise comparisons of marginal linear predictions

Margins: asbalanced

Number of
comparisons

fertilizer 10

Tukey Tukey
Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
10-08-22

vs
10-10-10 3.62272 1.589997 2.28 0.156 -.7552913 8.000731
16-04-08

vs
10-10-10 .4906299 1.589997 0.31 0.998 -3.887381 4.868641

(output omitted )
29-03-04

vs
18-24-06 -6.161132 1.589997 -3.87 0.001 -10.53914 -1.78312

See [R] pwcompare and [R] margins, pwcompare.

https://www.stata.com/manuals/rpwcompare.pdf#rpwcompare
https://www.stata.com/manuals/rmarginspwcompare.pdf#rmargins,pwcompare
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20.19 Obtaining contrasts, tests of interactions, and main effects
contrast estimates and tests contrasts—comparisons of levels of factor variables. It also performs

joint tests of these contrasts and can produce ANOVA-style tests of main effects, interaction effects,
simple effects, and nested effects. It can be used after most estimation commands.

contrast provides a set of contrast operators such as r., ar., and p.. These operators are
prefixed onto variable names—for example, r.varname—to specify the contrasts to be performed.
The operators can be used with the contrast and margins commands.

Below, we fit a regression of cholesterol level on age group category.

. regress chol i.agegrp

The reported coefficients on i.agegrp will themselves be contrasts, namely, contrasts on the reference
category. After estimation, if we wanted to compare the cell mean of each age group with that of the
previous group, we would perform a reverse-adjacent contrast by typing

. contrast ar.agegrp

That is exactly what we will do:

. use https://www.stata-press.com/data/r18/cholesterol
(Artificial cholesterol data)

. regress chol i.agegrp

Source SS df MS Number of obs = 75
F(4, 70) = 35.02

Model 14943.3997 4 3735.84993 Prob > F = 0.0000
Residual 7468.21971 70 106.688853 R-squared = 0.6668

Adj R-squared = 0.6477
Total 22411.6194 74 302.859722 Root MSE = 10.329

chol Coefficient Std. err. t P>|t| [95% conf. interval]

agegrp
20--29 8.203575 3.771628 2.18 0.033 .6812991 15.72585
30--39 21.54105 3.771628 5.71 0.000 14.01878 29.06333
40--59 30.15067 3.771628 7.99 0.000 22.6284 37.67295
60--79 38.76221 3.771628 10.28 0.000 31.23993 46.28448

_cons 180.5198 2.666944 67.69 0.000 175.2007 185.8388
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. contrast ar.agegrp

Contrasts of marginal linear predictions

Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 20--29) 1 12.51 0.0007
(40--59 vs 30--39) 1 5.21 0.0255
(60--79 vs 40--59) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 20--29) 13.33748 3.771628 5.815204 20.85976
(40--59 vs 30--39) 8.60962 3.771628 1.087345 16.1319
(60--79 vs 40--59) 8.611533 3.771628 1.089257 16.13381

We could use orthogonal polynomial contrasts to test whether there is a linear, quadratic, or even
higher-order trend in the estimated cell means.

. contrast p.agegrp, noeffects

Contrasts of marginal linear predictions

Margins: asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

You are not limited to using contrast in one-way models. Had we fit

. regress chol agegrp##race

we could contrast to obtain tests of the main effects and interaction effects.

. contrast agegrp##race

These results would be the same as would be reported by anova. We mention this because you can
use contrast after any estimation command that allows factor variables and works with margins.
You could type

. logistic highbp agegrp##race

. contrast agegrp##race

See [R] contrast and [R] margins, contrast.

https://www.stata.com/manuals/rcontrast.pdf#rcontrast
https://www.stata.com/manuals/rmarginscontrast.pdf#rmargins,contrast
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20.20 Graphing margins, marginal effects, and contrasts
Using marginsplot, you can graph any of the results produced by margins, and because margins

can replicate any of the results produced by pwcompare and contrast, you can graph any of the
results produced by them, too.

In [U] 20.16.3 Obtaining predictive margins, we did the following:

. use https://www.stata-press.com/data/r18/nhanes2

. svy: logistic highbp sex##agegrp##c.bmi

. margins sex#agegrp, vce(unconditional)

We can now graph those results by typing

. marginsplot, xdimension(agegrp)

Variables that uniquely identify margins: sex agegrp
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Predictive margins of sex#agegrp with 95% CIs

See [R] marginsplot. Mitchell (2021) shows how to make similar graphs for a variety of predictions
and models.

20.21 Dynamic forecasts and simulations

The forecast suite of commands lets you obtain forecasts from forecast models, collections of
equations that jointly determine the outcomes of one or more endogenous variables. You fit stochastic
equations using estimation commands such as regress or var, and then you add those results to your
forecast model. You can also specify identities that define variables in terms of other variables, and
you can also specify exogenous variables whose values are already known or otherwise determined
by factors outside your model. forecast then solves the resulting system of equations to obtain
forecasts.

forecast works with time-series and panel datasets, and you can obtain either dynamic or static
forecasts. Dynamic forecasts use previous periods’ forecast values wherever lags appear in the model’s
equations and thus allow you to obtain forecasts for multiple periods in the future. Static forecasts
use previous periods’ actual values wherever lags appear in the model’s equations, so if you use lags,
you cannot make predictions much beyond the end of the time horizon in your dataset. However,
static forecasts are useful during model development.

You can incorporate outside information into your forecasts, and you can specify a future path for
some of the model’s variables and obtain forecasts for the other variables conditional on that path.

https://www.stata.com/manuals/rmarginsplot.pdf#rmarginsplot
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These features allow you to produce forecasts under different scenarios, and they allow you to explore
how different policy interventions would affect your forecasts.

forecast also has the capability to produce confidence intervals around the forecasts. You can
have forecast account for the sampling variance of the estimated parameters in the stochastic
equations. There are two ways to account for an additive stochastic error term in the stochastic
equations. You can request either that forecast assume the error terms are normally distributed and
take draws from a random-number generator or that forecast take random samples from the pool
of static-forecast residuals.

See [TS] forecast.

20.22 Obtaining robust variance estimates

Many Stata estimation commands provide robust and cluster-robust variance estimates. To ob-
tain these estimates, you simply specify option vce(robust) to obtain robust standard errors or
vce(cluster clustvar) to obtain cluster-robust standard errors. Below, we provide a general discus-
sion of why you might specify one of these options, how to interpret standard errors with and without
vce(robust) specified, and an overview of important concepts relating to cluster-robust standard
errors.

Estimates of variance refer to estimated standard errors or, more completely, the estimated variance–
covariance matrix of the estimators of which the standard errors are a subset, being the square root of
the diagonal elements. Call this matrix the variance. All estimation commands produce an estimate
of variance and, using that, produce confidence intervals and significance tests.

In addition to the conventional estimator of variance, there is another estimator that has been
called by various names because it has been derived independently in different ways by different
authors. Two popular names associated with the calculation are Huber and White, but it is also known
as the sandwich estimator of variance (because of how the calculation formula physically appears)
and the robust estimator of variance (because of claims made about it). Also, this estimator has an
independent and long tradition in the survey literature.

The conventional estimator of variance is derived by starting with a model. Let’s start with the
regression model

yi = xiβ+ εi, εi ∼ N(0, σ2)

although it is not important for the discussion that we are using regression. Under the model-based
approach, we assume that the model is true and thereby derive an estimator for β and its variance.

The estimator of the standard error of β̂ we develop is based on the assumption that the model is
true in every detail. yi is not exactly equal to xiβ (so that we would only need to solve an equation
to obtain precisely that value of β) because the observed yi has noise εi added to it, the noise is
Gaussian, and it has constant variance. That noise leads to the uncertainty about β, and it is from
the characteristics of that noise that we are able to calculate a sampling distribution for β̂.

The key thought here is that the standard error of β̂ arises because of ε and is valid only because
the model is absolutely, without question, true; we just do not happen to know the particular values of
β and σ2 that make the model true. The implication is that, in an infinite-sized sample, the estimator
β̂ for β would converge to the true value of β and that its variance would go to 0.

Now here is another interpretation of the estimation problem: We are going to fit the model

yi = xib+ ei

https://www.stata.com/manuals/tsforecast.pdf#tsforecast
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and, to obtain estimates of b, we are going to use the calculation formula

b̂ = (X′X)−1X′y

We have made no claims that the model is true or any claims about ei or its distribution. We shifted
our notation from β and εi to b and ei to emphasize this. All we have stated are the physical actions
we intend to carry out on the data. Interestingly, it is possible to calculate a standard error for b̂
here. At least, it is possible if you will agree with us on what the standard error measures are.

We are going to define the standard error as measuring the standard error of the calculated b̂ if
we were to repeat the data collection followed by estimation over and over again.

This is a different concept of the standard error from the conventional, model-based ideas, but it
is related. Both measure uncertainty about b (or β). The regression model–based derivation states
from where the variation arises and so can make grander statements about the applicability of the
measured standard error. The weaker second interpretation makes fewer assumptions and so produces
a standard error suitable for one purpose.

There is a subtle difference in interpretation of these identically calculated point estimates. β̂ is
the estimate of β under the assumption that the model is true. b̂ is the estimate of b, which is merely
what the estimator would converge to if we collected more and more data.

Is the estimate of b unbiased? If we mean, “Does b = β?” that depends on whether the model
is true. b̂ is, however, an unbiased estimate of b, which admittedly is not saying much.

What if x and e are correlated? Don’t we have a problem then? We may have an interpretation
problem—b may not measure what we want to measure, namely, β—but we measure b̂ to be
such-and-such and expect, if the experiment and estimation were repeated, that we would observe
results in the range we have reported.

So, we have two different understandings of what the parameters mean and how the variance in
their estimators arises. However, both interpretations must confront the issue of how to make valid
statistical inference about the coefficient estimates when the data do not come from a simple random
sample or the distribution of (xi, εi) is not independent and identically distributed (i.i.d.). In essence,
we need an estimator of the standard errors that is robust to this deviation from the standard case.

Hence, the name the robust estimate of variance; its associated authors are Huber (1967) and White
(1980, 1982) (who developed it independently), although many others have extended its development,
including Gail, Tan, and Piantadosi (1988); Kent (1982); Royall (1986); and Lin and Wei (1989). In the
survey literature, this same estimator has been developed; see Kish and Frankel (1974), Fuller (1975),
and Binder (1983). Most of Stata’s estimation commands can produce this alternative estimate of
variance and do so via the vce(robust) option.
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20.22.1 Interpreting standard errors

Without vce(robust), we get one measure of variance:

. use https://www.stata-press.com/data/r18/auto7
(1978 automobile data)

. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422

_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768

With vce(robust), we get another:

. regress mpg weight foreign, vce(robust)

Linear regression Number of obs = 74
F(2, 71) = 73.81
Prob > F = 0.0000
R-squared = 0.6627
Root MSE = 3.4071

Robust
mpg Coefficient std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0005462 -12.06 0.000 -.007677 -.0054988
foreign -1.650029 1.132566 -1.46 0.150 -3.908301 .6082424

_cons 41.6797 1.797553 23.19 0.000 38.09548 45.26392

Either way, the point estimates are the same. (See [R] regress for an example where specifying
vce(robust) produces strikingly different standard errors.)

How do we interpret these results? Let’s consider the model-based interpretation. Suppose that

yi = xiβ+ εi

where (xi, εi) are i.i.d. with variance σ2. For the model-based interpretation, we also must assume
that xi and εi are uncorrelated. With these assumptions and a few technical regularity conditions,
our first regression gives us consistent parameter estimates and standard errors that we can use for
valid statistical inference about the coefficients. Now suppose that we weaken our assumptions so that
(xi, εi) are independent and—but not necessarily—identically distributed. Our parameter estimates
are still consistent, but the standard errors from the first regression can no longer be used to make
valid inference. We need estimates of the standard errors that are robust to the fact that the error term
is not identically distributed. The standard errors in our second regression are just what we need. We
can use them to make valid statistical inference about our coefficients, even though our data are not
identically distributed.

Now consider a non–model-based interpretation. If our data come from a survey design that ensures
that (xi, ei) are i.i.d., then we can use the nonrobust standard errors for valid statistical inference
about the population parameters b. For this interpretation, we do not need to assume that xi and ei

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rregress.pdf#rregressRemarksandexamplesex5
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are uncorrelated. If they are uncorrelated, the population parameters b and the model parameters β
are the same. However, if they are correlated, then the population parameters b that we are estimating
are not the same as the model-based β. So, what we are estimating is different, but we still need
standard errors that allow us to make valid statistical inference. If the process that we used to collect
the data caused (xi, ei) to be independent but not identically distributed, then we need to use the
robust standard errors to make valid statistical inference about the population parameters b.

20.22.2 Correlated errors: Cluster–robust standard errors

The robust estimator of variance has one feature that the conventional estimator does not have:
the ability to relax the assumption of independence of the observations. That is, if you specify the
vce(cluster clustvar) option, it can produce “correct” standard errors (in the measurement sense),
even if the observations are correlated.

For the automobile data, it is difficult to believe that the models of the various manufacturers are
truly independent. Manufacturers, after all, use common technology, engines, and drive trains across
their model lines. The VW Dasher in the above regression has a measured residual of −2.80. Having
been told that, do you really believe that the residual for the VW Rabbit is as likely to be above 0 as
below? (The residual is −2.32.) Similarly, the measured residual for the Chevrolet Malibu is 1.27.
Does that provide information about the expected value of the residual of the Chevrolet Monte Carlo
(which turns out to be 1.53)?

We need to be careful about picking examples from data; we have not told you about the Datsun
210 and 510 (residuals +8.28 and −1.01) or the Cadillac Eldorado and Seville (residuals −1.99 and
+7.58), but you should at least question the assumption of independence. It may be believable that the
measured mpg given the weight of one manufacturer’s vehicles is independent of other manufacturers’
vehicles, but it is at least questionable whether a manufacturer’s vehicles are independent of one
another.

In commands with the vce(robust) option, another option—vce(cluster clustvar)—relaxes
the independence assumption and requires only that the observations be independent across the clusters:

. regress mpg weight foreign, vce(cluster manufacturer)

Linear regression Number of obs = 74
F(2, 22) = 90.93
Prob > F = 0.0000
R-squared = 0.6627
Root MSE = 3.4071

(Std. err. adjusted for 23 clusters in manufacturer)

Robust
mpg Coefficient std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0005339 -12.34 0.000 -.0076952 -.0054806
foreign -1.650029 1.039033 -1.59 0.127 -3.804852 .5047939

_cons 41.6797 1.844559 22.60 0.000 37.85432 45.50508

It turns out that, in these data, whether or not we specify vce(cluster clustvar) makes little
difference. The VW and Chevrolet examples above were not representative; had they been, the
confidence intervals would have widened. (In the above, manuf is a variable that takes on values
such as “Chev.” or “VW”, recording the manufacturer of the vehicle. This variable was created from
variable make, which contains values such as “Chev. Malibu” or “VW Rabbit”, by extracting the first
word.)



50 [ U ] 20 Estimation and postestimation commands

As a demonstration of how well clustering can work, in [R] regress we fit a random-effects model
with regress, vce(robust) and then compared the results with ordinary least squares and the
generalized least squares (GLS) random-effects estimator. Here we will simply summarize the results.

We start with a dataset on 4,711 women aged 14–46 years. Subjects appear an average of 6.057
times in the data; there are a total of 28,534 observations. The model we use is log wage on age,
age-squared, and job tenure. The focus of the example is the estimated coefficient on tenure. We
obtain the following results:

Estimator Point estimate Confidence interval
(Inappropriate) least squares 0.039 [ 0.038, 0.041 ]
Robust clustered 0.039 [ 0.036, 0.042 ]
GLS random effects 0.026 [ 0.025, 0.027 ]

Notice how well the robust clustered estimate does compared with the GLS random-effects model.
We then run a Hausman specification test, obtaining χ2(3) = 336.62, which casts grave doubt on the
assumptions justifying the use of the GLS estimator and hence on the GLS results. At this point, we
will simply quote our comments:

Meanwhile, our robust regression results still stand, as long as we are careful about the
interpretation. The correct interpretation is that if the data collection were repeated (on
women sampled the same way as in the original sample) and if we were to refit the
model, then 95% of the time we would expect the estimated coefficient on tenure to be
in the range [ 0.036, 0.042 ].

Even with robust regression, we must be careful about going beyond that statement. Here
the Hausman test is probably picking up something that differs within- and between-
person, which would cast doubt on our robust regression model in terms of interpreting
[ 0.036, 0.042 ] to contain the rate of return for keeping a job, economywide, for all
women, without exception.

The formula for the robust estimator of variance is

V̂ = V̂
( N∑
j=1

u′juj

)
V̂

where V̂ = (−∂2lnL/∂β2)−1 (the conventional estimator of variance) and uj (a row vector) is the
contribution from the jth observation to ∂lnL/∂β.

In the example above, observations are assumed to be independent. Assume for a moment that
the observations denoted by j are not independent but that they can be divided into M groups G1,
G2, . . . , GM that are independent. The robust estimator of variance is

V̂ = V̂
( M∑
k=1

u
(G)′
k u

(G)
k

)
V̂

where u(G)
k is the contribution of the kth group to ∂lnL/∂β. That is, application of the robust variance

formula merely involves using a different decomposition of ∂lnL/∂β, namely, u(G)
k , k = 1, . . . ,M ,

rather than uj , j = 1, . . . , N . Moreover, if the log-likelihood function is additive in the observations
denoted by j,

lnL =

N∑
j=1

lnLj

https://www.stata.com/manuals/rregress.pdf#rregress
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then uj = ∂lnLj/∂β, so

u
(G)
k =

∑
j∈Gk

uj

That is what the vce(cluster clustvar) option does. (This point was first made in writing by
Rogers [1993], although he considered the point an obvious generalization of Huber [1967] and the
calculation—implemented by Rogers—had appeared in Stata a year earlier.)

Technical note

What is written above is asymptotically correct but ignores a finite-sample adjustment to V̂ . For
maximum likelihood estimators, when you specify vce(robust) but not vce(cluster clustvar),
a better estimate of variance is V̂∗ = {N/(N − 1)}V̂ . When you also specify the vce(cluster

clustvar) option, this becomes V̂∗ = {M/(M − 1)}V̂ .

For linear regression, the finite-sample adjustment is N/(N − k) without vce(cluster clust-
var)—where k is the number of regressors—and is {M/(M − 1)}{(N − 1)/(N − k)} with
vce(cluster clustvar). Also, two data-dependent modifications to the calculation for V̂∗, suggested
by MacKinnon and White (1985), are provided by regress; see [R] regress. Angrist and Pis-
chke (2009, chap. 8) is devoted to robust covariance matrix estimation and offers practical guidance
on the use of vce(robust) and vce(cluster clustvar) in both cross-sectional and panel-data
applications.

� �
Halbert Lynn White Jr. (1950–2012) was born in Kansas City. After receiving economics degrees
at Princeton and MIT, he taught and researched econometrics at the University of Rochester and,
from 1979, at the University of California in San Diego. He also co-founded an economics and
legal consulting firm known for its rigorous use of econometrics methods. His 1980 paper on
heteroskedasticity introduced the use of robust covariance matrices to economists and passed
16,000 citations in Google Scholar in 2012. His 1982 paper on maximum likelihood estimation of
misspecified models helped develop the now-common use of quasimaximum likelihood estimation
techniques. Later in his career, he explored the use of neural networks, nonparametric models,
and time-series modeling of financial markets.

Among his many awards and distinctions, White was made a fellow of the American Academy
of Arts and Sciences and the Econometric Society, and he won a fellowship from the John
Simon Guggenheim Memorial Foundation. Had he not died prematurely, many scholars believe
he would have eventually been awarded the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel.

Aside from his academic work, White was an avid jazz musician who played with well-known
jazz trombonist and fellow University of California at San Diego teacher Jimmy Cheatam.� �

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/giftshop/bookmarks/series5/white/
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Peter Jost Huber (1934– ) was born in Wohlen (Aargau, Switzerland). He gained mathematics
degrees from ETH Zürich, including a PhD thesis on homotopy theory, and then studied statistics
at Berkeley on postdoctoral fellowships. This visit yielded a celebrated 1964 paper on robust
estimation, and Huber’s later monographs on robust statistics were crucial in directing that field.
Thereafter, his career took him back and forth across the Atlantic, with periods at Cornell, ETH
Zürich, Harvard, MIT, and Bayreuth. His work has touched several other major parts of statistics,
theoretical and applied, including regression, exploratory multivariate analysis, large datasets, and
statistical computing. Huber also has a major long-standing interest in Babylonian astronomy.� �

20.23 Obtaining scores
Many of the estimation commands that provide the vce(robust) option also provide the ability to

generate equation-level score variables via the predict command. With the score option, predict
returns an important ingredient into the robust variance calculation that is sometimes useful in its
own right. As explained above in [U] 20.22 Obtaining robust variance estimates, ignoring the
finite-sample corrections, the robust estimate of variance is

V̂ = V̂
( N∑
j=1

u′juj

)
V̂

where V̂ = (−∂2lnL/∂β2)−1 is the conventional estimator of variance. If we consider likelihood
functions that are additive in the observations

lnL =

N∑
j=1

lnLj

then uj = ∂lnLj/∂β. In general, function Lj is a function of xj and β, Lj(β;xj). For many
likelihood functions, however, it is only the linear form xjβ that enters the function. In those cases,

∂ lnLj(xjβ)

∂β
=
∂ lnLj(xjβ)

∂(xjβ)

∂(xjβ)

∂β
=
∂ lnLj(xjβ)

∂(xjβ)
xj

By writing uj = ∂lnLj(xjβ)/∂(xjβ), this becomes simply ujxj . Thus the formula for the robust
estimate of variance can be rewritten as

V̂ = V̂
( N∑
j=1

u2jx
′
jxj

)
V̂

We refer to uj as the equation-level score (in the singular), and it is uj that is returned when you
use predict with the score option. uj is like a residual in that

1.
∑

j uj = 0 and

2. correlation of uj and xj , calculated over j = 1, . . . , N , is 0.

In fact, for linear regression, uj is the residual, normalized,

∂ lnLj

∂(xjβ)
=

∂

∂(xjβ)
lnf
{
(yj − xjβ)/σ

}
= (yj − xjβ)/σ

where f(·) is the standard normal density.
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Example 19

probit provides the vce(robust) option and predict, score. Equation-level scores play an
important role in calculating the robust estimate of variance, but we can use predict, score
regardless of whether we specify vce(robust):

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)

. probit foreign mpg weight

Iteration 0: Log likelihood = -45.03321
Iteration 1: Log likelihood = -27.914626
Iteration 2: Log likelihood = -26.858074
Iteration 3: Log likelihood = -26.844197
Iteration 4: Log likelihood = -26.844189
Iteration 5: Log likelihood = -26.844189

Probit regression Number of obs = 74
LR chi2(2) = 36.38
Prob > chi2 = 0.0000

Log likelihood = -26.844189 Pseudo R2 = 0.4039

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

mpg -.1039503 .0515689 -2.02 0.044 -.2050235 -.0028772
weight -.0023355 .0005661 -4.13 0.000 -.003445 -.0012261
_cons 8.275464 2.554142 3.24 0.001 3.269437 13.28149

. predict double u, score

. summarize u

Variable Obs Mean Std. dev. Min Max

u 74 -6.64e-14 .5988325 -1.655439 1.660787

. correlate u mpg weight
(obs=74)

u mpg weight

u 1.0000
mpg 0.0000 1.0000

weight -0.0000 -0.8072 1.0000

. list make foreign mpg weight u if abs(u)>1.65

make foreign mpg weight u

24. Ford Fiesta Domestic 28 1,800 -1.6554395
64. Peugeot 604 Foreign 14 3,420 1.6607871

The light, high-mileage Ford Fiesta is surprisingly domestic, whereas the heavy, low-mileage Peugeot
604 is surprisingly foreign.

Technical note
For some estimation commands, one score is not enough. Consider a likelihood that can be

written as Lj(xjβ1, zjβ2), a function of two linear forms (or linear equations). Then ∂lnLj/∂β
can be written as (∂lnLj/∂β1, ∂lnLj/∂β2). Each of the components can in turn be written as
[∂lnLj/∂(β1x)]x = u1x and [∂lnLj/∂(β2z)]z = u2z. There are then two equation-level scores,
u1 and u2, and, in general, there could be more.
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Stata’s streg, distribution(weibull) command is an example of this: it estimates β and a
shape parameter, lnp, the latter of which can be thought of as a degenerate linear form ( lnp)z with
z = 1. After this command, predict, scores requires that you specify two new variable names,
or you can specify stub*, which will generate new variables stub1 and stub2; the first will be defined
containing u1 —the score associated with β—and the second will be defined containing u2 —the
score associated with lnp.

Technical note
Using Stata’s matrix commands—see [P] matrix—we can make the robust variance calculation

for ourselves and then compare it with that made by Stata.
. use https://www.stata-press.com/data/r18/auto2, clear
(1978 automobile data)

. quietly probit foreign mpg weight

. predict double u, score

. matrix accum S = mpg weight [iweight=u^2*74/73]
(obs=26.53642547)

. matrix rV = e(V)*S*e(V)

. matrix list rV

symmetric rV[3,3]
foreign: foreign: foreign:

mpg weight _cons
foreign:mpg .00352299

foreign:weight .00002216 2.434e-07
foreign:_cons -.14090346 -.00117031 6.4474174

. quietly probit foreign mpg weight, vce(robust)

. matrix list e(V)

symmetric e(V)[3,3]
foreign: foreign: foreign:

mpg weight _cons
foreign:mpg .00352299

foreign:weight .00002216 2.434e-07
foreign:_cons -.14090346 -.00117031 6.4474174

The results are the same.

There is an important lesson here for programmers. Given the scores, conventional variance estimates
can be easily transformed to robust estimates. If we were writing a new estimation command, it
would not be difficult to include a vce(robust) option.

It is, in fact, easy if we ignore clustering. With clustering, it is more work because the calculation
involves forming sums within clusters. For programmers interested in implementing robust variance
calculations, Stata provides a robust command to ease the task. This is documented in [P] robust.

To use robust, you first produce conventional results (a vector of coefficients and covariance
matrix) along with a variable containing the scores uj (or variables if the likelihood function has more
than one stub). You then call robust, and it will transform your conventional variance estimate into
the robust estimate. robust will handle the work associated with clustering and the details of the
finite-sample adjustment, and it will even label your output so that the word Robust appears above
the standard error when the results are displayed.

Of course, this is all even easier if you write your commands with Stata’s ml maximum likelihood
optimization, in which case you merely pass the vce(robust) option on to ml. Then, ml will call
robust itself and do all the work for you.

https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/p_robust.pdf#p_robust
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Technical note
For some estimation commands, predict, score computes parameter-level scores ∂Lj/∂β

instead of equation-level scores ∂Lj/∂xjβ. Those estimation commands, such as cmclogit, stcox,
and the multilevel mixed-effects commands, share the characteristic that there are multiple observations
per independent event.

In making the robust variance calculation, parameter-level scores ∂Lj/∂β are really needed, and so
you may be asking yourself why predict, score does not always produce parameter-level scores. In
the usual case, we can obtain them from equation-level scores via the chain rule, and fewer variables
are required if we adopt this approach. In the cases above, however, the likelihood is calculated at
the group level and is not split into contributions from the individual observations. Thus, the chain
rule cannot be used, and we must use the parameter level scores directly.

robust can be tricked into using them if each parameter appears to be in its own equation as a
constant. This requires resetting the row and column stripes on the covariance matrix before robust
is called. The equation names for each row and column must be unique, and the variable names must
all be cons.

20.24 Weighted estimation
The syntax for weights was introduced in [U] 11.1.6 weight. Stata provides four kinds of weights:

fweights, or frequency weights; pweights, or sampling weights; aweights, or analytic weights;
and iweights, or importance weights. The syntax for using each is the same. Type

. regress y x1 x2

and you obtain unweighted estimates; type
. regress y x1 x2 [pweight=pop]

and you obtain (in this example) pweighted estimates.

The sections below explain how each type of weight is used in estimation.

20.24.1 Frequency weights

Frequency weights—fweights—are integers and are nothing more than replication counts. The
weight is statistically uninteresting, but from a data-processing perspective it is important. Consider
the following data,

y x1 x2
22 1 0
22 1 0
22 1 1
23 0 1
23 0 1
23 0 1

and the estimation command
. regress y x1 x2

Equivalent is the following, more compressed data,
y x1 x2 pop

22 1 0 2
22 1 1 1
23 0 1 3

https://www.stata.com/manuals/u11.pdf#u11.1.6weight
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and the corresponding estimation command

. regress y x1 x2 [fweight=pop]

When you specify frequency weights, you are treating each observation as one or more real observations.

Technical note

You might occasionally run across a command that does not allow weights at all, especially among
community-contributed commands. You can use expand (see [D] expand) with such commands to
obtain frequency-weighted results. The expand command duplicates observations so that the data
become self-weighting. Suppose that you want to run the command usercmd, which does something
or other, and you would like to type usercmd y x1 x2 [fw=pop]. Unfortunately, usercmd does not
allow weights. Instead, you type

. expand pop

. usercmd y x1 x2

to obtain your result. Moreover, there is an important principle here: the results of running any
command with frequency weights should be the same as running the command on the unweighted,
expanded data. Unweighted, duplicated data and frequency-weighted data are merely two ways of
recording identical information.

20.24.2 Analytic weights

Analytic weights—analytic is a term we made up—statistically arise in one particular problem:
linear regression on data that are themselves observed means. That is, think of the model

yi = xiβ+ εi, εi ∼ N(0, σ2)

and now think about fitting this model on data (yj ,xj) that are themselves observed averages. For
instance, a piece of the underlying data for (yi,xi) might be (3, 1), (4, 2), and (2, 2), but you do
not know that. Instead, you have one observation {(3 + 4 + 2)/3, (1 + 2 + 2)/3} = (3, 1.67) and
know only that the (3, 1.67) arose as the average of three underlying observations. All your data are
like that.

regress with aweights is the solution to that problem:

. regress y x [aweight=pop]

There is a history of misusing such weights. A researcher does not have cell-mean data but instead has a
probability-weighted random sample. Long before Stata existed, some researchers were using aweights
to produce estimates from such samples. We will come back to this point in [U] 20.24.3 Sampling
weights below.

Anyway, the statistical problem that aweights resolve can be written as

yi = xiβ+ εi, εi ∼ N(0, σ2/wi)

where the wi are the analytic weights. The details of the solution are to make linear regression
calculations using the weights as if they were fweights but to normalize them to sum to N before
doing that.

https://www.stata.com/manuals/dexpand.pdf#dexpand
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Most commands that allow aweights handle them in this manner. That is, if you specify aweights,
they are

1. normalized to sum to N and then

2. inserted in the calculation formulas in the same way as fweights.

While we focus on the use of aweights in linear regression above, aweights are allowed by
commands other than regress. These weights can be used more generally to account for observations
that have different variances or different precisions. In that sense, we could also refer to analytic
weights as precision weights.

20.24.3 Sampling weights

Sampling weights—probability weights or pweights—refer to probability-weighted random sam-
ples. Actually, what you specify in [pweight=. . .] is a variable recording the number of subjects in
the full population that the sampled observation in your data represents. That is, an observation that
had probability 1/3 of being included in your sample has pweight 3.

Some researchers have used aweights with these kinds of data. If they do, they are probably
making a mistake. Consider the regression model

yi = xiβ+ εi, εi ∼ N(0, σ2)

Begin by considering the exact nature of the problem of fitting this model on cell-mean data—for
which aweights are the solution: heteroskedasticity arising from the grouping. The error term εi is
homoskedastic (meaning that it has constant variance σ2). Say that the first observation in the data
is the mean of three underlying observations. Then,

y1 = x1β+ ε1, ε1 ∼ N(0, σ2)

y2 = x2β+ ε2, ε2 ∼ N(0, σ2)

y3 = x3β+ ε3, ε3 ∼ N(0, σ2)

and taking the mean,

(y1 + y2 + y3)/3 = {(x1 + x2 + x3)/3}β+ (ε1 + ε2 + ε3)/3

For another observation in the data—which may be the result of summing a different number of
observations—the variance will be different. Hence, the model for the data is

yj = xjβ+ εj , εj ∼ N(0, σ2/Nj)

This makes intuitive sense. Consider two observations, one recording means over 2 subjects and the
other recording means over 100,000 subjects. You would expect the variance of the residual to be
less in the 100,000-subject observation; that is, there is more information in the 100,000-subject
observation than in the 2-subject observation.

Now instead say that you are fitting the same model, yi = xiβ+εi, εi ∼ N(0, σ2), on probability-
weighted data. Each observation in your data is one subject, but the different subjects have different
chances of being included in your sample. Therefore, for each subject in your data,

yi = xiβ+ εi, εi ∼ N(0, σ2)
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That is, there is no heteroskedasticity problem. The use of the aweighted estimator cannot be justified
on these grounds.

As a matter of fact, from the argument just given, you do not need to adjust for the weights at
all, although the argument does not justify not making an adjustment. If you do not adjust, you are
holding tightly to the assumed truth of your model. Two issues arise when considering adjustment
for sampling weights:

1. the efficiency of the point estimate β̂ of β and

2. the reported standard errors (and, more generally, the variance matrix of β̂).

Efficiency argues in favor of adjustment, and that, by the way, is why many researchers have used
aweights with pweighted data. The adjustment implied by pweights to the point estimates is the
same as the adjustment implied by aweights.

With regard to the second issue, the use of aweights produces incorrect results because it interprets
larger weights as designating more accurately measured points. For pweights, however, the point
is no more accurately measured—it is still just one observation with one residual εj and variance
σ2. In [U] 20.22 Obtaining robust variance estimates above, we introduced another estimator of
variance that measures the variation that would be observed if the data collection followed by the
estimation were repeated. Those same formulas provide the solution to pweights, and they have
the added advantage that they are not conditioned on the model being true. If we have any hopes
of measuring the variation that would be observed were the data collection followed by estimation
repeated, we must include the probability of the observations being sampled in the calculation.

In Stata, when you type

. regress y x1 x2 [pw=pop]

the results are the same as if you had typed

. regress y x1 x2 [pw=pop], vce(robust)

That is, specifying pweights implies the vce(robust) option and, hence, the robust variance
calculation (but weighted). In this example, we use regress simply for illustration. The same is
true of probit and all of Stata’s estimation commands. Estimation commands that do not have a
vce(robust) option (there are a few) do not allow pweights.

pweights are adequate for handling random samples where the probability of being sampled varies.
pweights may be all you need. If, however, the observations are not sampled independently but are
sampled in groups—called clusters in the jargon—you should specify the estimator’s vce(cluster
clustvar) option as well:

. regress y x1 x2 [pw=pop], vce(cluster block)

There are two ways of thinking about this:

1. The robust estimator answers the question of which variation would be observed were the data
collection followed by the estimation repeated; if that question is to be answered, the estimator
must account for the clustered nature of how observations are selected. If observations 1 and
2 are in the same cluster, then you cannot select observation 1 without selecting observation 2
(and, by extension, you cannot select observations like 1 without selecting observations like 2).

2. If you prefer, you can think about potential correlations. Observations in the same cluster
may not really be independent—that is an empirical question to be answered by the data.
For instance, if the clusters are neighborhoods, it would not be surprising that the individual
neighbors are similar in their incomes, their tastes, and their attitudes, and even more similar
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than two randomly drawn persons from the area at large with similar characteristics, such as
age and sex.

Either way of thinking leads to the same (robust) estimator of variance.

Sampling weights usually arise from complex sampling designs, which often involve not only
unequal probability sampling and cluster sampling but also stratified sampling. There is a family of
commands in Stata designed to work with the features of complex survey data, and those are the
commands that begin with svy. To fit a linear regression model with stratification, for example, you
would use the svy: regress command.

Non-svy commands that allow pweights and clustering give essentially identical results to the
svy commands. If the sampling design is simple enough that it can be accommodated by the non-svy
command, that is a fine way to perform the analysis. The svy commands differ in that they have
more features, and they do all the little details correctly for real survey data. See [SVY] Survey for
a brief discussion of some of the issues involved in the analysis of survey data and for a list of all
the differences between the svy and non-svy commands.

Not all model estimation commands in Stata allow pweights. This is often because they are
computationally or statistically difficult to implement.

20.24.4 Importance weights

Stata’s iweights—importance weights—are the emergency exit. These weights are for those who
want to take control and create special effects. For example, programmers have used regress with
iweights to compute iteratively reweighted least-squares solutions for various problems.

iweights are treated much like aweights, except that they are not normalized. Stata’s iweight
rule is that

1. the weights are not normalized and

2. they are generally inserted into calculation formulas in the same way as fweights. There are
exceptions; see the Methods and formulas for the particular command.

iweights are used mostly by programmers who are often on the way to implementing one of the
other kinds of weights.

https://www.stata.com/manuals/svysurvey.pdf#svySurvey
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20.25 A list of postestimation commands
The following commands can be used after estimation:

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
etable table of estimation results
forecast dynamic forecasts and simulations
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations of

coefficients
linktest link test for model specification
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, and marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

Also see [U] 13.5 Accessing coefficients and standard errors for accessing coefficients and standard
errors.

The commands above are general-purpose postestimation commands that can be used after almost
all estimation commands. Many estimation commands provide other estimator-specific postestimation
commands. You can see the full list of postestimation commands available for an estimator by looking
in the entry titled estimator postestimation that immediately follows each estimator’s entry in the
reference manuals.

You can also see which postestimation commands are available by launching the Postestimation
Selector; select Statistics > Postestimation. You will see a list of all postestimation features that are
available for the active estimation results. This list is automatically updated when a new estimation
command is run or estimates are restored from memory or disk. See [R] postest for more details.

https://www.stata.com/manuals/rcontrast.pdf#rcontrast
https://www.stata.com/manuals/restatic.pdf#restatic
https://www.stata.com/manuals/restatsummarize.pdf#restatsummarize
https://www.stata.com/manuals/restatvce.pdf#restatvce
https://www.stata.com/manuals/restimates.pdf#restimates
https://www.stata.com/manuals/retable.pdf#retable
https://www.stata.com/manuals/tsforecast.pdf#tsforecast
https://www.stata.com/manuals/rhausman.pdf#rhausman
https://www.stata.com/manuals/rlincom.pdf#rlincom
https://www.stata.com/manuals/rlinktest.pdf#rlinktest
https://www.stata.com/manuals/rlrtest.pdf#rlrtest
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmarginsplot.pdf#rmarginsplot
https://www.stata.com/manuals/rnlcom.pdf#rnlcom
https://www.stata.com/manuals/rpredict.pdf#rpredict
https://www.stata.com/manuals/rpredictnl.pdf#rpredictnl
https://www.stata.com/manuals/rpwcompare.pdf#rpwcompare
https://www.stata.com/manuals/rsuest.pdf#rsuest
https://www.stata.com/manuals/rtest.pdf#rtest
https://www.stata.com/manuals/rtestnl.pdf#rtestnl
https://www.stata.com/manuals/u13.pdf#u13.5Accessingcoefficientsandstandarderrors
https://www.stata.com/manuals/rpostest.pdf#rpostest
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