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20.25 A list of postestimation commands
20.26 References

20.1 All estimation commands work the same way

All Stata commands that fit statistical models—commands such as regress, logit, and sureg—work
similarly. Most single-equation estimation commands have the syntax

command varlist [if ] [in] [weight] | , options]
and most multiple-equation estimation commands have the syntax
command (varlist) (varlist) ... (varlist) [if ] [in] [weight] [, options]

Adopt a loose definition of single and multiple equation in interpreting this. For instance, heckman is a
two-equation system, mathematically speaking, yet we categorize it, syntactically, with single-equation
commands because most researchers think of'it as a linear regression with an adjustment for the censoring.
The important thing is that most estimation commands have one or the other of these two syntaxes.

In single-equation commands, the first variable in the varlist is the dependent variable, and the remain-
ing variables are the independent variables, with some exceptions. For instance, mixed allows special
variable prefixes to identify random factors.

Prefix commands may be specified in front of an estimation command to modify or extend what it
does. The syntax is

prefix: command . . .

See [U] 11.1.10 Prefix commands for the full list of prefix commands. To find out which prefix com-
mands are available for an estimation command, see the command’s syntax section.

Also, all estimation commands—whether single or multiple equation—share the following features:

1. You can use the standard features of Stata’s syntax—if exp and in range—to specify the estima-
tion subsample; you do not have to make a special dataset.

2. You can retype the estimation command without arguments to redisplay the most recent estimation
results. For instance, after fitting a model with regress, you can see the estimates again by typing
regress by itself. You do not have to do this immediately—any number of commands can occur
between the estimation and the replaying, and, in fact, you can even replay the last estimates after
the data have changed or you have dropped the data altogether. Stata never forgets (unless you
type discard; see [P] discard).

3. You can specify the 1evel () option at the time of estimation, or when you redisplay results if that
makes sense, to specify the width of the confidence intervals for the coefficients. The default is
level(95), meaning 95% confidence intervals. You can reset the default with set level; see
[R] level.

4. You can use the postestimation command margins to display model results in terms of marginal
effects (dy/dx or even d f(y)/dx), which can be displayed as either derivatives or elasticities; see
[R] margins.

5. You can use the postestimation command margins to obtain tables of estimated marginal means,
adjusted predictions, and predictive margins; see [U] 20.17 Obtaining conditional and average
marginal effects and [R] margins.
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10.

11.

12.

13.

. You can use the postestimation command pwcompare to obtain pairwise comparisons across levels

of factor variables. You can compare estimated cell means, marginal means, intercepts, marginal
intercepts, slopes, or marginal slopes—collectively called margins. See [U] 20.18 Obtaining pair-
wise comparisons, [R] margins, and [R] margins, pwcompare.

. You can use the postestimation command contrast to obtain contrasts, which is to say, to compare

levels of factor variables and their interactions. This command can also produce ANOVA-style tests
of main effects, interactions effects, simple effects, and nested effects; and it can be used after
most estimation commands. See [U] 20.19 Obtaining contrasts, tests of interactions, and main
effects, [R] contrast, and [R] margins, contrast.

. You can use the postestimation command marginsplot to graph any of the results produced by

margins. And because margins can replicate any result produced by pwcompare and contrast,
you can graph any result produced by them, too. See [R] marginsplot.

. You can use the postestimation command estat to obtain common statistics associated with the

model. The available statistics are documented in the postestimation section following the doc-
umentation of the estimation command, for instance, in [R] regress postestimation following
[R] regress.

You can always use the postestimation command estat vce to obtain the variance—covariance
matrix of the estimators (VCE), presented as either a correlation matrix or a covariance matrix.
(You can also obtain the estimated coefficients and covariance matrix as vectors and matrices and
manipulate them with Stata’s matrix capabilities; see [U] 14.5 Accessing matrices created by
Stata commands.)

You can use the postestimation command predict to obtain predictions, residuals, influence statis-
tics, and the like, either for the data on which you just estimated or for some other data. You can
use postestimation command predictnl to obtain point estimates, standard errors, etc., for cus-
tomized predictions. See [R] predict and [R] predictnl.

You can use the postestimation command forecast to perform dynamic and static forecasts, with
optional forecast confidence intervals. This includes the ability to produce forecasts from mul-
tiple estimation commands, even when estimates imply simultaneous systems. An example of a
simultaneous system is when y2 predicts y1 in estimation 1 and y1 predicts y2 in estimation 2.
forecast provides many facilities for creating comparative forecast scenarios. See [TS] forecast.

You can refer to the values of coefficients and standard errors in expressions (such as with
generate) by using standard notation; see [U] 13.5 Accessing coefficients and standard er-
rors. You can refer in expressions to the values of other estimation-related statistics by using
e (resultname) . For instance, all commands define e (N) recording the number of observations in
the estimation subsample. After estimation, type ereturn list to see a list of all that is available.
See the Stored results section in the estimation command’s documentation for their definitions.

An especially useful e () result is e (sample): it returns 1 if an observation was used in the esti-
mation and 0 otherwise, so you can add if e(sample) to the end of other commands to restrict
them to the estimation subsample. You could type, for instance, summarize if e (sample).

You can use the postestimation command test to perform tests on the estimated parameters (Wald
tests of linear hypotheses), testnl to perform Wald tests of nonlinear hypotheses, and 1rtest to
perform likelihood-ratio tests. You can use the postestimation command lincom to obtain point
estimates and confidence intervals for linear combinations of the estimated parameters and the
postestimation command nlcom to obtain nonlinear combinations.
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15.

16.

17.

18.

20.

21.

22.

. You can specify the coeflegend option at the time of estimation or when you redisplay results

to see how to type your coefficients in postestimation commands, such as test and lincom (see
[R] test and [R] lincom), and in expressions.

You can use the statsby prefix command (see [D] statsby) to fit models over each category in a
categorical variable and collect the results in a Stata dataset.

You can use the collect suite of commands to collect estimation results and create customized
tables from those results. See [TABLES] Intro.

You can use the postestimation command etable to easily create a table of estimation results from
one or multiple estimation commands. See [R] etable.

You can use the postestimation command estimates to store estimation results by name for later
retrieval or for displaying/comparing multiple models by using estimates, or to save estimation
results in a file; see [R] estimates.

. You can use the postestimation command _estimates to hold estimates, perform other estimation

commands, and then restore the prior estimates. This is of particular interest to programmers. See
[P] —estimates.

You can use the postestimation command suest to obtain the joint parameter vector and variance—
covariance matrix for coefficients from two different models by using seemingly unrelated esti-
mation. This is especially useful for testing the equality, say, of coefficients across models. See
[R] suest.

You can use the postestimation command hausman to perform Hausman model-specification tests
by using hausman; see [R] hausman.

With some exceptions, you can specify the vce (robust) option at the time of estimation to ob-
tain the Huber/White/robust alternate estimate of variance, or you can specify the vce (cluster
clustvar) option to relax the assumption of independence of the observations; see [R] vce_option.

Most estimation commands also allow a vce (veetype) option to specify other alternative variance
estimators—the allowed alternative variance estimators are documented with the estimator—and
usually vce (opg), vce (bootstrap), and vce (jackknife) are available.

Where vce (bootstrap) and vce (jackknife) are available, we recommend using them instead
of the prefix commands bootstrap and jackknife.

As arule, the points discussed briefly above and in more detail later in this entry do not apply to the
Bayesian analysis or the Bayesian model averaging commands. For more information about Bayesian
analysis commands, see the Stata Bayesian Analysis Reference Manual. For more information about
Bayesian model averaging commands, see the Stata Bayesian Model Averaging Reference Manual.

20.2

Standard syntax

You can combine Stata’s if exp and in range with any estimation command. Estimation commands
also allow by varlist:, where it would be sensible.
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b Example 1

We have data on 74 automobiles that record the mileage rating (mpg), weight (weight), and whether
the car is domestic or foreign produced (foreign). We can fit a linear regression model of mpg on
weight and the square of weight, using just the foreign-made automobiles, by typing

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)
. regress mpg weight c.weight#c.weight if foreign

Source S8 daf MS Number of obs = 22
F(2, 19) = 8.31
Model 428.256889 2 214.128444  Prob > F = 0.0026
Residual 489.606747 19 25.7687762 R-squared = 0.4666
Adj R-squared = 0.4104
Total 917.863636 21 43.7077922 Root MSE = 5.0763
mpg | Coefficient Std. err. t P>|t]| [95% conf. intervall
weight -.0132182 .0275711 -0.48 0.637 -.0709252 .0444888
c.weight#
c.weight 5.50e-07 5.41e-06 0.10 0.920 -.0000108 .0000119
_cons 52.33775 34.1539 1.63 0.142 -19.14719 123.8227

We use the factor-variable notation c.weight#c.weight to add the square of weight to our regression;
see [U] 11.4.3 Factor variables.

We can run separate regressions for the domestic and foreign-produced automobiles with the by
varlist : prefix:

. by foreign: regress mpg weight c.weight#c.weight

-> foreign = Domestic

Source S8 daf MS Number of obs = 52
F(2, 49) = 91.64
Model 905.395466 2 452.697733 Prob > F = 0.0000
Residual 242.046842 49 4.93973146  R-squared = 0.7891
Adj R-squared = 0.7804
Total 1147.44231 51 22.4988688 Root MSE = 2.2226
mpg | Coefficient Std. err. t P>|t]| [95% conf. interval]
weight -.0131718 .0032307 -4.08 0.000 -.0196642 -.0066794
c.weight#
c.weight 1.11e-06  4.95e-07 2.25 0.029 1.19e-07 2.11e-06
_cons 50.745561  5.162014 9.83 0.000 40.37205 61.11896
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-> foreign = Foreign

Source SS daf MS Number of obs = 22
F(2, 19) = 8.31
Model 428.256889 2 214.128444 Prob > F = 0.0026
Residual 489.606747 19 25.7687762 R-squared = 0.4666
Adj R-squared = 0.4104
Total 917.863636 21 43.7077922 Root MSE = 5.0763
mpg | Coefficient Std. err. t P>|t| [95% conf. intervall
weight -.0132182 .0275711 -0.48 0.637 -.0709252 .0444888
c.weight#
c.weight 5.50e-07 5.41e-06 0.10 0.920 -.0000108 .0000119
_cons 52.33775 34.1539 1.63 0.142 -19.14719 123.8227

Although all estimation commands allow if exp and in range, only some allow the by varlist : prefix.
For by (), the duration of Stata’s memory is limited: it remembers the last set of estimates only. This
means that, if we were to use any of the other features described below, they would use the last regression
estimated, which right now is mpg on weight and square of weight for the Foreign subsample.

We can instead collect the statistics from each of the by-groups by using the statsby prefix; see
[D] statsby.
. statsby, by(foreign): regress mpg weight c.weight#c.weight
(running regress on estimation sample)
Command: regress mpg weight c.weight#c.weight
By: foreign
Statsby groups:

statsby runs the regression first on domestic cars and then on foreign cars, and it saves the coeffi-
cients by overwriting our dataset. Do not worry; if the dataset has not been previously saved, statsby
will refuse to run unless we also specify the clear option.

Here is what we now have in memory.

. list
foreign _b_weight _stat_2 _b_cons
1. Domestic -.0131718 1.11e-06 50.74551
2. Foreign -.0132182 5.50e-07 52.33775

These are the coefficients from the two regressions above. statsby does not know how to name the
coefficient for c.weight#c.weight, so it labels the coefficient with the generic name _stat_2. We
can also save the standard errors and other statistics from the regressions; see [D] statsby.

N
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20.3 Replaying prior results

When you type an estimation command without arguments, it redisplays prior results.

b Example 2

To perform a regression of mpg on the variables weight and displacement, we could type

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)

. regress mpg weight displacement

Source S8 daf MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 797.704846  Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474  Root MSE = 3.4561

mpg | Coefficient Std. err. t P>|t]| [95% conf. intervall

weight -.0065671 .0011662 -5.63  0.000 -.0088925  -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602
_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

We now go on to do other things—summarizing data, listing observations, performing hypothesis
tests, or anything else. If we decide that we want to see the last set of estimates again, we type the
estimation command without arguments.

. regress
Source S8 daf MS Number of obs = 74
F(2, 71) = 66.79
Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529
Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474  Root MSE = 3.4561
mpg | Coefficient Std. err. t P>|t]| [95% conf. intervall
weight -.0065671 .0011662 -5.63 0.000 -.0088925  -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602
_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

We can also specify most reporting options on replay. For example, if we want to see a legend of
terms with which to refer to the estimated coefficients in subsequent commands, we can type

. regress, coeflegend
(output omitted)

See [U] 20.12 Accessing estimated coefficients for an example using legend terms.

These features work with every estimation command, so we could just as well have used, say, stcox
or logit.
N
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20.4 Cataloging estimation results

Stata keeps only the results of the most recently fit model in active memory. You can use Stata’s
estimates command, however, to temporarily store estimation results for displaying, comparing, cross-
model testing, etc., during the same session. You can also save estimation results to disk, but that will be
the subject of the next section. You may temporarily store up to 300 sets of estimation results.

b Example 3

Continuing with our automobile data, we fit four models, give each one a title, and then store them.
We fit the models quietly to minimize output.

. quietly regress mpg weight displ

. estimates title: Linear regression, base model

. estimates store r_base

. quietly regress mpg weight displ foreign

. estimates title: Linear regression, alternate model
. estimates store r_alt

. quietly gqreg mpg weight displ

. estimates title: Quantile regression, base model

. estimates store g_base

. quietly greg mpg weight displ foreign

. estimates title: Quantile regression, alternate model

. estimates store q_alt

We saved the four models under the names r_base, r_alt, g_base, and q_alt, but if we forget, we
can ask to see a directory of what is stored:

. estimates dir

Dependent Number of
Name Command variable param. Title
r_base | regress mpg 3 Linear regression, base model
r_alt | regress mpg 4 Linear regression, alternate
model
q_base qreg mpg 3 (Quantile regression, base model
q_alt | qreg mpg 4 (uantile regression, alternate
model
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We can ask Stata to replay any of the previous models:

. estimates replay r_base

Model r_base (Linear regression, base model)

Source SS daf MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 T797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443 .45946 73 33.4720474 Root MSE = 3.4561

mpg | Coefficient Std. err. t P>t [95% conf. intervall

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602
_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

Or we can ask to see all the models in a combined table:

. estimates table _all

Variable r_base r_alt q_base q_alt
weight | -.00656711 -.00677449 -.00581172  -.00595056
displacement .00528078 .00192865 .0042841 .00018552
foreign -1.6006312 -2.1326005
_cons 40.084522 41.847949 37.559865 39.213348

estimates displayed just the coefficients, but we could ask for other statistics.

We can also select one of the stored estimates to be made active, making it as if we had just fit the
model:

. estimates restore r_alt
(results r_alt are active now)

. regress
Source SS df MS Number of obs = 74
F(3, 70) = 45.88
Model 1619.71935 3 539.906448 Prob > F = 0.0000
Residual 823.740114 70 11.7677159 R-squared = 0.6629
Adj R-squared = 0.6484
Total 2443 .45946 73 33.4720474  Root MSE = 3.4304
mpg | Coefficient Std. err. t P>t [95% conf. intervall
weight -.0067745 .0011665 -5.81 0.000 -.0091011 -.0044479
displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129
foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699
_cons 41.84795 2.350704 17.80 0.000 37.15962 46.53628

d

You can do a lot more with estimates; see [R] estimates. In particular, estimates makes it easy to
perform cross-model tests, such as the Hausman specification test.


https://www.stata.com/manuals/restimates.pdf#restimates

[U] 20 Estimation and postestimation commands 10

20.5 Saving estimation results

estimates can also save estimation results into a file.

. estimates save alt
file alt.ster saved

That saved the active estimation results, meaning the ones we just estimated or, in our case, the ones we
just restored. Later, even in another Stata session, we could reload our estimates:

. estimates use alt

. regress
Source S8 daf MS Number of obs = 74
F(3, 70) = 45.88
Model 1619.71935 3 539.906448 Prob > F = 0.0000
Residual 823.740114 70 11.7677159 R-squared = 0.6629
Adj R-squared = 0.6484
Total 2443.45946 73 33.4720474  Root MSE = 3.4304
mpg | Coefficient Std. err. t P>|t]| [95% conf. intervall
weight -.0067745 .0011665 -5.81 0.000 -.0091011  -.0044479
displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129
foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699
_cons 41.84795  2.350704 17.80  0.000 37.15962 46.53628

There is one important difference between storing results in memory and saving them in a file:
e(sample) is lost. We have not discussed e (sample) yet, but it allows us to identify the observa-
tions among those currently in memory that were used in the estimation. For instance, after estimation,
we could type

. summarize mpg weight displ foreign if e(sample)

and see the summary statistics of the relevant data. We could do that after estimates restore, too.
But we cannot do it after estimates use. Part of the reason is that we might not even have the relevant
data in memory. Even if we do, however, here is what will happen:

. summarize mpg weight displ foreign if e(sample)

Variable ‘ Obs Mean Std. dev. Min Max
mpg 0
weight 0
displacement 0
foreign 0

Stata will just assume that none of the data in memory played a role in obtaining the estimation results.

There is more worth knowing. You could, for instance, type estimates describe to see the com-
mand line that produced the estimates. See [R] estimates.


https://www.stata.com/manuals/restimates.pdf#restimates
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20.6 Specification search tools

Stata’s lasso commands select covariates and fit models for continuous, binary, and count outcomes.
See [LASSO] Lasso intro for an overview of lasso features.

The commands stepwise, fp, and mfp are not really estimation commands but are combined with
estimation commands to assist in specification searches.

stepwise, one of Stata’s prefix commands, provides stepwise estimation. You can use the stepwise
prefix with some, but not all, estimation commands. See [R] stepwise for a list of supported estimation
commands.

fp and mfp are commands to assist you in performing fractional-polynomial functional specification
searches. See [R] fp and [R] mfp for additional information.

20.7 Specifying the estimation subsample

You specify the estimation subsample—the sample to be used in estimation—by specifying the if
exp and in range qualifiers with the estimation command.

Once an estimation command has been run or previous estimates restored, Stata remembers the es-
timation subsample, and you can use the qualifier if e (sample) on the end of other Stata commands.
The term estimation subsample refers to the set of observations used to produce the active estimation
results. That might turn out to be all the observations (as it was in the above example) or only some of
the observations:

. regress mpg weight 5.rep78 if foreign

Source SS df MS Number of obs = 21
F(2, 18) = 10.21
Model 423.317154 2 211.658577 Prob > F = 0.0011
Residual 372.96856 18 20.7204756 R-squared = 0.5316
Adj R-squared = 0.4796
Total 796.285714 20 39.8142857 Root MSE = 4.552
mpg | Coefficient Std. err. t P>t [95% conf. intervall
weight -.0131402 .0029684 -4.43 0.000 -.0193765 -.0069038
rep78
Excellent 5.052676 2.13492 2.37 0.029 .5673764 9.537977
_cons 52.86088 6.540147 8.08 0.000 39.12054 66.60122

. summarize mpg weight 5.rep78 if e(sample)

Variable Obs Mean Std. dev. Min Max

mpg 21 25.28571 6.309856 17 41

weight 21 2263.333 364.7099 1760 3170
rep78

Excellent 21 .4285714 .5070926 0 1

Twenty-one observations were used in the above regression, and we subsequently obtained the means
for those same 21 observations by typing summarize ... if e(sample). Observations were dropped
for two reasons: we specified if foreign when we ran the regression, and there were observations for
which 5. rep78 was missing. The reason does not matter; e (sample) is true if the observation was used
and is false otherwise.


https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/rstepwise.pdf#rstepwise
https://www.stata.com/manuals/rfp.pdf#rfp
https://www.stata.com/manuals/rmfp.pdf#rmfp
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You can use if e(sample) on the end of any Stata command that allows if exp.

Here, Stata has a shorthand command that produces the same results as summarize ... if
e(sample):

. estat summarize, label

Estimation sample regress Number of obs = 21
Variable Mean  Std. dev. Min Max  Label
mpg 25.28571  6.309856 17 41 Mileage (mpg)
weight 2263.333  364.7099 1760 3170  Weight (1bs.)
rep78 Repair record 1978
Excellent .4285714 .5070926 0 1

See [R] estat summarize.

20.8 Specifying the width of confidence intervals
You can specify the width of the confidence intervals for the coefficients by using the 1evel () option
at estimation or when you play back the results.
b Example 4

To obtain narrower, 90% confidence intervals when we fit the model, we type

. regress mpg weight displ, level(90)

Source S8 daf MS Number of obs = 74

F(2, 71) = 66.79

Model 1595.40969 2 T797.704846  Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474  Root MSE = 3.4561

mpg | Coefficient Std. err. t P>|t]| [90% conf. interval]

weight -.0065671 .0011662 -5.63 0.000 -.0085108 -.0046234
displacement .0052808 .0098696 0.54 0.594 -.0111679 .0217294
_cons 40.08452 2.02011 19.84 0.000 36.71781 43.45124

If we subsequently typed regress without arguments, 95% confidence intervals would be reported be-
cause that is the default. If we initially fit the model with 95% confidence intervals, we could later type
regress, level(90) to redisplay results with 90% confidence intervals.

Also, we could type set level 90 to make 90% intervals our default; see [R] level.

Stata allows noninteger confidence intervals between 10.00 and 99.99, with a maximum of two digits
following the decimal point. For instance, we could type


https://www.stata.com/manuals/restatsummarize.pdf#restatsummarize
https://www.stata.com/manuals/rlevel.pdf#rlevel
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. regress mpg weight displ, level(92.5)
Source SS df MS Number of obs 74
F(2, 71) = 66.79
Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared 0.6529
Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561
mpg | Coefficient Std. err. t P>|t]| [92.5% conf. intervall
weight -.0065671 .0011662 -5.63 0.000 -.0086745 -.0044597
displacement .0052808 .0098696 0.54 0.594 -.0125535 .023115
_cons 40.08452 2.02011 19.84 0.000 36.43419 43.73485

20.9 Formatting the coefficient table

You can change the formatting of the coefficient table with the sformat(), pformat(), and
cformat () options. The sformat () option changes the output format of test statistics; pformat ()
changes p-values; and cformat () changes coefficients, standard errors, and confidence limits. We can
reduce the number of decimal places by specifying %f fixed-width formats:

. regress mpg weight displ, cformat(6.3f) sformat(%4.1f) pformat(%4.2f)
Source SS df MS Number of obs 74
F(2, 71) = 66.79
Model 1595.40969 2 797.704846  Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared 0.6529
Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474  Root MSE = 3.4561
mpg | Coefficient Std. err. t P>t [95% conf. intervall
weight -0.007 0.001 -5.6 0.00 -0.009 -0.004
displacement 0.005 0.010 0.5 0.59 -0.014 0.025
_cons 40.085 2.020 19.8 0.00 36.057 44.113

The cformat (%6.3£) option, for example, fixes a width of six characters with three digits to the right
of the decimal point. For more information on formats, see [U] 12.5.1 Numeric formats.

The formatting options may also be specified when replaying results, so you can try different formats
without refitting the model:

. regress, cformat(%7.4f)

Source SS af MS Number of obs 74

F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared 0.6529

Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg | Coefficient Std. err. t P>|t]| [95% conf. intervall

weight -0.0066 0.0012 -5.63  0.000 -0.0089 -0.0042
displacement 0.0053 0.0099 0.54 0.594 -0.0144 0.0250
_cons 40.0845 2.0201 19.84 0.000 36.0565 44.1125



https://www.stata.com/manuals/u12.pdf#u12.5.1Numericformats
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20.10 Obtaining the variance—covariance matrix

Typing estat vce displays the variance—covariance matrix of the estimators in active memory.

b Example 5

In example 2, we typed regress mpg weight displacement. The full variance—covariance matrix
of the estimators can be displayed at any time after estimation:
. estat vce
Covariance matrix of coefficients of regress model

e(V) ‘ weight displace~t _cons

weight 1.360e-06
displacement -.0000103 .00009741
_cons | -.00207455  .01188356  4.0808455
Typing estat vce with the corr option presents this matrix as a correlation matrix:

. estat vce, corr

Correlation matrix of coefficients of regress model

e(V) weight displa~t _cons
weight 1.0000
displacement -0.8949 1.0000
_cons -0.8806 0.5960 1.0000

See [R] estat vce.
Also, Stata’s matrix commands understand that e (V) refers to the matrix:

. matrix list e(V)

symmetric e(V) [3,3]

weight displacement _cons
weight 1.360e-06
displacement -.0000103 .00009741
_cons -.00207455 .01188356 4.0808455

. matrix Vinv = invsym(e(V))
. matrix list Vinv

symmetric Vinv[3,3]

weight displacement _cons
weight 60175851
displacement 4081161.2 292709.46
_cons 18706.732 1222.3339 6.1953911

See [U] 14.5 Accessing matrices created by Stata commands.

20.11 Obtaining predicted values

Our discussion below, although cast in terms of predicted values, applies equally to the other statistics
generated by predict; see [R] predict.

When Stata fits a model, whether it is regression or anything else, it internally stores the results,
including the estimated coefficients and the variable names. The predict command allows you to use
that information.


https://www.stata.com/manuals/u20.pdf#u20.3Replayingpriorresults
https://www.stata.com/manuals/restatvce.pdf#restatvce
https://www.stata.com/manuals/u14.pdf#u14.5AccessingmatricescreatedbyStatacommands
https://www.stata.com/manuals/rpredict.pdf#rpredict
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b Example 6

Let’s perform a linear regression of mpg on weight and the square of weight:

. regress mpg weight c.weight#c.weight

Source SS daf MS Number of obs = 74
F(2, 71) = 72.80
Model 1642.52197 2 821.260986 Prob > F = 0.0000
Residual 800.937487 71 11.2808097 R-squared = 0.6722
Adj R-squared = 0.6630
Total 2443.45946 73 33.4720474 Root MSE = 3.3587
mpg | Coefficient Std. err. t P>|t| [95% conf. intervall
weight -.0141581 .0038835 -3.65 0.001 -.0219016  -.0064145
c.weight#
c.weight 1.32e-06  6.26e-07 2.12  0.038 7.67e-08 2.57e-06
_cons 51.18308 5.767884 8.87 0.000 39.68225 62.68392

After the regression, predict is defined to be
—0.0141581weight + 1.32 x 10 ®weight? + 51.18308

(Actually, it is more precise because the coefficients are internally stored at much higher precision than
shown in the output.) Thus, we can create a new variable—Ilet’s call it £ itted—equal to the prediction
by typing predict fitted and then use scatter to display the fitted and actual values separately for
domestic and foreign automobiles:

. predict fitted

(option xb assumed; fitted values)

. scatter mpg fitted weight, by(foreign, total style(altleg)) c(. 1) m(o i) sort

Domestic Foreign
40 .
T T T T
2,000 3,000 4,000 5,000
Total
40 3
T T T T
2,000 3,000 4,000 5,000
Weight (Ibs.)
¢ Mileage (mpg) —— Fitted values

Graphs by Car origin

predict can calculate much more than just predicted values. For predict after linear regression,
predict can calculate residuals, standardized residuals, Studentized residuals, influence statistics, and
more. In any case, we specify what is to be calculated via an option, so if we wanted the residuals stored
in new variable r, we would type

. predict r, resid
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The options that may be specified following predict vary according to the estimation command previ-
ously used; the predict options are documented along with the estimation command. For instance, to
discover all the things predict can do following regress, see [R] regress.

d

20.11.1 Using predict

The use of predict is not limited to linear regression; it can be used after any estimation command.

b Example 7

You fit a logistic regression model of whether a car is manufactured outside the United States on the
basis of its weight and mileage rating using either the logistic or the logit command; see [R] logistic
and [R] logit. We will use logit.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)

. logit foreign weight mpg

Iteration 0: Log likelihood = -45.03321
Iteration 1: Log likelihood = -29.238536
Iteration 2: Log likelihood = -27.244139
Iteration 3: Log likelihood = -27.175277
Iteration 4: Log likelihood = -27.175156
Iteration 5: Log likelihood = -27.175156

Logistic regression Number of obs = 74
LR chi2(2) = 35.72

Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966
foreign | Coefficient Std. err. z P>|z]| [95% conf. intervall
weight -.0039067 .0010116 -3.86  0.000 -.0058894 -.001924

mpg -.1685869 .0919175 -1.83 0.067 -.3487418 .011568

_cons 13.70837  4.518709 3.03 0.002 4.851859 22.56487

After logit, predict without options calculates the probability of a positive outcome (we learned
that by looking at [R] logit). To obtain the predicted probabilities that each car is manufactured outside
the United States, we type

. predict probhat
(option pr assumed; Pr(foreign))
. summarize probhat

Variable ‘ Obs Mean Std. dev. Min Max

probhat ‘ 74 2972973 .3052979 .000729  .8980594
. list make mpg weight foreign probhat in 1/5

make mpg weight foreign probhat
AMC Concord 22 2,930 Domestic .1904363
AMC Pacer 17 3,350 Domestic .0957767
AMC Spirit 22 2,640 Domestic .4220815

Buick Century 20 3,250 Domestic .0862625
Buick Electra 15 4,080 Domestic .0084948

[S2 =NV SR
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[U] 20 Estimation and postestimation commands 17

20.11.2 Making in-sample predictions

predict does not retrieve a vector of prerecorded values—it calculates the predictions on the basis
of the recorded coefficients and the data currently in memory. In the above examples, when we typed
things like

. predict probhat

predict filled in the prediction everywhere that it could be calculated.

We sometimes have more data in memory than were used by the estimation command, either because
we explicitly ignored some of the observations by specifying an if exp with the estimation command or
because there are missing values. In such cases, if we want to restrict the calculation to the estimation
subsample, we would do that in the usual way by adding if e (sample) to the end of the command:

. predict probhat if e(sample)

20.11.3 Making out-of-sample predictions

Because predict makes its calculations on the basis of the recorded coefficients and the data in
memory, predict can do more than calculate predicted values for the data on which the estimation took
place—it can make out-of-sample predictions, as well.

If you fit your model on a subset of the observations, you could then predict the outcome for all the
observations:

. logit foreign weight mpg if rep78 > 3
. predict pall

If you do not specify if e(sample) at the end of the predict command, predict calculates the pre-
dictions for all observations possible.

In fact, because predict works from the active estimation results, you can use predict with any
dataset that contains the necessary variables.

b Example 8

Continuing with our previous logit example, assume that we have a second dataset containing the
mpg and weight of a different sample of cars. We have just fit your model and now continue:
. use otherdat, clear
(Different cars)

. predict probhat Stata remembers the previous model
(option pr assumed; Pr(foreign))

. summarize probhat foreign

Variable ‘ Obs Mean Std. dev. Min Max
probhat 12 .2505068 .3187104 .0084948 .8920776
foreign 12 .1666667 .3892495 0 1
N
b Example 9

We can obtain out-of-sample predictions in many ways. Above, we estimated on one dataset and then
used another. If our first dataset had contained both sets of cars, marked, say, by the variable difcars
being 0 if from the first sample and 1 if from the second, we could type
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. logit foreign weight mpg if difcars==0
same output as above appears

. predict probhat
(option pr assumed; Pr(foreign))

. summarize probhat foreign if difcars==
same output as directly above appears

If we just had a few additional cars, we could even input them after estimation. Assume that our data
once again contain only the first sample of cars, and assume that we are interested in an additional sample
of only two cars; we could type

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)
. keep make mpg weight foreign

. logit foreign weight mpg
same output as above appears

. input
make mpg weight  foreign

75. "Merc. Zephyr" 20 2830 0 we type in our new data
76. "VW Dasher" 23 2160 1
77. end
. predict probhat obtain all the predictions
(option pr assumed; Pr(foreign))
. list in -2/1

make mpg  weight foreign probhat

75. Merc. Zephyr 20 2,830 Domestic .3275397
76. VW Dasher 23 2,160 Foreign .8009743

d

20.11.4 Obtaining standard errors, tests, and confidence intervals for predictions

When you use predict, you create, for each observation in the prediction sample, a statistic that is
a function of the data and the estimated model parameters. You also could have generated your own
customized predictions by using generate. In either case, to get standard errors, Wald tests, and con-
fidence intervals for your predictions, use predictnl. For example, if we want the standard errors for
our predicted probabilities, we could type

. drop probhat
. predictnl probhat = predict(), se(phat_se)

. list in 1/5
make mpg  weight foreign probhat phat_se
1. AMC Concord 22 2,930 Domestic .1904363 .0658387
2. AMC Pacer 17 3,350 Domestic .0957767 .0536297
3. AMC Spirit 22 2,640 Domestic .4220815 .0892845
4. Buick Century 20 3,250 Domestic .0862625 .0461928
5. Buick Electra 15 4,080 Domestic .0084948 .0093079
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Comparing this output with our previous listing of the first five predicted probabilities, you will notice
that the output is identical except that we now have an additional variable, phat _se, which contains the
estimated standard error for each predicted probability.

We first had to drop probhat because predictnl will regenerate it. Note also the use of predict ()
within predictnl—it specified that we wanted to generate a point estimate (and standard error) for the
default prediction after logit; see [R] predictnl for more details.

20.12 Accessing estimated coefficients

You can access coefficients and standard errors after estimation by referring to _b[name] and
_se[name]; see [U] 13.5 Accessing coefficients and standard errors.

b Example 10

Let’s return to linear regression. We are doing a study of earnings of men and women at a particular
company. In addition to each person’s earnings, we have information on their educational attainment and
tenure with the company. We type the following:

. regress lnearn ed tenure i.female female#(c.ed c.tenure)
(output omitted)

If you are not familiar with the # notation, see [U] 11.4.3 Factor variables.

We now wish to predict everyone’s income as if they were male and then compare these as-if earnings
with the actual earnings:

. generate asif = _b[_cons] + _bled]*ed + _b[tenure]*tenure

b Example 11

We are analyzing the mileage of automobiles and are using a slightly more sophisticated model than
any we have used so far. As we have previously, we will fit a linear regression model of mpg on weight
and the square of weight, but we also add the interaction of foreign with weight, the car’s gear ratio
(gear_ratio), and foreign interacted with gear _ratio. We will use factor-variable notation to create
the squared term and the interactions; see [U] 11.4.3 Factor variables.


https://www.stata.com/manuals/rpredictnl.pdf#rpredictnl
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. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)

. regress mpg weight c.weight#c.weight i.foreign#c.weight gear_ratio
> i.foreign#c.gear_ratio

Source SS df MS Number of obs = 74
F(5, 68) = 33.44
Model 1737.05293 5 347.410585 Prob > F = 0.0000
Residual 706.406534 68 10.3883314 R-squared = 0.7109
Adj R-squared = 0.6896
Total 2443.45946 73 33.4720474 Root MSE = 3.2231
mpg | Coefficient Std. err. t P>t [95% conf. intervall
weight -.0118517  .0045136 -2.63 0.011 -.0208584 -.002845
c.weight#
c.weight 9.81e-07  7.04e-07 1.39 0.168 -4.25e-07 2.39e-06
foreign#
c.weight
Foreign -.0032241 .0015577 -2.07 0.042 -.0063326 -.0001157
gear_ratio 1.159741  1.553418 0.75 0.458 -1.940057 4.259539
foreign#
c.gear_ratio
Foreign 1.597462  1.205313 1.33 0.189 -.8077036 4.002627
_cons 44.61644  8.387943 5.32  0.000 27.87856 61.35432

If you are not experienced in both regression technology and automobile technology, you may find it
difficult to interpret this regression. Putting aside issues of statistical significance, we find that mileage
decreases with a car’s weight but increases with the square of weight; decreases even more rapidly with
weight for foreign cars; increases with higher gear ratio; and increases even more rapidly with higher
gear ratio in foreign cars.

Thus, do foreign cars yield better or worse gas mileage? Results are mixed. As the foreign cars’ weight
increases, they do more poorly in relation to domestic cars, but they do better at higher gear ratios. One
way to compare the results is to predict what mileage foreign cars would have if they were manufactured
domestically. The regression provides all the information necessary for making that calculation. Mileage
for domestic cars is estimated to be

—0.012weight + 9.81 x 10~ " weight? + 1.160 gear_ratio + 44.6

We can use that equation to predict the mileage of foreign cars and then compare it with the true outcome.
The _b[] function simplifies reference to the estimated coefficients. We can type

. generate asif=_b[weight]*weight + _b[c.weight#c.weight]*c.weight#c.weight +
> _blgear_ratio]*gear_ratio + _b[_cons]

_b[weight] refers to the estimated coefficient on weight, _b[c.weight#c.weight] to the estimated
coefficient on c.weight#c.weight, and so on.
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We might now ask how the actual mileage of a Honda compares with the asif prediction:

. list make asif mpg if strpos(make,"Honda")

make asif mpg

61. Honda Accord 26.52597 25
62. Honda Civic 30.62202 28

Notice the way we constructed our if clause to select Hondas. strpos() is the string function that
returns the location in the first string where the second string is found or, if the second string does not
occur in the first, returns 0. Thus any recorded make that contains the string “Honda” anywhere in it
would be listed; see [FN] String functions.

We find that both Honda models yield slightly lower gas mileage than the asif domestic car—based
prediction. (We do not endorse this model as a complete model of the determinants of mileage, nor do
we single out Honda for any special scorn. In fact, please note that the observed values are within the
root mean squared error of the average prediction.)

We might wish to compare the overall average mpg and the asif prediction over all foreign cars in
the data:

. summarize mpg asif if foreign

Variable ‘ Obs Mean Std. dev. Min Max
mpg 22 24.77273 6.611187 14 41
asif 22 26.67124 3.142912 19.70466 30.62202

We find that, on average, foreign cars yield slightly lower mileage than our asif prediction. This might
lead us to ask if any foreign cars do better than the asif prediction:

. list make asif mpg if foreign & mpg>asif, sep(0)

make asif mpg
55. | BMW 3201 24.31697 25
57. | Datsun 210 28.96818 35
63. | Mazda GLC 29.32015 30
66. Subaru 28.85993 35
68. Toyota Corolla 27.01144 31
71. | VW Diesel 28.90355 41

‘We find six such automobiles.


https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstrpos()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctions
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20.13 Performing hypothesis tests on the coefficients

20.13.1 Linear tests

After estimation, test is used to perform tests of linear hypotheses on the basis of the vari-
ance—covariance matrix of the estimators (Wald tests).

b Example 12

Using the automobile data, we perform the following regression:
. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)

. generate weightsq=weight™2

. regress mpg weight weightsq foreign

Source SS df MS Number of obs = 74
F(3, 70) = 52.25

Model 1689.156372 3 563.05124 Prob > F = 0.0000
Residual 754.30574 70 10.7757963  R-squared = 0.6913
Adj R-squared = 0.6781

Total 2443.45946 73 33.4720474  Root MSE = 3.2827
mpg | Coefficient Std. err. t P>t [95% conf. intervall
weight -.0165729 .0039692 -4.18 0.000 -.0244892 -.0086567
weightsq 1.59e-06 6.25e-07 2.55 0.013 3.45e-07 2.84e-06
foreign -2.2035 1.059246 -2.08 0.041 -4.3161 -.0909002
_cons 56.53884 6.197383 9.12 0.000 44.17855 68.89913

(Note: test has many syntaxes and features, so do not use this example as an excuse for not reading
[R] test.) We can use the test command to calculate the joint significance of weight and weightsq:

. test weight weightsq
(1) weight =0
( 2) weightsq = 0

F( 2, 70) 60.83
Prob > F = 0.0000

We are not limited to testing whether the coefficients are 0. We can test whether the coefficient on
foreign is —2 by typing

. test foreign = -2
(1) foreign = -2
FC 1, 70) = 0.04
Prob > F = 0.8482

We can even test more complicated hypotheses because test can perform basic algebra. Here is an
absurd hypothesis:

. test 2+(weight+weightsq)=-3*(foreign-(weight-weightsq))
(1) - weight + B*weightsq + 3*foreign = 0

FC 1, 70) = 4.31
Prob > F = 0.0416


https://www.stata.com/manuals/rtest.pdf#rtest
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test simplified the algebra of our hypothesis and then presented the test results. We can also use test’s
accumulate option to combine this test with another test:

. test foreign+weight=0, accum
(1) - weight + b*weightsq + 3*foreign = 0
( 2) weight + foreign = 0
F(C 2, 70) 9.12
Prob > F 0.0003

There are limitations. test can test only linear hypotheses. If we attempt to test a nonlinear hypoth-
esis, test will tell us that it is not possible:
. test weight/foreign=0
not possible with test
r(131);

Testing nonlinear hypotheses is discussed in [U] 20.13.4 Nonlinear Wald tests below.

20.13.2 Using test

test bases its results on the estimated variance—covariance matrix of the estimators (that is, it per-
forms a Wald test), so it can be used after any estimation command. For maximum likelihood estimation,
test’s results for a single variable are generally equivalent to the asymptotic z statistic presented in the
coefficient table for that variable because test bases its results on the information matrix.

b Example 13

Let’s examine the repair records of the cars in our automobile data as rated by Consumer Reports:

. tabulate rep78 foreign

Repair

record Car origin
1978 Domestic Foreign Total
Poor 2 0 2
Fair 8 0 8
Average 27 3 30
Good 9 9 18
Excellent 2 9 11
Total 48 21 69

The values are coded 1-5, corresponding to Poor, Fair, Average, Good, and Excellent. We will fit this
variable by using a maximum-likelihood ordered logit model (the nolog option suppresses the iteration
log, saving some space):


https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(131)
https://www.stata.com/manuals/u20.pdf#u20.13.4NonlinearWaldtests
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. ologit rep78 price foreign weight weightsq displ, nolog

Ordered logistic regression Number of obs = 69
LR chi2(5) = 33.12

Prob > chi2 = 0.0000

Log likelihood = -77.133082 Pseudo R2 = 0.1767
rep78 | Coefficient Std. err. z P>|z]| [95% conf. intervall

price -.000034  .0001188 -0.29 0.775 -.0002669 .000199
foreign 2.685647  .9320404 2.88 0.004 .8588817 4.512413
weight -.0037447  .0025609 -1.46 0.144 -.0087639 .0012745
weightsq 7.87e-07  4.50e-07 1.75 0.080 -9.43e-08 1.67e-06
displacement -.0108919 .0076805 -1.42 0.156 -.0259455 .0041617
/cutl -9.417196  4.298202 -17.84152 -.992874

/cut2 -7.581864  4.234091 -15.88053 .7168028

/cut3 -4.82209 4.14768 -12.95139 3.307214

/cutd -2.793441  4.156221 -10.93948 5.352602

We now wonder whether all our variables other than foreign are jointly significant. We test the
hypothesis just as we would after linear regression:

. test weight weightsq displ price

(1) [rep78lweight = 0

( 2) [rep78lweightsq = 0

( 3) [rep78ldisplacement = 0
( 4) [rep78]price =0

chi2( 4) = 3.63
Prob > chi2 = 0.4590

You will have to decide whether you want to perform tests on the basis of the information matrix instead
of constraining the equation, reestimating it, and then calculating the likelihood-ratio test. To compare
this with the results performed by a likelihood-ratio test, see [U] 20.13.3 Likelihood-ratio tests below.
Results will differ little.

q

20.13.3 Likelihood-ratio tests

After maximum likelihood estimation, you can obtain likelihood-ratio tests by fitting both the un-
constrained and the constrained models, storing the results using estimates store, and then running
1rtest. See [R] Irtest for the full details.

b Example 14

In [U] 20.13.2 Using test above, we fit an ordered logit on rep78 and then tested the significance of
all the explanatory variables except foreign.

To obtain the likelihood-ratio test, sometime after fitting the full model, we type estimates store
full_model_name, where full_model_name is just a label that we assign to these results.

. ologit rep78 price foreign weight weightsq displ
(output omitted)

. estimates store myfullmodel

This command saves the current model results with the name myfullmodel.


https://www.stata.com/manuals/u20.pdf#u20.13.3Likelihood-ratiotests
https://www.stata.com/manuals/rlrtest.pdf#rlrtest
https://www.stata.com/manuals/u20.pdf#u20.13.2Usingtest
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Next, we fit the constrained model. After that, typing ‘1rtest myfullmodel .’ compares the current
model with the model we saved:

. ologit rep78 foreign

Iteration 0: Log likelihood = -93.692061
Iteration 1: Log likelihood = -79.696089
Iteration 2: Log likelihood = -79.034005
Iteration 3: Log likelihood = -79.029244
Iteration 4: Log likelihood = -79.029243

Ordered logistic regression Number of obs = 69
LR chi2(1) = 29.33

Prob > chi2 = 0.0000

Log likelihood = -79.029243 Pseudo R2 = 0.1565
rep78 | Coefficient Std. err. z P>|z]| [95% conf. intervall
foreign 2.98155 .6203644 4.81 0.000 1.765658 4.197442
/cutl -3.158382 . 7224269 -4.574313  -1.742452

/cut2 -1.362642 .3557343 -2.059868 -.6654154

/cut3 1.232161 .3431227 .5596532 1.90467

/cut4d 3.246209 .5556657 2.157124 4.335293

. lrtest myfullmodel .
Likelihood-ratio test
Assumption: . nested within myfullmodel

LR chi2(4) 3.79
Prob > chi2 = 0.4348

When we tested the same constraint with test (which performed a Wald test), we obtained a x? of 3.63
and a significance level of 0.4590. We used . (the dot) to specify the results in active memory, although
we could have stored them with estimates store and referred to them by name instead. Also, the order
in which you specify the two models to 1rtest doesn’t matter; lLrtest is smart enough to know the full
model from the constrained model.
N
Two other postestimation commands work in the same way as lrtest, meaning that they accept
names of stored estimation results as their input: hausman for performing Hausman specification tests
and suest for seemingly unrelated estimation. We do not cover these commands here; see [R] hausman
and [R] suest for more details.

20.13.4 Nonlinear Wald tests

testnl can be used to test nonlinear hypotheses about the parameters of the active estimation re-
sults. testnl, like test, bases its results on the variance—covariance matrix of the estimators (that is, it
performs a Wald test), so it can be used after any estimation command; see [R] testnl.

b Example 15
We fit the model

. regress price mpg weight foreign
(output omitted)


https://www.stata.com/manuals/rhausman.pdf#rhausman
https://www.stata.com/manuals/rsuest.pdf#rsuest
https://www.stata.com/manuals/rtestnl.pdf#rtestnl
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and then type

. testnl (38*_blmpgl~2 = _blforeign]) (_blmpgl/_blweight]=4)

(1) 38*_bl[mpgl~2 = _bl[foreign]
(2) _blmpgl/_blweight] = 4
chi2(2) = 0.04
Prob > chi2 = 0.9806

We performed this test on linear regression estimates, but tests of this type could be performed after any
estimation command.
N
A concept of a p-value is fundamental to classical hypothesis testing; see Wasserstein and Lazar (2016)
for a useful discussion about its interpretation and use in practice. Also see [U] 27.34 Bayesian analysis
for an alternative to classical hypothesis testing.

20.14 Obtaining linear combinations of parameters

lincom computes point estimates, standard errors, ¢ or z statistics, p-values, and confidence intervals
for a linear combination of parameters after any estimation command. Results can optionally be displayed
as odds ratios, incidence-rate ratios, or relative-risk ratios.

b Example 16

We fit a linear regression:

. use https://www.stata-press.com/data/r19/regress, clear

. regress y x1 x2 x3

Source SS daf MS Number of obs = 148
F(3, 144) 96.12

Model 3259.3561 3 1086.45203 Prob > F = 0.0000
Residual 1627.56282 144 11.3025196 R-squared = 0.6670
Adj R-squared = 0.6600

Total 4886.91892 147 33.2443464  Root MSE = 3.3619
y | Coefficient Std. err. t P>|t| [95% conf. intervall

x1 1.457113 1.07461 1.36  0.177 -.666934 3.581161

x2 2.221682 .8610358 2.58 0.011 .5197797 3.923583

x3 -.006139 .0005543 -11.08  0.000 -.0072345 -.0050435
_cons 36.10135  4.382693 8.24 0.000 27.43863 44.76407

Suppose that we want to see the difference of the coefficients of x2 and x1. We type

. lincom x2 - x1

(1) -x1+x2=0
y | Coefficient Std. err. t P>|t| [95% conf. intervall
(@D) . 7645682 .9950282 0.77 0.444 -1.20218 2.731316

lincom is handy for computing the odds ratio of one covariate group relative to another.


https://www.stata.com/manuals/u27.pdf#u27.34Bayesiananalysis
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b Example 17

We estimate the parameters of a logistic model of low birthweight:

. use https://www.stata-press.com/data/r19/1bw3
(Hosmer & Lemeshow data)

. logit low age lwd i.race smoke ptd ht ui

Iteration 0: Log likelihood = -117.336
Iteration 1: Log likelihood = -99.3982
Iteration 2: Log likelihood = -98.780418
Iteration 3: Log likelihood = -98.777998

Iteration 4: Log likelihood = -98.777998

Logistic regression Number of obs = 189
LR chi2(8) = 37.12
Prob > chi2 = 0.0000
Log likelihood = -98.777998 Pseudo R2 = 0.1582
low | Coefficient Std. err. z P>|z| [95% conf. intervall
age -.0464796 .0373888 -1.24 0.214 -.1197603 .0268011
lwd .8420615 .4055338 2.08 0.038 .0472299 1.636893
race
Black 1.073456 .5150753 2.08 0.037 .0639273 2.082985
Other .815367 4452979 1.83 0.067 -.0574008 1.688135
smoke .8071996 .404446 2.00 0.046 .0145001 1.599899
ptd 1.281678 .4621157 2.77 0.006 .3759478 2.187408
ht 1.435227 .6482699 2.21  0.027 .1646414 2.705813
ui .6576256 .4666192 1.41 0.159 -.2569313 1.572182
_cons -1.216781 .9556797 -1.27 0.203 -3.089878 .656317

Level 1 of race designates white, level 2 designates black, and level 3 designates other.
If we want to obtain the odds ratio for black smokers relative to white nonsmokers (the reference
group), we type

. lincom 2.race + smoke, or

(1) [lowl]2.race + [low]smoke = 0

low | Odds ratio Std. err. z P>zl [95% conf. intervall

(¢D) 6.557805  4.744692 2.60 0.009 1.588176 27.07811

lincom computed exp (53, pee + 3 = 6.56.

Mnoke)

20.15 Obtaining nonlinear combinations of parameters

lincom is limited to estimating linear combinations of coefficients, for example, 2.race + smoke,
or exponentiated linear combinations, as in the above. For general nonlinear combinations, use nlcom.
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b Example 18

Continuing our previous example, suppose that we want the ratio of the coefficients (and standard
errors, Wald test, confidence interval, etc.) of blacks and races other than white and black:

. nlcom _b[2.race]/_b[3.race]
_nl_1: _b[2.racel/_b[3.race]

low | Coefficient Std. err. z P>|z| [95% conf. intervall]

_nl_1 1.316531 . 7359262 1.79 0.074 -.1258574 2.75892

The Wald test given is that of the null hypothesis that the nonlinear combination is 0 versus the two-sided
alternative—this is probably not informative for a ratio. If we would instead like to test whether this ratio
is 1, we can rerun nlcom, this time subtracting 1 from our ratio estimate.

. nlcom _b[2.race]l/_b[3.race]l - 1
_nl_1: _b[2.race]/_b[3.race] - 1

low | Coefficient Std. err. z P>|z| [95% conf. intervall]

_nl_1 .3165314 . 7359262 0.43 0.667 -1.125857 1.75892

We can interpret this as not much evidence that the ratio minus 1 is different from 0, meaning that we
cannot reject the null hypothesis that the ratio equals 1.

When using nlcom, we needed to refer to the model coefficients by their “proper” names, for example,
_b[2.racel, and not by the shorthand 2.race, such as when using lincom. If we had typed

. nlcom 2.race/3.race
Stata would have reported an error.

If you have difficulty determining what to type for a coefficient when using 1incom or nlcom, replay
your results by using the coeflegend option. Here are the results for our current estimates:

. logit, coeflegend

Logistic regression Number of obs = 189
LR chi2(8) = 37.12
Prob > chi2 = 0.0000
Log likelihood = -98.777998 Pseudo R2 = 0.1582
low | Coefficient Legend
age -.0464796 _blagel
lwd .8420615 _b[1lwd]
race
Black 1.073456 _b[2.race]
Other .815367 _b[3.racel
smoke .8071996 _Dbl[smoke]
ptd 1.281678 _blptd]
ht 1.435227 _blht]
ui .6576256 _b[ui]
_cons -1.216781 _b[_cons]
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20.16 Obtaining marginal means, adjusted predictions, and predic-
tive margins

predict uses the current estimation results (the coefficients and the VCE) to estimate the value of
statistics for observations in the data. 1incom and nlcom use the current estimation results to estimate a
specific linear or nonlinear expression of the coefficients. The margins command combines aspects of
both and estimates margins of responses.

margins answers the question “What does my model have to say about such-and-such”, where such-
and-such might be

e my estimation sample or another sample

e a sample with the values of some covariates fixed

e a sample evaluated at each level of a treatment

e a population represented by a complex survey sample

e someone who looks like the fifth person in my sample

e someone who looks like the mean of the covariates in my sample

e someone who looks like the median of the covariates in my sample

e someone who looks like the 25th percentile of the covariates in my sample
e someone who looks like some other function of the covariates in my sample
e a standardized population

e a balanced experimental design

e any combination of the above

e any comparison of the above

margins answers these questions either conditionally on fixed values of all covariates or averaged
over the observations in a sample. It answers these questions about almost any predictions or any other
response that you can calculate as a function of your estimated parameters—Ilinear responses, probabil-
ities, hazards, survival times, odds ratios, risk differences, etc. You can even make multiple predictions
at the same time when appropriate. For example, you may want the predicted probabilities and the linear
prediction after logit.

margins answers these questions in terms of the response given covariate levels, or in terms of the
change in the response for a change in levels (also known as marginal effects). It answers these ques-
tions providing standard errors, test statistics, and confidence intervals; and those statistics can take the
covariates as given or adjust for sampling, also known as predictive margins and survey statistics.

A margin is a statistic based on a response for a fitted model calculated over a dataset in which some
of or all the covariates are fixed at values different from what they really are.

Margins go by different names in different fields, and they can estimate many interesting statistics
related to a fitted model. We discuss some common uses below; see [R] margins for more applications.


https://www.stata.com/manuals/rmargins.pdf#rmargins
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20.16.1 Obtaining estimated marginal means

A classic application of margins is to estimate the expected marginal means from a linear estimator
as though the design for the covariates were balanced—assuming an equal number of observations for
each unique combination of levels for the factor-variable covariates. These means have a long history in
the study of ANOVA and MANOVA but are of limited use with nonexperimental data. For a discussion, see
Obtaining margins as though the data were balanced in [R] margins and example 4 in [R] anova.

Estimated marginal means are also called least-squares means.

Consider an analysis of variance of the change in systolic blood pressure as determined by one of four
drug treatments and adjusting for the patient’s disease (Afifi and Azen 1979).
. use https://www.stata-press.com/data/r19/systolic
(Systolic blood pressure data)

. tabulate drug disease

Patient’s disease
Drug used 1 2 3 Total
1 6 4 5 15
2 5 4 6 15
3 3 5 4 12
4 5 6 5 16
Total 19 19 20 58
. anova systolic drug##disease
Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259
Source | Partial SS df MS F Prob>F
Model 4259.3385 11 387.21259 3.51 0.0013
drug 2997.4719 3 999.15729 9.05 0.0001
disease 415.87305 2 207.93652 1.88 0.1637
drug#disease 707.26626 6 117.87771 1.07 0.3958
Residual 5080.8167 46  110.45254
Total 9340.1552 57  163.86237



https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesObtainingmarginsasthoughthedatawerebalanced
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex_anova_systolic
https://www.stata.com/manuals/ranova.pdf#ranova
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Despite having randomized on drug, we see in the tabulation that our data are not balanced—for
example, 12 patients were administered drug 3, whereas 16 were administered drug 4. The diseases are
also not balanced across drugs. To estimate the marginal mean for each level of drug while treating the
design as though it were balanced, we type

. margins drug, asbalanced
Adjusted predictions Number of obs = 58

Expression: Linear prediction, predict()
At: disease (asbalanced)

Delta-method
Margin std. err. t P>|t]| [95% conf. interval]
drug
1 25.99444 2.751008 9.45 0.000 20.45695 31.53194
2 26.55556  2.751008 9.65 0.000 21.01806 32.09305
3 9.744444  3.100558 3.14 0.003 3.503344 15.98554
4 13.54444 2.637123 5.14 0.000 8.236191 18.8527

Assuming everyone in the sample were treated with drug 4 and that the diseases were equally dis-
tributed across the drug treatments, the expected mean change in pressure resulting from treatment with
drug 4 is 13.54. Because we are treating the data as balanced, we could also say that 13.54 is the expected
mean change resulting from drug 4 for any sample where an equal number of patients has each of the
three diseases.

If we want an estimate of the mean that uses the distribution of diseases observed in the sample, we
would remove the asbalanced option:

. margins drug
Predictive margins Number of obs = 58

Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t]| [95% conf. intervall
drug
1 25.89799  2.750533 9.42  0.000 20.36145 31.43452
2 26.41092  2.742762 9.63 0.000 20.89003 31.93181
3 9.722989 3.099185 3.14 0.003 3.484652 15.96132
4 13.55575  2.640602 5.13 0.000 8.24049 18.871

We can now say that a pressure change of 13.56 is expected if everyone in the sample is given drug 4
and the distribution of diseases is as observed in the sample.

The second set of margins are not usually called estimated marginal means because they do not impose
a balanced design when estimating the mean. They are adjusted predictions that just happen to be means
because the response is linear.

Neither of these values is the average pressure change for those taking drug 4 in our sample because
margins treats everyone in the sample as having taken drug 4. Treating everyone as though they have
taken each drug is what makes the means comparable. We are essentially standardizing on the values of
all the other covariates in our model (in this example, just disease).

To obtain the observed mean for those taking drug 4, we must tell margins to treat drug 4 as its
sample, which we do with the over () option.
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. summarize systolic if drug==
Variable ‘ Obs Mean Std. dev. Min Max

systolic 16 13.5 9.323805 -5 27

. margins, over(drug)

Predictive margins Number of obs = 58
Expression: Linear prediction, predict()
Over: drug
Delta-method
Margin  std. err. t P>|t]| [95% conf. intervall
drug
1 26.06667  2.713577 9.61 0.000 20.60452 31.52881
2 25.53333  2.713577 9.41 0.000 20.07119 30.99548
3 8.75 3.033872 2.88 0.006 2.643133 14.85687
4 13.5 2.62741 5.14  0.000 8.211298 18.7887

The margin in the last line of the table matches the mean from summarize.

For many questions, we prefer one of the first two estimates of margins to the last one. If we compare
drugs 3 and 4 from the last results, the 8.75 and 13.5 include both the effect from the drug and the differing
distribution of diseases among patients taking drug 3 and drug 4 in our sample. Our first set of margins,
those from margins drug, asbalanced, assumed that for both drug 3 and drug 4, we had an equal
number of patients with each disease. Our second set of margins, those from margins drug, assumed
that for both drug 3 and drug 4, we wanted the observed distribution of patients from the whole sample.
By assuming a common distribution of diseases across the drugs, our first two sets of margins remove
the effect of disease when we compare across drugs.

20.16.2 Obtaining adjusted predictions

We will use the term adjusted predictions to refer to margins that are evaluated at fixed values for all
covariates. The margins command has a great deal of flexibility in letting you choose what those fixed
values are. Consider a model of high blood pressure as a function of sex, age group, and body mass index
(BMI, a common measure of weight relative to height; variable bmi). We will allow the effect of age to
differ for males and females by interacting the age group and sex variables. We will also allow the effect
of BMI to differ across all combinations of age group and sex by specifying a full factorial model.
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. use https://www.stata-press.com/data/r19/nhanes2
. logistic highbp sex##agegrp##c.bmi

Logistic regression Number of obs = 10,351
LR chi2(23) = 2521.83
Prob > chi2 = 0.0000
Log likelihood = -5789.851 Pseudo R2 = 0.1788
highbp | Odds ratio Std. err. z P>|z| [95% conf. intervall
sex
Female .4012124 .2695666 -1.36 0.174 .107515 1.497199
agegrp
30-39 .8124869 .6162489 -0.27 0.784 .1837399 3.592768
40-49 1.346976 1.101181 0.36 0.716 .2713222 6.687051
50-59 5.415758  4.254136 2.15 0.032 1.161532 25.2515
60-69 16.31623  10.09529 4.51 0.000 4.852423 54.86321
70+ 161.2491  130.7332 6.27  0.000 32.9142 789.9717
sex#agegrp
Female#30-39 1.441256 1.44721 0.36 0.716 .2013834 10.31475
Female#40-49 6.29497  6.575021 1.76 0.078 .8126879 48.75998
Female#50-59 4.377185 4.43183 1.46 0.145 .6016818 31.84366
Female#60-69 1.790026  1.502447 0.69 0.488 .3454684 9.27492
Female#70+ .1958758 .2165763 -1.47 0.140 .0224297 1.710562
bmi 1.18539 .0221872 9.09 0.000 1.142692 1.229684
sex#c.bmi
Female .9809543 .0250973 -0.75 0.452 .9329775 1.031398

agegrp#c.bmi

30-39 1.021812 .0299468 0.74 0.462 .9647712 1.082225

40-49 1.00982 .0315328 0.31 0.754 .9498702 1.073554

50-59 .979291 .0298836 -0.69 0.493 .9224373 1.039649

60-69 .9413883 .0228342 -2.49 0.013 .8976813 .9872234

70+ .8738056 .0278416 -4.23  0.000 .8209061 .930114

sex#agegrp#

c.bmi

Female#30-39 1.000676 .0377954 0.02 0.986 .9292736 1.077564

Female#40-49 .9702656 .0382854 -0.76  0.444 .8980559 1.048281

Female#50-59 .9852929 .0380345 -0.38 0.701 .9134969 1.062732

Female#60-69 1.028896 .0330473 0.89 0.375 .9661212 1.09575

Female#70+ 1.12236 .0480541 2.70  0.007 1.032019 1.220609

_cons .0052191 .0024787 -11.07  0.000 .0020575 .0132388

Note: _coms estimates baseline odds.
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We can evaluate the probability of having high blood pressure for each age group while holding the
proportion of males and females and the value of bmi to its average by specifying the covariate agegrp
to margins and including the atmeans option:

. margins agegrp, atmeans

Adjusted predictions Number of obs = 10,351
Model VCE: 0IM

Expression: Pr(highbp), predict()

At: 1.sex = .4748333 (mean)

2.sex = .5251667 (mean)

bmi = 25.5376 (mean)

Delta-method
Margin std. err. z P>|z]| [95% conf. intervall
agegrp

20-29 .1611491 .0091135 17.68  0.000 .1432869 .1790113
30-39 .2487466 .0121649 20.45 0.000 .2249038 .2725893
40-49 .3679695 .0144456 25.47 0.000 .3396567 .3962823
50-59 .5204507 .0146489 35.563  0.000 .4917394 .549162
60-69 .5714605 .0095866 59.61 0.000 .5526711 .5902499
70+ .6637982 .0154566 42.95  0.000 .6335038 .6940927

The header of the table showed us the mean values of each covariate. These are the values at which
the probabilities were evaluated. The mean values for the levels of agegrp appear in the header even
though they were not used. agegrp assumed the values 1, 2, 3, 4, 5, and 6, as shown in the table. The
means of the levels of agegrp are shown because we might have asked for more margins in the table,
for example, margins sex agegrp.

The modeled probability is just below 25% for those under 40 years of age, and it then increases
fairly rapidly to 52% in the 50—59 age group. Above age 59, the probability remains under 67%. It is
often easier for nonstatisticians to interpret the statistics computed by margins than it is to interpret the
coefficients of a fitted model.

20.16.3 Obtaining predictive margins

Rather than evaluate the probability of having high blood pressure at one fixed point (the means), as
we did above, we can evaluate the probability at the covariate values for each observation in our data
and average those probabilities. Here is the modeled probability averaged over our sample:

. margins

Predictive margins Number of obs = 10,351
Model VCE: OIM

Expression: Pr(highbp), predict()

Delta-method
Margin std. err. z P>|z]| [95% conf. intervall

_cons .4227611 .0042939 98.46  0.000 .4143451 4311771
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If we fix the level of agegrp to 1, compute the probability for each observation, and then average those
probabilities, the result is the predictive margin for level 1 of agegrp. margins, by default, computes
these margins for each level of each variable specified on the command line. Let’s compute the predictive
margins for agegrp:

. margins agegrp

Predictive margins Number of obs = 10,351
Model VCE: 0IM

Expression: Pr(highbp), predict()

Delta-method

Margin std. err. z P>|z]| [95% conf. interval]

agegrp
20-29 .2030932 .0087166 23.30 0.000 .1860089 .2201774
30-39 .2829091 .010318 27.42  0.000 .2626862 .3031319
40-49 .3769536 .0128744 29.28  0.000 .3517202 .4021871
50-59 .5153439 .0136201 37.84 0.000 .4886491 .5420387
60-69 .5641065 .009136 61.75  0.000 .5462003 .5820127
70+ .6535679 .0151371 43.18  0.000 .6238997 .683236

One way of looking at predictive margins is that they answer the question “What would the average
response (probability) be in my sample if everyone were in one age group?” Another way of looking
at predictive margins is that they standardize the effect of being in an age group with the distribution
of other covariate values in our sample. The margins above are comparable because only the level of
agegrp is changing across the margins. They represent our sample because all the other covariates take
on their values in the sample when the margins are evaluated.

The predictive margins in this table differ from the adjusted predictions we estimated in
[U] 20.16.2 Obtaining adjusted predictions because the probability is a nonlinear function of the coef-
ficients in a logistic model; see Example 3: Average response versus response at average in [R] margins
for details.

Our analysis so far has been a bit naive. The dataset we are using is from the Second National Health
and Nutrition Examination Survey (NHANES 11). It has weights to make it representative of the population
from which it was drawn as well as other survey characteristics—strata and primary sampling units. The
data have already been svyset; see [SVY] svyset. We should take note of these characteristics and use
the svy prefix when fitting our model.

. svy: logistic highbp sex##agegrp##c.bmi
(output omitted)

If we were to repeat the command margins agegrp, we would see that our point estimates differ only a
little, but our standard errors are generally larger.

We are not restricted to margining over a single factor variable. Let’s see if the pattern of high blood
pressure over age groups differs for men and women. We do that by specifying the interaction of sex
and agegrp to margins. We add the vce (unconditional) option to accommodate the survey design.


https://www.stata.com/manuals/u20.pdf#u20.16.2Obtainingadjustedpredictions
https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesExample3Averageresponseversusresponseataverage
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
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. margins sex#agegrp, vce(unconditional)

Predictive margins

Number of strata = 31 Number of obs = 10,351
Number of PSUs = 62 Population size = 117,157,513
Design df = 31
Expression: Pr(highbp), predict()
Linearized
Margin std. err. t P>|t| [95% conf. intervall
sex#agegrp
Male#20-29 .2931664 .0204899 14.31  0.000 .251377 .3349557
Male#30-39 .3664032 .0241677 15.16  0.000 .3171128 .4156936
Male#40-49 .3945619 .0240343 16.42  0.000 .3455435 .4435802
Male#50-59 .5376423 .0295377 18.20 0.000 4773997 .5978849
Male#60-69 .5780997 .0224681 25.73  0.000 .5322756 .6239237
Male#70+ .6507023 .0209322 31.09 0.000 .6080109 .6933938
Female#20-29 .1069761 .0135978 7.87 0.000 .0792432 .1347091
Female#30-39 .1898006 .0143975 13.18 0.000 .1604367 .2191646
Female#40-49 .3250246 .0236775 13.73  0.000 .276734 .3733152
Female#50-59 .4855339 .03364 14.43  0.000 .4169247 .5541431
Female#60-69 .5441773 .0186243 29.22  0.000 .5061928 .5821618
Female#70+ .6195342 .0275568 22.48 0.000 .5633317 .6757367

Each line in the table corresponds to holding both sex and agegrp to fixed values while using the
observed level of bmi to evaluate the probability and then averaging over the observations in the sample.
To calculate the results in the first line of the table, margins fixed sex = 1 and agegrp = 1, evaluated
the probability for each observation, and then averaged the probabilities. All of these margins reflect the
observed distribution of bmi in the sample.

The first six lines represent males, and the second six lines represent females. Comparing males with
females for the same age groups, males are almost three times as likely to have high blood pressure in
the first age group (0.293/0.107 = 2.7); they are almost twice as likely in the second age group; and
while the relative gap narrows, it is not until above age 70 that the probability for males drops below the
probability for females.

Can the pattern of probabilities be affected by controlling one’s bmi? Let’s reevaluate the probabilities
while holding bmi to two levels—20 (which is well within the normal range) and 30 (which is at the
boundary between overweight and obese). We add the option at (bmi=(20 30)) to set bmi first to 20
and then to 30.
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. margins sex#agegrp, at(bmi=(20 30)) vce(unconditional)

Adjusted predictions

Number of strata = 31 Number of obs = 10,351
Number of PSUs = 62 Population size = 117,157,513
Design df = 31
Expression: Pr(highbp), predict()
1._at: bmi = 20
2._at: bmi = 30
Linearized
Margin std. err. t P>|t| [95% conf. intervall
_at#sex#

agegrp
1#Male#20-29 .1392353 .0217328 6.41 0.000 .094911 .1835596
1#Male#30-39 .1714727 .0241469 7.10 0.000 .1222249 .2207205
1#Male#40-49 .1914061 .0366133 5.23 0.000 .1167329 .2660794
1#Male#50-59 .3380778 .0380474 8.89 0.000 .2604797 .4156759
1#Male#60-69 .4311378 .0371582 11.60 0.000 .356563532 .5069225

1#Male#70+ .6131166 .0521657 11.75 0.000 .506724 .7195092
1 #
Female #
20-29 .0439911 .0061833 7.11 0.000 .0313802 .056602
1 #
Female #
30-39 .075806 .0134771 5.62 0.000 .0483193 .1032926
1 #
Female #
40-49 .1941274 .0231872 8.37  0.000 . 1468367 .2414181
1 #
Female #
50-59 .3493224 .0405082 8.62 0.000 .2667055 .4319394
1 #
Female #

60-69 .3897998 .0226443 17.21 0.000 .3436165 .4359831
1#Female#70+ .4599175 .0338926 13.57 0.000 .3907931 .5290419
2#Male#20-29 .4506376 .0370654 12.16  0.000 .3750422 .526233
2#Male#30-39 .569466 .04663 12.21 0.000 .4743635 .6645686
2#Male#40-49 .6042078 .039777 15.19  0.000 .5230821 .6853334
2#Male#50-59 . 7268547 .0339618 21.40 0.000 .657589 .7961203
2#Male#60-69 .7131811 .0271145 26.30 0.000 .6578807 . 7684816

2#Male#70+ .6843337 .0357432 19.15  0.000 .611435 .7572323
2 #
Female #
20-29 .1638185 .024609 6.66 0.000 .1136282 .2140088
2 #
Female #
30-39 .3038899 .0271211 11.20  0.000 .2485761 .3592037
2 #
Female #
40-49 .4523337 .0364949 12.39  0.000 .3779019 .5267655
2 #
Female #
50-59 .6132219 .0376898 16.27  0.000 .536353 .6900908
2 #
Female #

60-69 .68786 .0274712 25.04 0.000 .631832 . 7438879

2#Female#70+ . 7643662 .0343399 22.26  0.000 .6943296 . 8344029
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That is a lot of margins, but they are in sets of six age groups. The first six margins are men with a
BMI of 20, the second six are women with a BMI of 20, the third six are men with a BMI of 30, and the last
six are women with a BMI of 30. These margins tell a more complete story. The probability of high blood
pressure is much lower for both men and women who maintain a BMI of 20. More interesting is that
the relationship between men and women differs depending on BMI. While young men who maintain
a BMI of 20 are still twice as likely as young women to have high blood pressure (0.139/0.044) and
youngish men are over 50% more likely (0.171/0.076), the gap narrows substantially for men in the
four older groups. The story is worse for those with a BMI of 30. Both men and women with a high BMI
have a substantially increased risk of high blood pressure, with men ages 50—69 almost 10 percentage
points higher than women. Before you dismiss these differences as caused by the usual attenuation of the
logistic curve in the tails, recall that when we fit the model, we allowed the effect of bmi to be different
for each combination of sex and agegrp.

You may have noticed that the header of the prior results says “Adjusted predictions” rather than
“Predictive margins”. That is because our model has only three covariates, and we have fixed the values
of each. margins is no longer averaging over the data, but is instead evaluating the margins at fixed
points that we have requested. It lets us know that by changing the header.

We could post the results of margins and form linear combinations or perform tests about any of the
assertions above; see Example 10: Testing margins—contrasts of margins in [R] margins.

There is much more to know about margins and the margins command. See Remarks and examples
in [R] margins for more details.

20.17 Obtaining conditional and average marginal effects

Marginal effects measure the change in a response given a change in a covariate, which is to say
that marginal effects are derivatives. As used here, marginal effects can also be the discrete change in a
response as an indicator goes from 0 to 1. Some authors reserve the term marginal effect for the contin-
uous change and use the term partial effect for the discrete change. We will not make that distinction.
Regardless, marginal effects are most often used to make it easier to interpret how changes in covariates
affect a nonlinear response from a fitted model—a probability, a censored dependent variable, a survival
time, a hazard, etc.

Marginal effects can either be evaluated at a specified point for all the covariates in our model (con-
ditional marginal effects) or be evaluated at the observed values of the covariates in a dataset and then
averaged (average marginal effects).

To Stata, marginal effects are just margins whose response happens to be the derivative of another
response. Those interested in marginal effects will be interested in all or most of [R] margins.

20.17.1 Obtaining conditional marginal effects

We call a marginal effect conditional when we fix the values of all the covariates and then take the
derivative of the response with respect to a covariate. The mean of all covariates is often used as the
fixed point, and this is sometimes called the marginal effect at the means.

Consider a simple probit model of union membership for women as a function of having graduated
from college (collgrad), living in the South (south), tenure on the job (tenure), and the interaction
of south and tenure. We are interested in how being in the South affects union membership. We fit the
model by using an extract from 1988 of the US National Longitudinal Survey of Labor Market Experience
(see [XT] xt).


https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesExample10Testingmargins---contrastsofmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamples
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/xtxt.pdf#xtxt
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. use https://www.stata-press.com/data/r19/nlsw88b, clear
(NLSW, 1988 extract)

. probit union i.collgrad i.south tenure south#c.tenure
Iteration 0: Log likelihood = -1042.6816
Iteration 1: Log likelihood = -997.71809

Iteration 2: Log likelihood = -997.60984
Iteration 3: Log likelihood = -997.60983

Probit regression Number of obs = 1,868

LR chi2(4) = 90.14

Prob > chi2 = 0.0000

Log likelihood = -997.60983 Pseudo R2 = 0.0432

union | Coefficient Std. err. z P>|z| [95% conf. intervall]
collgrad

not grad .2783278 .0726167 3.83 0.000 .1360018 .4206539

1.south -.2534964 .1050552 -2.41 0.016 -.4594008 -.0475921

tenure .0362944 .0068205 5.32 0.000 .0229264 . 0496624
south#
c.tenure

1 -.0239785 .0119533 -2.01 0.045 -.0474065 -.0005504

_cons -.8497418 .0664524 -12.79  0.000 -.9799862  -.7194974

Clearly, being located in the South decreases union membership. Using the dydx () and atmeans options
of margins, we can ask how much it decreases membership by evaluating the marginal effect of being
southern at the means of all covariates:

. margins, dydx(south) atmeans

Conditional marginal effects Number of obs = 1,868
Model VCE: 0IM

Expression: Pr(union), predict()

dy/dx wrt: 1.south

At: 0.collgrad = .7521413 (mean)
1.collgrad = .2478587 (mean)

0.south = .5744111 (mean)
1.south = .4255889 (mean)
tenure = 6.571065 (mean)

Delta-method
dy/dx  std. err. z P>|z| [95% conf. intervall

1.south -.1236055 .019431 -6.36  0.000 -.1616896  -.0855215

Note: dy/dx for factor levels is the discrete change from the base level.

At the means of all the covariates, southern women are 12 percentage points less likely to be mem-
bers of a union. This marginal effect includes both the direct effect of i.south and the interaction
south#c.tenure.

As margins reports below the table, this change in the response is for the discrete change of going
from not southern (0) to southern (1).

The header of margins tells us where the marginal effect was estimated. This margin fixes tenure
to be 6.6 years. There is nothing special about this point. We could also evaluate the marginal effect at
the median of tenure:
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. margins, dydx(south) atmeans at((medians) _continuous)

Conditional marginal effects Number of obs = 1,868
Model VCE: OIM

Expression: Pr(union), predict()

dy/dx wrt: 1.south

At: O.collgrad = .7521413 (mean)
1.collgrad = .2478587 (mean)
0.south = .5744111 (mean)

1.south = .4255889 (mean)
tenure = 4.666667 (median)
Delta-method
dy/dx  std. err. z P>|z]| [95% conf. intervall
1.south -.1061338 .0201722 -5.26 0.000 -.1456706 -.066597

Note: dy/dx for factor levels is the discrete change from the base level.

With tenure at its median of 4.67, the marginal effect is about 2 percentage points less than it was at
the mean of 6.6.

When examining conditional marginal effects, it is often useful to evaluate them at a range of values
for the covariates. We can do that by asking both for values of the indicator covariate collgrad and for
a range of values for tenure:

. margins collgrad, dydx(south) at(tenure=(0(5)25))

Conditional marginal effects Number of obs = 1,868
Model VCE: 0IM

Expression: Pr(union), predict()

dy/dx wrt: 1.south

1._at: tenure = O
2._at: tenure = 5
3._at: tenure = 10
4._at: tenure = 15
5._at: tenure = 20
6._at: tenure = 25
Delta-method
dy/dx  std. err. z P>|z]| [95% conf. intervall
0.south (base outcome)
1.south
_at#collgrad
l#grad -.0627725 .0254161 -2.47 0.014 -.112587  -.0129579
1#not grad -.0791483 .0321151 -2.46 0.014 -.1420928 -.0162038
2#grad -.1031957 .0189184 -5.45 0.000 -.140275 -.0661164
2#not grad -.1256566 .0232385 -5.41 0.000 -.1712031 -.0801101
3#grad -.1496772 .022226 -6.73 0.000 -.1932392 -.1061151
3#not grad -.1760137 .0266874 -6.60 0.000 -.2283202  -.1237073
4#tgrad -.2008801 .036154 -56.56  0.000 -.2717407 -.1300196
4#not grad -.2282 .0419237 -5.44  0.000 -.310369 -.146031
S#grad -.2549707 .0546355 -4.67 0.000 -.3620543  -.1478872
S#not grad -.2799495 .0613127 -4.57 0.000 -.4001201 -.1597789
6#grad -.3097656 .0747494 -4.14  0.000 -.4562717 -.1632594
6#not grad -.3289702 .0816342 -4.03 0.000 -.4889703 -.1689701

Note: dy/dx for factor levels is the discrete change from the base level.
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We now have a more complete picture of the effect that being in the South has on union participation.
For those with no tenure and without a college degree (the first line in the table), being in the South
decreases union participation by only 6 percentage points. For those with 25 years of tenure and with
a college degree (the last line in the table), being in the South decreases participation by almost 33
percentage points. We can read the effect for any combination of tenure and college graduation status
from the other lines in the table.

20.17.2 Obtaining average marginal effects

To compute average marginal effects, the marginal effect is first computed for each observation in the
dataset and then averaged. If the sample over which we compute the average marginal effect represents
a population, then we have estimated the marginal effect for the population.

We continue with our example of labor union participation.
. use https://www.stata-press.com/data/r19/nlsw88b
(NLSW, 1988 extract)

. probit union i.collgrad i.south tenure south#c.tenure
(output omitted)

To estimate the average marginal effect for each of our regressors, we type

. margins, dydx(*)

Average marginal effects Number of obs = 1,868
Model VCE: 0IM

Expression: Pr(union), predict()
dy/dx wrt: 1.collgrad 1.south tenure

Delta-method
dy/dx  std. err. z P>|z| [95% conf. intervall
collgrad
not grad .0878847 .0238065 3.69 0.000 .0412248 .1345447
1.south -.126164 .0191504 -6.59 0.000 -.1636981 -.0886299
tenure .0083571 .0016521 5.06 0.000 .005119 .0115951

Note: dy/dx for factor levels is the discrete change from the base level.

For this sample, the average marginal effect is very close to the marginal effect at the mean that we
computed earlier. That is not always true; it depends on the distribution of the other covariates. The
results also tell us that on average, for populations like the one from which our sample was drawn, union
participation increases 0.8 percentage points for every year of tenure on the job. College graduates are,
on average, 8.8 percentage points more likely to participate.

In the examples above, we treated the covariates in the sample as fixed and known. We could have
accounted for the fact that this sample was drawn from a population and the covariates represent just
one sample from that population. We do that by adding the vce (robust) or vce(cluster clustvar)
option when fitting the model and the vce (unconditional) option when estimating the margins; see
Obtaining margins with survey data and representative samples in [R] margins. It makes little difference
in the examples above.


https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesObtainingmarginswithsurveydataandrepresentativesamples
https://www.stata.com/manuals/rmargins.pdf#rmargins
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20.18 Obtaining pairwise comparisons

pwcompare performs pairwise comparisons across the levels of factor variables. It can compare
estimated cell means, marginal means, intercepts, marginal intercepts, slopes, or marginal slopes—
collectively called margins. pwcompare also reports comparisons as contrasts (differences) of mar-
gins along with significance tests or confidence intervals. The tests and confidence intervals can be
adjusted for multiple comparisons. pwcompare is for use after an estimation command in which you
have used factor variables; thus, you cannot use pwcompare after typing regress yield fertilizerl-
fertilizerb5 but you could after typing regress yield i.fertilizer.

Let’s fit a linear regression of wheat yield on type of fertilizer and then compare the mean yields for
each pair of fertilizers and obtain p-values and confidence intervals adjusted for multiple comparisons
by using Tukey’s honestly significant difference.

. use https://www.stata-press.com/data/r19/yield
(Artificial wheat yield dataset)

. regress yield i.fertilizer

Source SS df MS Number of obs 200
F(4, 195) = 5.33
Model 1078.84207 4 269.710517 Prob > F = 0.0004
Residual 9859.55334 195 50.561812 R-squared = 0.0986
Adj R-squared = 0.0801
Total 10938.3954 199 54.9668111  Root MSE = 7.1107
yield | Coefficient Std. err. t P>t [95% conf. intervall
fertilizer
10-08-22 3.62272  1.589997 2.28 0.024 .4869212 6.758518
16-04-08 .4906299  1.589997 0.31 0.758 -2.645169 3.626428
18-24-06 4.922803  1.589997 3.10 0.002 1.787005 8.058602
29-03-04 -1.238328  1.589997 -0.78  0.437 -4.374127 1.89747
_cons 41.36243  1.124298 36.79  0.000 39.14509 43.57977
. pwcompare fertilizer, effects mcompare(tukey)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced
Number of
comparisons
fertilizer 10
Tukey Tukey
Contrast  Std. err. t P>t [95% conf. intervall
fertilizer
10-08-22
vs
10-10-10 3.62272  1.589997 2.28 0.156 -.7552913 8.000731

(output omitted)
1

See [R] pwecompare and [R] margins, pwcompare.


https://www.stata.com/manuals/rpwcompare.pdf#rpwcompare
https://www.stata.com/manuals/rmarginspwcompare.pdf#rmargins,pwcompare
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20.19 Obtaining contrasts, tests of interactions, and main effects

contrast estimates and tests contrasts—comparisons of levels of factor variables. It also performs
joint tests of these contrasts and can produce ANOVA-style tests of main effects, interaction effects, simple
effects, and nested effects. contrast can be used after most estimation commands and provides a set
of contrast operators, such as r., ar., and p., which are prefixed onto variable names (for example,
r.varname), to specify the contrasts to be performed. The operators can be used with the contrast and
margins commands.

Below, we fit a regression of cholesterol level on age group category. The reported coefficients on
i.agegrp will themselves be contrasts, namely, contrasts on the reference category. After estimation,
we want to compare the cell mean of each age group with that of the previous group, so we perform a
reverse-adjacent contrast by typing the following:

. use https://www.stata-press.com/data/r19/cholesterol
(Artificial cholesterol data)

. regress chol i.agegrp

Source SS df MS Number of obs = 75
F(4, 70) = 35.02
Model 14943.3997 4 3735.84993 Prob > F = 0.0000
Residual 7468.21971 70 106.688853 R-squared = 0.6668
Adj R-squared = 0.6477
Total 22411.6194 74 302.859722 Root MSE = 10.329
chol | Coefficient Std. err. t P>|t] [95% conf. intervall]
agegrp
20-29 8.203575 3.771628 2.18 0.033 .6812991 15.72585
30-39 21.54105 3.771628 5.71 0.000 14.01878 29.06333
40-59 30.15067 3.771628 7.99 0.000 22.6284 37.67295
60-79 38.76221 3.771628 10.28 0.000 31.23993 46.28448
_cons 180.5198 2.666944 67.69 0.000 175.2007 185.8388

. contrast ar.agegrp
Contrasts of marginal linear predictions

Margins: asbalanced

df F P>F
agegrp
(20-29 vs 10-19) 1 4.73 0.0330
(30-39 vs 20-29) 1 12.51 0.0007
(40-59 vs 30-39) 1 5.21 0.0255
(60-79 vs 40-59) 1 5.21 0.0255
Joint 4 35.02 0.0000
Denominator 70
Contrast Std. err. [95% conf. intervall
agegrp
(20-29 vs 10-19) 8.203575  3.771628 .6812991 15.72585

(output omitted)
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We could use orthogonal polynomial contrasts to test whether there is a linear, quadratic, or even
higher-order trend in the estimated cell means.

. contrast p.agegrp, noeffects
Contrasts of marginal linear predictions

Margins: asbalanced

df F P>F
agegrp

(linear) 1 139.11 0.0000
(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

You are not limited to using contrast in one-way models. Had we fit

. regress chol agegrp##race

we could contrast to obtain tests of the main effects and interaction effects.

. contrast agegrp##race

These results would be the same as would be reported by anova. We mention this because you can
use contrast after any estimation command that allows factor variables and works with margins.

See [R] contrast and [R] margins, contrast.

20.20 Graphing margins, marginal effects, and contrasts

Using marginsplot, you can graph any of the results produced by margins, and because margins
can replicate any of the results produced by pwcompare and contrast, you can graph any of the results
produced by them, too.

In [U] 20.16.3 Obtaining predictive margins, we did the following:
. use https://www.stata-press.com/data/r19/nhanes?2

. svy: logistic highbp sex##agegrp##c.bmi
. margins sex#agegrp, vce(unconditional)


https://www.stata.com/manuals/rcontrast.pdf#rcontrast
https://www.stata.com/manuals/rmarginscontrast.pdf#rmargins,contrast
https://www.stata.com/manuals/u20.pdf#u20.16.3Obtainingpredictivemargins
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We can now graph those results by typing

. marginsplot, xdimension(agegrp)

Variables that uniquely identify margins: sex agegrp

Predictive margins of sex#agegrp with 95% Cls

—e— Male
—e— Female

Pr(highbp)
s

ol
20229 30.30 4049 50.59 60-69 70+
Age group

See [R] marginsplot. Mitchell (2021) shows how to make similar graphs for a variety of predictions and
models.

20.21 Dynamic forecasts and simulations

The forecast suite of commands lets you obtain forecasts from forecast models, collections of equa-
tions that jointly determine the outcomes of one or more endogenous variables. You fit stochastic equa-
tions using estimation commands such as regress or var, and then you add those results to your forecast
model. You can also specify identities that define variables in terms of other variables, and you can also
specify exogenous variables whose values are already known or otherwise determined by factors outside
your model. forecast then solves the resulting system of equations to obtain forecasts.

forecast works with time-series and panel datasets, and you can obtain either dynamic or static
forecasts. Dynamic forecasts use previous periods’ forecast values wherever lags appear in the model’s
equations and thus allow you to obtain forecasts for multiple periods in the future. Static forecasts use
previous periods’ actual values wherever lags appear in the model’s equations, so if you use lags, you
cannot make predictions much beyond the end of the time horizon in your dataset. However, static
forecasts are useful during model development.

You can incorporate outside information into your forecasts, and you can specify a future path for
some of the model’s variables and obtain forecasts for the other variables conditional on that path. These
features allow you to produce forecasts under different scenarios, and they allow you to explore how
different policy interventions would affect your forecasts.

forecast also has the capability to produce confidence intervals around the forecasts. You can have
forecast account for the sampling variance of the estimated parameters in the stochastic equations.
You can request either that forecast assume the error terms are normally distributed and take draws
from a random-number generator or that forecast take random samples from the pool of static-forecast
residuals.

See [TS] forecast.


https://www.stata.com/manuals/rmarginsplot.pdf#rmarginsplot
https://www.stata.com/manuals/tsforecast.pdf#tsforecast
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20.22 Obtaining robust variance estimates

Many Stata estimation commands provide robust and cluster-robust variance estimates. To obtain
these estimates, you simply specify the vce (robust) option to obtain robust standard errors or the
vce(cluster clustvar) option to obtain cluster-robust standard errors. Below, we provide a general
discussion of why you might specify one of these options, how to interpret standard errors with and
without vce (robust) specified, and an overview of important concepts relating to cluster-robust stan-
dard errors.

Estimates of variance refer to estimated standard errors or, more completely, the estimated vari-
ance—covariance matrix of the estimators of which the standard errors are a subset, being the square
root of the diagonal elements. Call this matrix the variance. All estimation commands produce an esti-
mate of variance and, using that, produce confidence intervals and significance tests.

In addition to the conventional estimator of variance, there is another estimator that has been called
by various names because it has been derived independently in different ways by different authors. Two
popular names associated with the calculation are Huber and White, but it is also known as the sandwich
estimator of variance (because of how the calculation formula physically appears) and the robust esti-
mator of variance (because of claims made about it). Also, this estimator has an independent and long
tradition in the survey literature.

The conventional estimator of variance is derived by starting with a model. Let’s start with the re-
gression model
Yi :xi5+€i> € NN(0302)
although it is not important for the discussion that we are using regression. Under the model-based
approach, we assume that the model is true and thereby derive an estimator for 3 and its variance.

The estimator of the standard error of ,B we develop is based on the assumption that the model is true
in every detail. y, is not exactly equal to x,3 (so that we would only need to solve an equation to obtain
precisely that value of 3) because the observed y; has noise €; added to it, the noise is Gaussian, and it
has constant variance. That noise leads to the uncertainty about 3, and it is from the characteristics of
that noise that we are able to calculate a sampling distribution for ,@

The key thought here is that the standard error of B arises because of € and is valid only because the
model is absolutely, without question, true; we just do not happen to know the particular values of 3 and

o2 that make the model true. The implication is that, in an infinite-sized sample, the estimator B for B
would converge to the true value of 3 and that its variance would go to 0.

Now here is another interpretation of the estimation problem: We are going to fit the model
y; =x;b+e;
and, to obtain estimates of b, we are going to use the calculation formula
b= (X'X)" Xy

We have made no claims that the model is true or any claims about e; or its distribution. We shifted our
notation from 3 and ¢; to b and e, to emphasize this. All we have stated are the physical actions we
intend to carry out on the data. Interestingly, it is possible to calculate a standard error for b here. At
least, it is possible if you will agree with us on what the standard error measures are.

We are going to define the standard error as measuring the standard error of the calculated b if we
were to repeat the data collection followed by estimation over and over again.
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This is a different concept of the standard error from the conventional, model-based ideas, but it is
related. Both measure uncertainty about b (or 3). The regression model—based derivation states from
where the variation arises and so can make grander statements about the applicability of the measured
standard error. The weaker second interpretation makes fewer assumptions and so produces a standard
error suitable for one purpose.

There is a subtle difference in interpretation of these identically calculated point estimates. ﬁ is the
estimate of 3 under the assumption that the model is true. b is the estimate of b, which is merely what
the estimator would converge to if we collected more and more data.

Is the estimate of b unbiased? If we mean, “Does b = 3?” that depends on whether the model is true.
b is, however, an unbiased estimate of b, which admittedly is not saying much.

What if x and e are correlated? Don’t we have a problem then? We may have an interpretation
problem—b may not measure what we want to measure, namely, 3— but we measure b to be such-and-
such and expect, if the experiment and estimation were repeated, that we would observe results in the
range we have reported.

So, we have two different understandings of what the parameters mean and how the variance in their
estimators arises. However, both interpretations must confront the issue of how to make valid statistical
inference about the coefficient estimates when the data do not come from a simple random sample or
the distribution of (x;, ¢;) is not independent and identically distributed (i.i.d.). In essence, we need an
estimator of the standard errors that is robust to this deviation from the standard case.

Hence, the name the robust estimate of variance; its associated authors are Huber (1967) and White
(1980, 1982) (who developed it independently), although many others have extended its development,
including Gail, Tan, and Piantadosi (1988); Kent (1982); Royall (1986); and Lin and Wei (1989). In the
survey literature, this same estimator has been developed; see Kish and Frankel (1974), Fuller (1975), and
Binder (1983). Most of Stata’s estimation commands can produce this alternative estimate of variance
and do so via the vce (robust) option.

20.22.1 Interpreting standard errors

Without vce (robust), we get one measure of variance:

. use https://www.stata-press.com/data/r19/auto7
(1978 automobile data)

. regress mpg weight foreign

Source S8 df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627
Adj R-squared = 0.6532

Total 2443 .45946 73 33.4720474 Root MSE = 3.4071
mpg | Coefficient Std. err. t P>t [95% conf. intervall
weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029  1.075994 -1.53 0.130 -3.7955 .4954422
_cons 41.6797  2.165547 19.25  0.000 37.36172 45.99768
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With vce (robust), we get another:

. regress mpg weight foreign, vce(robust)

Linear regression Number of obs = 74
F(2, 71) = 73.81
Prob > F = 0.0000
R-squared = 0.6627
Root MSE = 3.4071

Robust
mpg | Coefficient std. err. t P>|t]| [95% conf. intervall
weight -.0065879 .0005462 -12.06  0.000 -.007677  -.0054988
foreign -1.650029  1.132566 -1.46 0.150 -3.908301 .6082424
_cons 41.6797  1.797553 23.19  0.000 38.09548 45.26392

Either way, the point estimates are the same. (See [R] regress for an example where specifying
vce (robust) produces strikingly different standard errors.)

How do we interpret these results? Let’s consider the model-based interpretation. Suppose that

v =x;8+¢

where (x;, ¢;) are i.i.d. with variance o2. For the model-based interpretation, we also must assume that
x; and ¢; are uncorrelated. With these assumptions and a few technical regularity conditions, our first
regression gives us consistent parameter estimates and standard errors that we can use for valid statistical
inference about the coefficients. Now suppose that we weaken our assumptions so that (x,, €;) are inde-
pendent and—but not necessarily—identically distributed. Our parameter estimates are still consistent,
but the standard errors from the first regression can no longer be used to make valid inference. We need
estimates of the standard errors that are robust to the fact that the error term is not identically distributed.
The standard errors in our second regression are just what we need. We can use them to make valid
statistical inference about our coefficients, even though our data are not identically distributed.

Now consider a non—model-based interpretation. If our data come from a survey design that ensures
that (x,, ;) are i.i.d., then we can use the nonrobust standard errors for valid statistical inference about the
population parameters b. For this interpretation, we do not need to assume that x; and e; are uncorrelated.
If they are uncorrelated, the population parameters b and the model parameters 3 are the same. However,
if they are correlated, then the population parameters b that we are estimating are not the same as the
model-based 3. So, what we are estimating is different, but we still need standard errors that allow us
to make valid statistical inference. If the process that we used to collect the data caused (x;, e;) to be
independent but not identically distributed, then we need to use the robust standard errors to make valid

statistical inference about the population parameters b.

20.22.2 Correlated errors: Cluster-robust standard errors

The robust estimator of variance has one feature that the conventional estimator does not have:
the ability to relax the assumption of independence of the observations. That is, if you specify the
vce(cluster clustvar) option, it can produce “correct” standard errors (in the measurement sense),
even if the observations are correlated.

For the automobile data, it is difficult to believe that the models of the various manufacturers are truly
independent. Manufacturers, after all, use common technology, engines, and drive trains across their
model lines. The VW Dasher in the above regression has a measured residual of —2.80. Having been told


https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rregress.pdf#rregressRemarksandexamplesex5
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that, do you really believe that the residual for the VW Rabbit is as likely to be above 0 as below? (The
residual is —2.32.) Similarly, the measured residual for the Chevrolet Malibu is 1.27. Does that provide
information about the expected value of the residual of the Chevrolet Monte Carlo (which turns out to
be 1.53)?

We need to be careful about picking examples from data; we have not told you about the Datsun 210
and 510 (residuals +-8.28 and —1.01) or the Cadillac Eldorado and Seville (residuals —1.99 and +7.58),
but you should at least question the assumption of independence. It may be believable that the measured
mpg given the weight of one manufacturer’s vehicles is independent of other manufacturers’ vehicles, but
it is at least questionable whether a manufacturer’s vehicles are independent of one another.

In commands with the vce (robust) option, another option—vce (cluster clustvar) —relaxes the
independence assumption and requires only that the observations be independent across the clusters:

. regress mpg weight foreign, vce(cluster manufacturer)

Linear regression Number of obs = 74
F(2, 22) = 90.93
Prob > F = 0.0000
R-squared = 0.6627
Root MSE = 3.4071
(Std. err. adjusted for 23 clusters in manufacturer)

Robust
mpg | Coefficient std. err. t P>|t]| [95% conf. interval]
weight -.0065879 .0005339 -12.34 0.000 -.0076952  -.0054806
foreign -1.650029 1.039033 -1.59 0.127 -3.804852 .5047939
_cons 41.6797 1.844559 22.60 0.000 37.85432 45.50508

It turns out that, in these data, whether or not we specify vce (cluster clustvar) makes little difference.
The vw and Chevrolet examples above were not representative; had they been, the confidence intervals
would have widened. (In the above, manuf is a variable that takes on values such as “Chev.” or “VW”,
recording the manufacturer of the vehicle. This variable was created from variable make, which contains
values such as “Chev. Malibu” or “VW Rabbit”, by extracting the first word.)

As a demonstration of how well clustering can work, in [R] regress we fit a random-effects model with
regress, vce(robust) and then compared the results with ordinary least squares and the generalized
least squares (GLS) random-effects estimator. Here we will simply summarize the results.

We start with a dataset on 4,711 women aged 14—46 years. Subjects appear an average of 6.057 times
in the data; there are a total of 28,534 observations. The model we use is log wage on age, age-squared,
and job tenure. The focus of the example is the estimated coefficient on tenure. We obtain the following
results:

Estimator Point estimate Confidence interval
(Inappropriate) least squares 0.039 [0.038,0.041]
Robust clustered 0.039 [0.036,0.042]

GLS random effects 0.026 [0.025,0.027]


https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rregress.pdf#rregressRemarksandexamplesex7
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Notice how well the robust clustered estimate does compared with the GLS random-effects model. We
then run a Hausman specification test, obtaining x?(3) = 336.62, which casts grave doubt on the as-
sumptions justifying the use of the GLS estimator and hence on the GLS results. At this point, we will
simply quote our comments:

Meanwhile, our robust regression results still stand, as long as we are careful about the
interpretation. The correct interpretation is that if the data collection were repeated (on
women sampled the same way as in the original sample) and if we were to refit the model,
then 95% of the time we would expect the estimated coefficient on tenure to be in the range
[0.036,0.042].

Even with robust regression, we must be careful about going beyond that statement. Here
the Hausman test is probably picking up something that differs within- and between-
person, which would cast doubt on our robust regression model in terms of interpreting
[0.036,0.042 ] to contain the rate of return for keeping a job, economywide, for all women,
without exception.

The formula for the robust estimator of variance is
—~ o~ N o~
_ ’
V=V (Z ujuj>V
=1

where V = (—9%InL/9B*)~" (the conventional estimator of variance) and u; (a row vector) is the
contribution from the jth observation to dln L/913.

In the example above, observations are assumed to be independent. Assume for a moment that the
observations denoted by j are not independent but that they can be divided into M groups G, G, ...,
G, that are independent. The robust estimator of variance is

M
V= V(Z uﬁf”u;@)f/
k=1
(G)

where u,, " is the contribution of the kth group to dln L/93. That is, application of the robust variance

formula merely involves using a different decomposition of dln L/93, namely, u,(fG>, k=1,...,M,
rather than u;, j = 1,..., N. Moreover, if the log-likelihood function is additive in the observations

denoted by 7,
N
InL =" InL;
j=1

then u; = din L;/9, so
(@)
wl= D
J€G),

That is what the vce (cluster clustvar) option does. (This point was first made in writing by Rogers
[1993], although he considered the point an obvious generalization of Huber [1967] and the calcula-
tion—implemented by Rogers—had appeared in Stata a year earlier.)
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Q Technical note

What is written above is asymptotically correct but ignores a finite-sample adjustment to V. For
maximum likelihood estimators, when you specify vce (robust) but not vce(cluster clustvar), a
better estimate of variance is V* = {N/(N— 1)}17 When you also specify the vce (cluster clustvar)
option, this becomes V* = {M /(M — 1)}V.

For linear regression, the finite-sample adjustment is N /(N — k) without vce(cluster clust-
var) —where k is the number of regressors—and is {M/(M — 1)}{(N — 1)/(N — k)} with
vce(cluster clustvar). Also, two data-dependent modifications to the calculation for 9*, suggested by
MacKinnon and White (1985), are provided by regress; see [R] regress. Angrist and Pischke (2009,
chap. 8) is devoted to robust covariance matrix estimation and offers practical guidance on the use of
vce(robust) and vce (cluster clustvar) in both cross-sectional and panel-data applications.

a

Halbert Lynn White Jr. (1950-2012) was born in Kansas City. After receiving economics degrees at
Princeton and MIT, he taught and researched econometrics at the University of Rochester and, from
1979, at the University of California in San Diego. He also co-founded an economics and legal con-
sulting firm known for its rigorous use of econometrics methods. His 1980 paper on heteroskedas-
ticity introduced the use of robust covariance matrices to economists and passed 16,000 citations in
Google Scholar in 2012. His 1982 paper on maximum likelihood estimation of misspecified models
helped develop the now-common use of quasimaximum likelihood estimation techniques. Later in
his career, he explored the use of neural networks, nonparametric models, and time-series modeling
of financial markets.

Among his many awards and distinctions, White was made a fellow of the American Academy of
Arts and Sciences and the Econometric Society, and he won a fellowship from the John Simon
Guggenheim Memorial Foundation. Had he not died prematurely, many scholars believe he would
have eventually been awarded the Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel.

Aside from his academic work, White was an avid jazz musician who played with well-known jazz
trombonist and fellow University of California at San Diego teacher Jimmy Cheatam.

Peter Jost Huber (1934— ) was born in Wohlen (Aargau, Switzerland). He gained mathematics de-
grees from ETH Ziirich, including a PhD thesis on homotopy theory, and then studied statistics at
Berkeley on postdoctoral fellowships. This visit yielded a celebrated 1964 paper on robust estima-
tion, and Huber’s later monographs on robust statistics were crucial in directing that field. There-
after, his career took him back and forth across the Atlantic, with periods at Cornell, ETH Ziirich,
Harvard, MIT, and Bayreuth. His work has touched several other major parts of statistics, theoretical
and applied, including regression, exploratory multivariate analysis, large datasets, and statistical
computing. Huber also has a major long-standing interest in Babylonian astronomy.
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20.23 Obtaining scores

Many of the estimation commands that provide the vce (robust) option also provide the ability to
generate equation-level score variables via the predict command. With the score option, predict
returns an important ingredient into the robust variance calculation that is sometimes useful in its own
right. As explained above in [U] 20.22 Obtaining robust variance estimates, ignoring the finite-sample
corrections, the robust estimate of variance is

Jj=1

where V = (—82InL/8B%)" is the conventional estimator of variance. If we consider likelihood
functions that are additive in the observations

N
InL = Z lnLj
=1

then u; = dIn L; /0. In general, function L is a function of x; and 3, L;(3; x;). For many likelihood
functions, however, it is only the linear form xj,B that enters the function. In those cases,
dInL;(x;3) _ dInL;(x;8) 0(x,3) _ dInL;(x;03) o
o8 BB axp) Y

By writing u; = 0ln L;(x,3)/9(x,83), this becomes simply u;x;. Thus the formula for the robust esti-
mate of variance can be rewritten as

N
V= V(Z u?x;x])i\’
=1

We refer to u; as the equation-level score (in the singular), and it is u; that is returned when you use
predict with the score option. u; is like a residual in that

1. Zj u; = 0 and
2. correlation of u; and x;, calculated over j = 1,..., N, is 0.

In fact, for linear regression, U, is the residual, normalized,

OmlL; 0 e BVe
P~ o) ™ Ol
= (yj - Xjﬂ)/a

where f(-) is the standard normal density.
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b Example 19

probit provides the vce (robust) option and predict, score. Equation-level scores play an im-
portant role in calculating the robust estimate of variance, but we can use predict, score regardless
of whether we specify vce (robust):

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)

. probit foreign mpg weight

Iteration 0: Log likelihood = -45.03321
Iteration 1: Log likelihood = -27.914626
Iteration 2: Log likelihood = -26.858074
Iteration 3: Log likelihood = -26.844197
Iteration 4: Log likelihood = -26.844189
Iteration 5: Log likelihood = -26.844189

Probit regression Number of obs = 74
LR chi2(2) = 36.38

Prob > chi2 = 0.0000

Log likelihood = -26.844189 Pseudo R2 = 0.4039
foreign | Coefficient Std. err. z P>|z]| [95% conf. interval]

mpg -.1039503  .0515689 -2.02 0.044 -.2050235 -.0028772

weight -.0023355 .0005661 -4.13 0.000 -.003445 -.0012261

_cons 8.275464  2.554142 3.24 0.001 3.269437 13.28149

. predict double u, score

. summarize u

Variable Obs Mean Std. dev. Min Max
u 74  -6.64e-14 .59883256 -1.655439  1.660787
. correlate u mpg weight
(obs=74)
u mpg weight
u 1.0000
mpg 0.0000  1.0000
weight -0.0000 -0.8072 1.0000

. list make foreign mpg weight u if abs(u)>1.65

make foreign mpg weight u

24. Ford Fiesta Domestic 28 1,800 -1.6554395
64. Peugeot 604 Foreign 14 3,420 1.6607871

The light, high-mileage Ford Fiesta is surprisingly domestic, whereas the heavy, low-mileage Peugeot
604 is surprisingly foreign.
N
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Q Technical note

For some estimation commands, one score is not enough. Consider a likelihood that can be written as
L;(x; By.z; ,@2), a function of two linear forms (or linear equations). Then dIn L /03 can be written as
(OnL;/0B,,0In L;/9B,). Each of the components can in turn be written as [0ln L;/9(8;x)]x = u;x
and [0In L;/0(yz)|z = u,z. There are then two equation-level scores, u; and u,, and, in general, there
could be more.

Stata’s streg, distribution(weibull) command is an example of this: it estimates 3 and a shape
parameter, Inp, the latter of which can be thought of as a degenerate linear form ( Inp)z withz = 1. After
this command, predict, scores requires that you specify two new variable names, or you can specify
stub*, which will generate new variables sfub1 and stub2; the first will be defined containing u; —the
score associated with 3—and the second will be defined containing u, —the score associated with Inp.

a

Q Technical note

Using Stata’s matrix commands—see [P] matrix—we can make the robust variance calculation for
ourselves and then compare it with that made by Stata.
. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. quietly probit foreign mpg weight
. predict double u, score

. matrix accum S = mpg weight [iweight=u~2%74/73]
(obs=26.53642547)

. matrix rV = e(V)*Sxe(V)
. matrix list rV

symmetric rV[3,3]
foreign: foreign: foreign:
mpg weight _cons
foreign:mpg .00352299
foreign:weight .00002216  2.434e-07
foreign:_cons -.14090346 -.00117031  6.4474174

. quietly probit foreign mpg weight, vce(robust)
. matrix list e(V)

symmetric e(V)[3,3]
foreign: foreign: foreign:
mpg weight _cons
foreign:mpg .00352299
foreign:weight .00002216  2.434e-07
foreign:_cons -.14090346 -.00117031 6.4474174

The results are the same.

There is an important lesson here for programmers. Given the scores, conventional variance estimates
can be easily transformed to robust estimates. If we were writing a new estimation command, it would
not be difficult to include a vce (robust) option.

It is, in fact, easy if we ignore clustering. With clustering, it is more work because the calculation
involves forming sums within clusters. For programmers interested in implementing robust variance
calculations, Stata provides a _robust command to ease the task. This is documented in [P] _robust.
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To use _robust, you first produce conventional results (a vector of coefficients and covariance ma-
trix) along with a variable containing the scores u; (or variables if the likelihood function has more than
one stub). You then call _robust, and it will transform your conventional variance estimate into the
robust estimate. _robust will handle the work associated with clustering and the details of the finite-
sample adjustment, and it will even label your output so that the word Robust appears above the standard
error when the results are displayed.

Of course, this is all even easier if you write your commands with Stata’s m1 maximum likelihood
optimization, in which case you merely pass the vce (robust) option on to ml. Then, m1 will call
_robust itself and do all the work for you.

Qa

Q Technical note

For some estimation commands, predict, score computes parameter-level scores dL /93 instead
of equation-level scores 9L;/0x,3. Those estimation commands, such as cmclogit, stcox, and the
multilevel mixed-effects commands share the characteristic that there are multiple observations per in-
dependent event.

In making the robust variance calculation, parameter-level scores dL /03 are really needed, and so
you may be asking yourself why predict, score does not always produce parameter-level scores. In
the usual case, we can obtain them from equation-level scores via the chain rule, and fewer variables are
required if we adopt this approach. In the cases above, however, the likelihood is calculated at the group
level and is not split into contributions from the individual observations. Thus, the chain rule cannot be
used, and we must use the parameter level scores directly.

_robust can be tricked into using them if each parameter appears to be in its own equation as a
constant. This requires resetting the row and column stripes on the covariance matrix before _robust is
called. The equation names for each row and column must be unique, and the variable names must all
be _cons.

a

20.24 Weighted estimation

The syntax for weights was introduced in [U] 11.1.6 weight. Stata provides four kinds of weights:
fweights, or frequency weights; pweights, or sampling weights; aweights, or analytic weights; and
iweights, or importance weights. The syntax for using each is the same. Type

. regress y x1 x2
and you obtain unweighted estimates; type
. regress y x1 x2 [pweight=pop]
and you obtain (in this example) pweighted estimates.

The sections below explain how each type of weight is used in estimation.


https://www.stata.com/manuals/u11.pdf#u11.1.6weight
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20.24.1 Frequency weights

Frequency weights—fweights—are integers and are nothing more than replication counts. The
weight is statistically uninteresting, but from a data-processing perspective it is important. Consider the
following data,

y x1 x2
22 1 0
22 1 0
22 1 1
23 0 1
23 0 1
23 0 1

and the estimation command

. regress y x1 x2

Equivalent is the following, more compressed data,

y x1 x2 pop
22 1 0 2
22 1 1 1
23 0 1 3

and the corresponding estimation command

. regress y x1 x2 [fweight=pop]

When you specify frequency weights, you are treating each observation as one or more real observations.

Q Technical note

You might occasionally run across a command that does not allow weights at all, especially among
community-contributed commands. You can use expand (see [D] expand) with such commands to obtain
frequency-weighted results. The expand command duplicates observations so that the data become self-
weighting. Suppose that you want to run the command usercmd, which does something or other, and
you would like to type usercmd y x1 x2 [fw=pop]. Unfortunately, usercmd does not allow weights.
Instead, you type

. expand pop

. usercmd y x1 x2

to obtain your result. Moreover, there is an important principle here: the results of running any command
with frequency weights should be the same as running the command on the unweighted, expanded data.
Unweighted, duplicated data and frequency-weighted data are merely two ways of recording identical
information.

a

20.24.2 Analytic weights

Analytic weights—analytic is a term we made up—statistically arise in one particular problem: linear
regression on data that are themselves observed means. That is, think of the model

v, =x,0+¢;, €, ~ N(0,0?)


https://www.stata.com/manuals/dexpand.pdf#dexpand
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and now think about fitting this model on data @j, X;) that are themselves observed averages. For in-

stance, a piece of the underlying data for (y;, x;) might be (3, 1), (4,2), and (2, 2), but you do not know
that. Instead, you have one observation {(3 +4 +2)/3,(1 +2+2)/3} = (3, 1.67) and know only that
the (3, 1.67) arose as the average of three underlying observations. All your data are like that.

regress with aweights is the solution to that problem:

. regress y x [aweight=pop]

There is a history of misusing such weights. A researcher does not have cell-mean data but instead has a
probability-weighted random sample. Long before Stata existed, some researchers were using aweights
to produce estimates from such samples. We will come back to this point in [U] 20.24.3 Sampling
weights below.

Anyway, the statistical problem that aweights resolve can be written as
Y =x;B+e, e; ~ N(0,0° /w;)

where the w; are the analytic weights. The details of the solution are to make linear regression calcu-
lations using the weights as if they were fweights but to normalize them to sum to NV before doing
that.

Most commands that allow aweights handle them in this manner. That is, if you specify aweights,
they are

1. normalized to sum to /N and then
2. inserted in the calculation formulas in the same way as fweights.

While we focus on the use of aweights in linear regression above, aweights are allowed by com-
mands other than regress. These weights can be used more generally to account for observations that
have different variances or different precisions. In that sense, we could also refer to analytic weights as
precision weights.

20.24.3 Sampling weights

Sampling weights—probability weights or pweights—refer to probability-weighted random sam-
ples. Actually, what you specify in [pweight=...] is a variable recording the number of subjects in the
full population that the sampled observation in your data represents. That is, an observation that had
probability 1/3 of being included in your sample has pweight 3.

Some researchers have used aweights with these kinds of data. If they do, they are probably making
a mistake. Consider the regression model

v, =x,0+¢;, €; ~ N(0,07)

Begin by considering the exact nature of the problem of fitting this model on cell-mean data— for
which aweights are the solution: heteroskedasticity arising from the grouping. The error term ¢, is
homoskedastic (meaning that it has constant variance o2). Say that the first observation in the data is the
mean of three underlying observations. Then,

Y1 =% 8+ ¢y, e ~ N(0,0?)

Ya :X2/8+€23 €9 NN(070'2)
Ys = X33 + €3, €3 ~ N(0,0?)


https://www.stata.com/manuals/u20.pdf#u20.24.3Samplingweights
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and taking the mean,

(Y1 +y2 +y3)/3 ={(x; + X3 +X3)/3}B+ (e + €, +€3)/3

For another observation in the data—which may be the result of summing a different number of obser-
vations—the variance will be different. Hence, the model for the data is

Y, =T,8+%, €~ N(0,0%/N;)

This makes intuitive sense. Consider two observations, one recording means over 2 subjects and the
other recording means over 100,000 subjects. You would expect the variance of the residual to be less
in the 100,000-subject observation; that is, there is more information in the 100,000-subject observation
than in the 2-subject observation.

Now instead say that you are fitting the same model, y, = x,;3 + ¢;, €, ~ N(0, o%), on probability-

weighted data. Each observation in your data is one subject, but the different subjects have different
chances of being included in your sample. Therefore, for each subject in your data,

v, =x,0+¢;, €~ N(0,0?)

That is, there is no heteroskedasticity problem. The use of the aweighted estimator cannot be justified
on these grounds.

As a matter of fact, from the argument just given, you do not need to adjust for the weights at all,
although the argument does not justify not making an adjustment. If you do not adjust, you are holding
tightly to the assumed truth of your model. Two issues arise when considering adjustment for sampling
weights:

1. the efficiency of the point estimate E of 3 and
2. the reported standard errors (and, more generally, the variance matrix of B).

Efficiency argues in favor of adjustment, and that, by the way, is why many researchers have used
aweights with pweighted data. The adjustment implied by pweights to the point estimates is the
same as the adjustment implied by aweights.

With regard to the second issue, the use of aweights produces incorrect results because it interprets
larger weights as designating more accurately measured points. For pweights, however, the point is
no more accurately measured—it is still just one observation with one residual ¢, and variance o?. In
[U] 20.22 Obtaining robust variance estimates above, we introduced another estimator of variance
that measures the variation that would be observed if the data collection followed by the estimation were
repeated. Those same formulas provide the solution to pweights, and they have the added advantage
that they are not conditioned on the model being true. If we have any hopes of measuring the variation
that would be observed were the data collection followed by estimation repeated, we must include the
probability of the observations being sampled in the calculation.

In Stata, when you type
. regress y x1 x2 [pw=popl
the results are the same as if you had typed

. regress y x1 x2 [pw=popl, vce(robust)

That is, specifying pweights implies the vce (robust) option and, hence, the robust variance calculation
(but weighted). In this example, we use regress simply for illustration. The same is true of probit
and all of Stata’s estimation commands. Estimation commands that do not have a vce (robust) option
(there are a few) do not allow pweights.


https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
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pweights are adequate for handling random samples where the probability of being sampled varies.
pweights may be all you need. If, however, the observations are not sampled independently but are
sampled in groups—called clusters in the jargon—you should specify the estimator’s vce (cluster
clustvar) option as well:

. regress y x1 x2 [pw=pop], vce(cluster block)

There are two ways of thinking about this:

1. The robust estimator answers the question of which variation would be observed were the data
collection followed by the estimation repeated; if that question is to be answered, the estimator
must account for the clustered nature of how observations are selected. If observations 1 and 2 are
in the same cluster, then you cannot select observation 1 without selecting observation 2 (and, by
extension, you cannot select observations like 1 without selecting observations like 2).

2. If you prefer, you can think about potential correlations. Observations in the same cluster may not
really be independent—that is an empirical question to be answered by the data. For instance, if
the clusters are neighborhoods, it would not be surprising that the individual neighbors are similar
in their incomes, their tastes, and their attitudes, and even more similar than two randomly drawn
persons from the area at large with similar characteristics, such as age and sex.

Either way of thinking leads to the same (robust) estimator of variance.

Sampling weights usually arise from complex sampling designs, which often involve not only unequal
probability sampling and cluster sampling but also stratified sampling. There is a family of commands
in Stata designed to work with the features of complex survey data, and those are the commands that
begin with svy. To fit a linear regression model with stratification, for example, you would use the
svy: regress command.

Non-svy commands that allow pweights and clustering give essentially identical results to the svy
commands. If the sampling design is simple enough that it can be accommodated by the non-svy com-
mand, that is a fine way to perform the analysis. The svy commands differ in that they have more
features, and they do all the little details correctly for real survey data. See [SVY] Survey for a brief
discussion of some of the issues involved in the analysis of survey data and for a list of all the differences
between the svy and non-svy commands.

Not all model estimation commands in Stata allow pweights. This is often because they are compu-
tationally or statistically difficult to implement.

20.24.4 Importance weights

Stata’s iweights—importance weights—are the emergency exit. These weights are for those who
want to take control and create special effects. For example, programmers have used regress with
iweights to compute iteratively reweighted least-squares solutions for various problems.

iweights are treated much like aweights, except that they are not normalized. Stata’s iweight rule
is that

1. the weights are not normalized and

2. they are generally inserted into calculation formulas in the same way as fweights. There are
exceptions; see the Methods and formulas for the particular command.

iweights are used mostly by programmers who are often on the way to implementing one of the other
kinds of weights.


https://www.stata.com/manuals/svysurvey.pdf#svySurvey
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20.25 A list of postestimation commands

The following commands can be used after estimation:

contrast
estat ic

estat summarize

contrasts and ANOVA-style joint tests of parameters

Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification

*1rtest likelihood-ratio test

margins marginal means, predictive margins, and marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Also see [U] 13.5 Accessing coefficients and standard errors for accessing coefficients and standard

€ITOor1S.

The commands above are general-purpose postestimation commands that can be used after almost

all estimation commands. Many estimation commands provide other estimator-specific postestimation
commands. You can see the full list of postestimation commands available for an estimator by looking in
the entry titled estimator postestimation that immediately follows each estimator’s entry in the reference
manuals.

You can also see which postestimation commands are available by launching the Postestimation Selec-
tor; select Statistics > Postestimation. You will see a list of all postestimation features that are available
for the active estimation results. This list is automatically updated when a new estimation command is
run or estimates are restored from memory or disk. See [R] postest for more details.
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