
13 Functions and expressions

Contents
13.1 Overview
13.2 Operators

13.2.1 Arithmetic operators
13.2.2 String operators
13.2.3 Relational operators
13.2.4 Logical operators
13.2.5 Order of evaluation, all operators

13.3 Functions
13.4 System variables ( variables)
13.5 Accessing coefficients and standard errors

13.5.1 Single-equation models
13.5.2 Multiple-equation models
13.5.3 Factor variables and time-series operators

13.6 Accessing results from Stata commands
13.7 Explicit subscripting

13.7.1 Generating lags and leads
13.7.2 Subscripting within groups

13.8 Using the Expression Builder
13.9 Indicator values for levels of factor variables
13.10 Time-series operators

13.10.1 Generating lags, leads, and differences
13.10.2 Time-series operators and factor variables
13.10.3 Operators within groups
13.10.4 Video example

13.11 Label values
13.12 Precision and problems therein
13.13 References

If you have not read [U] 11 Language syntax, please do so before reading this entry.

1

https://www.stata.com/manuals/u11.pdf#u11Languagesyntax


2 [ U ] 13 Functions and expressions

13.1 Overview
Examples of expressions include

2+2
miles/gallons
myv+2/oth
(myv+2)/oth
ln(income)
age<25 & income>50000
age<25 | income>50000
age==25
name=="M Brown"
fname + " " + lname
substr(name,1,10)
val[ n-1]
L.gnp

Expressions like those above are allowed anywhere exp appears in a syntax diagram. One example
is [D] generate:

generate newvar = exp
[

if
] [

in
]

The first exp specifies the contents of the new variable, and the optional second expression restricts
the subsample over which it is to be defined. Another is [R] summarize:

summarize
[

varlist
] [

if
] [

in
]

The optional expression restricts the sample over which summary statistics are calculated.

Algebraic and string expressions are specified in a natural way using the standard rules of hierarchy.
You may use parentheses freely to force a different order of evaluation.

Example 1

myv+2/oth is interpreted as myv+(2/oth). If you wanted to change the order of the evaluation,
you could type (myv+2)/oth.

13.2 Operators
Stata has four different classes of operators: arithmetic, string, relational, and logical. Each type

is discussed below.

13.2.1 Arithmetic operators

The arithmetic operators in Stata are + (addition), - (subtraction), * (multiplication), / (division),
^ (raise to a power), and the prefix - (negation). Any arithmetic operation on a missing value or an
impossible arithmetic operation (such as division by zero) yields a missing value.

https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.5=exp
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rsummarize.pdf#rsummarize
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange


[ U ] 13 Functions and expressions 3

Example 2

The expression -(x+y^(x-y))/(x*y) denotes the formula

−x+ yx−y

x · y

and evaluates to missing if x or y is missing or zero.

13.2.2 String operators

The + and * signs are also used as string operators.

+ is used for the concatenation of two strings. Stata determines by context whether + means
addition or concatenation. If + appears between two numeric values, Stata adds them. If + appears
between two strings, Stata concatenates them.

Example 3

The expression "this"+"that" results in the string "thisthat", whereas the expression 2+3
results in the number 5. Stata issues the error message “type mismatch” if the arguments on either
side of the + sign are not of the same type. Thus the expression 2+"this" is an error, as is 2+"3".

The expressions on either side of the + can be arbitrarily complex:
substr(string(20+2),1,1) + strupper(substr("rf",1+1,1))

The result of the above expression is the string "2F". See [FN] String functions for a description of
the substr(), string(), and strupper() functions.

* is used to duplicate a string 0 or more times. Stata determines by context whether * means
multiplication or string duplication. If * appears between two numeric values, Stata multiplies them.
If * appears between a string and a numeric value, Stata duplicates the string as many times as the
numeric value indicates.

Example 4

The expression "this"*3 results in the string "thisthisthis", whereas the expression 2*3
results in the number 6. Stata issues the error message “type mismatch” if the arguments on either
side of the * sign are both strings. Thus the expression "this"*"that" is an error.

As with string concatenation above, the arguments can be arbitrarily complex.

https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctions
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionssubstr()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstring()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstrupper()


4 [ U ] 13 Functions and expressions

13.2.3 Relational operators

The relational operators are > (greater than), < (less than), >= (greater than or equal), <= (less than
or equal), == (equal), and != (not equal). Observe that the relational operator for equality is a pair
of equal signs. This convention distinguishes relational equality from the =exp assignment phrase.

Technical note

You may use ~ anywhere ! would be appropriate to represent the logical operator “not”. Thus the
not-equal operator may also be written as ~=.

Relational expressions are either true or false. Relational operators may be used on either numeric
or string subexpressions; thus, the expression 3>2 is true, as is "zebra">"cat". In the latter case, the
relation merely indicates that "zebra" comes after the word "cat" in the dictionary. All uppercase
letters precede all lowercase letters in Stata’s book, so "cat">"Zebra" is also true.

Missing values may appear in relational expressions. If x were a numeric variable, the expression
x>=. is true if x is missing and false otherwise. A missing value is greater than any nonmissing
value; see [U] 12.2.1 Missing values.

Example 5

You have data on age and income and wish to list the subset of the data for persons aged 25
years or less. You could type

. list if age<=25

If you wanted to list the subset of data of persons aged exactly 25, you would type

. list if age==25

Note the double equal sign. It would be an error to type list if age=25.

Although it is convenient to think of relational expressions as evaluating to true or false, they
actually evaluate to numbers. A result of true is defined as 1 and false is defined as 0.

Example 6

The definition of true and false makes it easy to create indicator, or dummy, variables. For instance,

generate incgt10k=income>10000

creates a variable that takes on the value 0 when income is less than or equal to $10,000, and 1 when
income is greater than $10,000. Because missing values are greater than all nonmissing values, the
new variable incgt10k will also take on the value 1 when income is missing. It would be safer to
type

generate incgt10k=income>10000 if income<.

Now, observations in which income is missing will also contain missing in incgt10k. See
[U] 26 Working with categorical data and factor variables for more examples.

https://www.stata.com/manuals/u12.pdf#u12.2.1Missingvalues
https://www.stata.com/manuals/u26.pdf#u26Workingwithcategoricaldataandfactorvariables


[ U ] 13 Functions and expressions 5

Technical note
Although you will rarely wish to do so, because arithmetic and relational operators both evaluate

to numbers, there is no reason you cannot mix the two types of operators in one expression. For
instance, (2==2)+1 evaluates to 2, because 2==2 evaluates to 1, and 1 + 1 is 2.

Relational operators are evaluated after all arithmetic operations. Thus the expression (3>2)+1 is
equal to 2, whereas 3>2+1 is equal to 0. Evaluating relational operators last guarantees the logical
(as opposed to the numeric) interpretation. It should make sense that 3>2+1 is false.

13.2.4 Logical operators

The logical operators are & (and), | (or), and ! (not). The logical operators interpret any nonzero
value (including missing) as true and zero as false.

Example 7

If you have data on age and income and wish to list data for persons making more than $50,000
along with persons under the age of 25 making more than $30,000, you could type

list if income>50000 | income>30000 & age<25

The & takes precedence over the |. If you were unsure, however, you could have typed

list if income>50000 | (income>30000 & age<25)

In either case, the statement will also list all observations for which income is missing, because
missing is greater than 50,000.

Technical note
Like relational operators, logical operators return 1 for true and 0 for false. For example, the

expression 5 & . evaluates to 1. Logical operations, except for !, are performed after all arithmetic
and relational operations; the expression 3>2 & 5>4 is interpreted as (3>2) & (5>4) and evaluates
to 1.

13.2.5 Order of evaluation, all operators

The order of evaluation (from first to last) of all operators is ! (or ~), ^, - (negation), /, *, -
(subtraction), +, != (or ~=), >, <, <=, >=, ==, &, and |.

13.3 Functions
Stata provides mathematical functions, probability and density functions, matrix functions, string

functions, functions for dealing with dates and time series, and a set of special functions for
programmers. You can find all of these documented in the Stata Functions Reference Manual. Stata’s
matrix programming language, Mata, provides more functions and those are documented in the Mata
Reference Manual or in the help documentation (type help mata functions).

https://www.stata.com/manuals/fnfn.pdf#fnfnFunctions
https://www.stata.com/manuals/m-0m.pdf#m-0mMata
https://www.stata.com/manuals/m-0m.pdf#m-0mMata


6 [ U ] 13 Functions and expressions

Functions are merely a set of rules; you supply the function with arguments, and the function
evaluates the arguments according to the rules that define the function. Because functions are essentially
subroutines that evaluate arguments and cause no action on their own, functions must be used in
conjunction with a Stata command. Functions are indicated by the function name, an open parenthesis,
an expression or expressions separated by commas, and a close parenthesis.

For example,

. display sqrt(4)
2

or

. display sqrt(2+2)
2

demonstrates the simplest use of a function. Here we have used the mathematical function, sqrt(),
which takes one number (or expression) as its argument and returns its square root. The function was
used with the Stata command display. If we had simply typed

. sqrt(4)

Stata would have returned the error message

command sqrt is unrecognized
r(199);

Functions can operate on variables, as well. For example, suppose that you wanted to generate a
random variable that has observations drawn from a lognormal distribution. You could type

. set obs 5
Number of observations (_N) was 0, now 5

. generate y = runiform()

. replace y = invnormal(y)
(5 real changes made)

. replace y = exp(y)
(5 real changes made)

. list

y

1. .686471
2. 2.380994
3. .2814537
4. 1.215575
5. .2920268

You could have saved yourself some typing by typing just

. generate y = exp(rnormal())

Functions accept expressions as arguments.

All functions are defined over a specified domain and return values within a specified range.
Whenever an argument is outside a function’s domain, the function will return a missing value or
issue an error message, whichever is most appropriate. For example, if you supplied the log()
function with an argument of zero, the log(0) would return a missing value because zero is outside
the natural logarithm function’s domain. If you supplied the log() function with a string argument,
Stata would issue a “type mismatch” error because log() is a numerical function and is undefined

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(199)


[ U ] 13 Functions and expressions 7

for strings. If you supply an argument that evaluates to a value that is outside the function’s range,
the function will return a missing value. Whenever a function accepts a string as an argument, the
string must be enclosed in double quotes, unless you provide the name of a variable that has a string
storage type.

13.4 System variables ( variables)
Expressions may also contain variables (pronounced “underscore variables”), which are built-in

system variables that are created and updated by Stata. They are called variables because their names
all begin with the underscore character, “ ”.

The variables are

n contains the number of the current observation.

N contains the total number of observations in the dataset or the number of observations in the
current by() group.

pi contains the value of π to machine precision.

rc contains the value of the return code from the most recent capture command.

[eqno] b[varname] (synonym: [eqno] coef[varname]) contains the value (to machine pre-
cision) of the coefficient on varname from the most recently fitted model (such as ANOVA,
regression, Cox, logit, probit, and multinomial logit). See [U] 13.5 Accessing coefficients and
standard errors below for a complete description.

[eqno] se[varname] contains the value (to machine precision) of the standard error of the
coefficient on varname from the most recently fit model (such as ANOVA, regression, Cox, logit,
probit, and multinomial logit). See [U] 13.5 Accessing coefficients and standard errors below
for a complete description.

cons is always equal to the number 1 when used directly and refers to the intercept term when
used indirectly, as in b[ cons].

[eqno] r b[varname] contains the value (to machine precision) of the coefficient or transformed
coefficient on varname from the most recently fitted model.

[eqno] r se[varname] contains the value (to machine precision) of the standard error of the
coefficient or transformed coefficient on varname from the most recently fit model.

[eqno] r z[varname] contains the value (to machine precision) of the test statistic for the
coefficient on varname from the most recently fitted model.

[eqno] r z abs[varname] contains the absolute value (to machine precision) of the test statistic
for the coefficient on varname from the most recently fitted model.

[eqno] r df[varname] contains the degrees of freedom for the coefficient on varname from the
most recently fitted model.

[eqno] r p[varname] contains the p-value (to machine precision) of the test statistic for the
coefficient on varname from the most recently fitted model.

[eqno] r lb[varname] contains the lower-bound value (to machine precision) of the confidence
interval for the coefficient or transformed coefficient on varname from the most recently fitted
model.

[eqno] r ub[varname] contains the upper-bound value (to machine precision) of the confidence
interval for the coefficient or transformed coefficient on varname from the most recently fitted
model.



8 [ U ] 13 Functions and expressions

[eqno] r crlb[varname] contains the lower-bound value (to machine precision) of the credible
interval for the Bayesian estimate on varname from the most recently fitted model.

[eqno] r crub[varname] contains the upper-bound value (to machine precision) of the credible
interval for the Bayesian estimate on varname from the most recently fitted model.

13.5 Accessing coefficients and standard errors
After fitting a model, you can access the coefficients and standard errors and use them in subsequent

expressions. Also see [R] predict (and [U] 20 Estimation and postestimation commands) for an
easier way to obtain predictions, residuals, and the like.

13.5.1 Single-equation models

First, let’s consider estimation methods that yield one estimated equation with a one-to-one
correspondence between coefficients and variables such as logit, ologit, oprobit, probit,
regress, and tobit. b[varname] (synonym coef[varname]) contains the coefficient on varname
and se[varname] contains its standard error, and both are recorded to machine precision. Thus
b[age] refers to the calculated coefficient on the age variable after typing, say, regress response

age sex, and se[age] refers to the standard error on the coefficient. b[ cons] refers to the
constant and se[ cons] to its standard error. Thus you might type

. regress response age sex

. generate asif = _b[_cons] + _b[age]*age

13.5.2 Multiple-equation models

The syntax for referring to coefficients and standard errors in multiple-equation models is the same
as in the simple-model case, except that b[ ] and se[ ] are preceded by an equation number in
square brackets. There are, however, many alternatives in how you may type requests. The way that
you are supposed to type requests is

[eqno] b[varname]
[eqno] se[varname]

but you may substitute coef[ ] for b[ ]. In fact, you may omit the b[ ] altogether, and most
Stata users do:

[eqno][varname]

You may also omit the second pair of square brackets:
[eqno]varname

You may retain the b[] or se[] and insert a colon between eqno and varname:
b[eqno:varname]

There are two ways to specify the equation number eqno: either as an absolute equation number or
as an “indirect” equation number. In the absolute form, the number is preceded by a ‘#’ sign. Thus
[#1]displ refers to the coefficient on displ in the first equation (and [#1] se[displ] refers to
its standard error). You can even use this form for simple models, such as regress, if you prefer.
regress estimates one equation, so [#1]displ refers to the coefficient on displ, just as b[displ]
does. Similarly, [#1] se[displ] and se[displ] are equivalent. The logic works both ways—in
the multiple-equation context, b[displ] refers to the coefficient on displ in the first equation
and se[displ] refers to its standard error. b[varname] ( se[varname]) is just another way of
saying [#1]varname ([#1] se[varname]).

https://www.stata.com/manuals/rpredict.pdf#rpredict
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands


[ U ] 13 Functions and expressions 9

Equations may also be referred to indirectly. [res]displ refers to the coefficient on displ in the
equation named res. Equations are often named after the corresponding dependent variable name if
there is such a concept in the fitted model, so [res]displ might refer to the coefficient on displ
in the equation for variable res.

For multinomial logit (mlogit), multinomial probit (mprobit), and similar commands, equations
are named after the levels of the single dependent categorical variable. In these models, there is one
dependent variable, and there is an equation corresponding to each of the outcomes (values taken
on) recorded in that variable, except for the one that is taken to be the base outcome. [res]displ
would be interpreted as the coefficient on displ in the equation corresponding to the outcome res.
If outcome res is the base outcome, Stata treats [res]displ as zero (and Stata does the same for
[res] se[displ]).

Continuing with the multinomial outcome case: the outcome variable must be numeric. The syntax
[res]displ would be understood only if there were a value label associated with the numeric
outcome variable and res were one of the labels. If your data are not labeled, then you can use the
usual multiple-equation syntax [##]varname and [##] se[varname] to refer to the coefficient and
standard error for variable varname in the #th equation.

For mlogit, if your data are not labeled, you can also use the syntax [#]varname and
[#] se[varname] (without the ‘#’) to refer to the coefficient and standard error for varname
in the equation for outcome #.

13.5.3 Factor variables and time-series operators

We refer to time-series–operated variables exactly as we refer to normal variables. We type the name
of the variable, which for time-series–operated variables includes the operators; see [U] 11.4.4 Time-
series varlists. You might type

. regress open L.close LD.volume

. display _b[L.close]

. display _b[LD.volume]

We cannot refer to factor variables such as i.group in expressions. Assuming that i.group has
three levels, i.group represents three virtual indicator variables—1b.group, 2.group, and 3.group.
We can refer to the indicator variables in expressions by typing, for example, b[i2.group] or just
b[2.group]. That is to say, we include the operators and the levels of the factor variables when

typing the indicator-variable name. Consider a regression using factor variables:

https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists


10 [ U ] 13 Functions and expressions

. use https://www.stata-press.com/data/r18/fvex, clear
(Artificial factor variables’ data)

. regress y i.sex i.group sex#group age sex#c.age

Source SS df MS Number of obs = 3,000
F(7, 2992) = 80.84

Model 221310.507 7 31615.7868 Prob > F = 0.0000
Residual 1170122.5 2,992 391.083723 R-squared = 0.1591

Adj R-squared = 0.1571
Total 1391433.01 2,999 463.965657 Root MSE = 19.776

y Coefficient Std. err. t P>|t| [95% conf. interval]

sex
female 32.29378 3.782064 8.54 0.000 24.87807 39.70949

group
2 9.477077 1.624075 5.84 0.000 6.292659 12.66149
3 18.31292 1.776337 10.31 0.000 14.82995 21.79588

sex#group
female#2 -6.621804 2.021384 -3.28 0.001 -10.58525 -2.658361
female#3 -10.48293 3.209 -3.27 0.001 -16.775 -4.190858

age -.212332 .0538345 -3.94 0.000 -.3178884 -.1067756

sex#c.age
female -.226838 .0745707 -3.04 0.002 -.3730531 -.0806229

_cons 60.48167 2.842955 21.27 0.000 54.90732 66.05601

If we want to use the coefficient for level 2 of group in an expression, we type b[2.group]; for
level 3, we type b[3.group]. To refer to the coefficient of an interaction of two levels of two factor
variables, we specify the interaction operator and the level of each variable. For example, to use the
coefficient for sex = 1 (female) and group = 2, we type b[1.sex#2.group]. (We determined
that 1 was the level corresponding to female by typing label list.) When one of the variables in
an interaction is continuous, we can make that explicit, b[1.sex#c.age], or we can leave off the
c., b[1.sex#age].

Referring to interactions is more challenging than referring to normal variables. It is also more
challenging to refer to coefficients from estimators that use multiple equations. If you find it difficult
to know what to type for a coefficient, replay your estimation results using the coeflegend option.



[ U ] 13 Functions and expressions 11

. regress, coeflegend

Source SS df MS Number of obs = 3,000
F(7, 2992) = 80.84

Model 221310.507 7 31615.7868 Prob > F = 0.0000
Residual 1170122.5 2,992 391.083723 R-squared = 0.1591

Adj R-squared = 0.1571
Total 1391433.01 2,999 463.965657 Root MSE = 19.776

y Coefficient Legend

sex
female 32.29378 _b[1.sex]

group
2 9.477077 _b[2.group]
3 18.31292 _b[3.group]

sex#group
female#2 -6.621804 _b[1.sex#2.group]
female#3 -10.48293 _b[1.sex#3.group]

age -.212332 _b[age]

sex#c.age
female -.226838 _b[1.sex#c.age]

_cons 60.48167 _b[_cons]

The Legend column shows you exactly what to type to refer to any coefficient in the estimation.

If your estimation results have both equations and factor variables, nothing changes from what we
said in [U] 13.5.2 Multiple-equation models above. What you type for varname is just a little more
complicated.

13.6 Accessing results from Stata commands
Most Stata commands—not just estimation commands—store results so that you can access them

in subsequent expressions. You do that by referring to e(name), r(name), s(name), or c(name).
. summarize age

. generate agedev = age-r(mean)

. regress mpg weight

. display "The number of observations used is " e(N)

Most commands are categorized as r-class, meaning that they store results in r(). The returned
results—such as r(mean)—are available immediately following the command, and if you are going
to refer to them, you need to refer to them soon because the next command will probably replace
what is in r().

e-class commands are Stata’s estimation commands—commands that fit models. Results in e()
remain available until the next model is fit.

s-class commands are parsing commands—commands used by programmers to interpret commands
you type. Few commands store anything in s().

There are no c-class commands. c() contains values that are always available, such as
c(current date) (today’s date), c(pwd) (the current directory), c(N) (the number of observations),
and so on. There are many c() values and they are documented in [P] creturn.

https://www.stata.com/manuals/pcreturn.pdf#pcreturn


12 [ U ] 13 Functions and expressions

Every command of Stata is designated r-class, e-class, or s-class, or, if the command stores nothing,
n-class. r stands for return as in returned results, e stands for estimation as in estimation results, s
stands for string, and, admittedly, this last acronym is weak, n stands for null.

You can find out what is stored where by looking in the Stored results section for the particular
command in the Reference manual. If you know the class of a command—and it is easy enough to
guess—you can also see what is stored by typing return list, ereturn list, or sreturn list:

See [R] Stored results and [U] 18.8 Accessing results calculated by other programs.

13.7 Explicit subscripting
Individual observations on variables can be referred to by subscripting the variables. Explicit

subscripts are specified by following a variable name with square brackets that contain an expression.
The result of the subscript expression is truncated to an integer, and the value of the variable for the
indicated observation is returned. If the value of the subscript expression is less than 1 or greater
than N, a missing value is returned.

13.7.1 Generating lags and leads

When you type something like
. generate y = x

Stata interprets it as if you typed
. generate y = x[_n]

which means that the first observation of y is to be assigned the value from the first observation of
x, the second observation of y is to be assigned the value from the second observation on x, and so
on. If you instead typed

. generate y = x[1]

you would set each observation of y equal to the first observation on x. If you typed
. generate y = x[2]

you would set each observation of y equal to the second observation on x. If you typed
. generate y = x[0]

Stata would merely copy a missing value into every observation of y because observation 0 does not
exist. The same would happen if you typed

. generate y = x[100]

and you had fewer than 100 observations in your data.

When you type the square brackets, you are specifying explicit subscripts. Explicit subscripting
combined with the variable n can be used to create lagged values on a variable. The lagged value
of a variable x can be obtained by typing

. generate xlag = x[_n-1]

If you are really interested in lags and leads, you probably have time-series data and would be better
served by using the time-series operators, such as L.x. Time-series operators can be used with varlists
and expressions and they are safer because they account for gaps in the data; see [U] 11.4.4 Time-series
varlists and [U] 13.10 Time-series operators. Even so, it is important that you understand how the
above works.

https://www.stata.com/manuals/rstoredresults.pdf#rStoredresults
https://www.stata.com/manuals/u18.pdf#u18.8Accessingresultscalculatedbyotherprograms
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists


[ U ] 13 Functions and expressions 13

The built-in underscore variable n is understood by Stata to mean the observation number of the
current observation. That is why

. generate y = x[_n]

results in observation 1 of x being copied to observation 1 of y and similarly for the rest of the
observations. Consider

. generate xlag = x[_n-1]

n-1 evaluates to the observation number of the previous observation. For the first observation,
n-1 = 0 and therefore xlag[1] is set to missing. For the second observation, n-1 = 1 and

xlag[2] is set to the value of x[1], and so on.

Similarly, the lead of x can be created by
. generate xlead = x[_n+1]

Here the last observation on the new variable xlead will be missing because n+1 will be greater
than N ( N is the total number of observations in the dataset).

13.7.2 Subscripting within groups

When a command is preceded by the by varlist: prefix, subscript expressions and the underscore
variables n and N are evaluated relative to the subset of the data currently being processed. For
example, consider the following (admittedly not very interesting) data:

. use https://www.stata-press.com/data/r18/gxmpl6

. list

bvar oldvar

1. 1 1.1
2. 1 2.1
3. 1 3.1
4. 2 4.1
5. 2 5.1

To see how n, N, and explicit subscripting work, let’s create three new variables demonstrating
each and then list their values:

. generate small_n = _n

. generate big_n = _N

. generate newvar = oldvar[1]

. list

bvar oldvar small_n big_n newvar

1. 1 1.1 1 5 1.1
2. 1 2.1 2 5 1.1
3. 1 3.1 3 5 1.1
4. 2 4.1 4 5 1.1
5. 2 5.1 5 5 1.1

small n (which is equal to n) goes from 1 to 5, and big n (which is equal to N) is 5. This should
not be surprising; there are 5 observations in the data, and n is supposed to count observations,
whereas N is the total number. newvar, which we defined as oldvar[1], is 1.1. Indeed, we see
that the first observation on oldvar is 1.1.



14 [ U ] 13 Functions and expressions

Now, let’s repeat those same three steps, only this time preceding each step with the prefix by
bvar:. First, we will drop the old values of small n, big n, and newvar so that we start fresh:

. drop small_n big_n newvar

. by bvar, sort: generate small_n=_n

. by bvar: generate big_n =_N

. by bvar: generate newvar=oldvar[1]

. list

bvar oldvar small_n big_n newvar

1. 1 1.1 1 3 1.1
2. 1 2.1 2 3 1.1
3. 1 3.1 3 3 1.1
4. 2 4.1 1 2 4.1
5. 2 5.1 2 2 4.1

The results are different. Remember that we claimed that n and N are evaluated relative to the
subset of data in the by-group. Thus small n ( n) goes from 1 to 3 for bvar = 1 and from 1 to 2
for bvar = 2. big n ( N) is 3 for the first group and 2 for the second. Finally, newvar (oldvar[1])
is 1.1 and 4.1.

Example 8

You now know enough to do some amazing things.

Suppose that you have data on individual states and you have another variable in your data called
region that divides the states into the four census regions. You have a variable x in your data, and
you want to make a new variable called avgx to include in your regressions. This new variable is to
take on the average value of x for the region in which the state is located. Thus, for California, you
will have the observation on x and the observation on the average value in the region, avgx. Here is
how:

. by region, sort: generate avgx=sum(x)/_n

. by region: replace avgx=avgx[_N]

First, by region, we generate avgx equal to the running sum of x divided by the number of
observations so far. The , sort ensures that the data are in region order. We have, in effect, created
the running average of x within region. It is the last observation of this running average, the overall
average within the region, that interests us. So, by region, we replace every avgx observation
in a region with the last observation within the region, avgx[ N].

Here is what we will see when we type these commands:

. use https://www.stata-press.com/data/r18/gxmpl7, clear

. by region, sort: generate avgx=sum(x)/_n

. by region: replace avgx=avgx[_N]
(46 real changes made)

In our example, there are no missing observations on x. If there had been, we would have obtained
the wrong answer. When we created the running average, we typed

. by region, sort: generate avgx=sum(x)/_n



[ U ] 13 Functions and expressions 15

The problem is not with the sum() function. When sum() encounters a missing, it adds zero to
the sum. The problem is with n. Let’s assume that the second observation in the first region has
recorded a missing for x. When Stata processes the third observation in that region, it will calculate
the sum of two elements (remember that one is missing) and then divide the sum by 3 when it should
be divided by 2. There is an easy solution:

. by region: generate avgx=sum(x)/sum(x<.)

Rather than divide by n, we divide by the total number of nonmissing observations seen on x so
far, namely, the sum(x<.).

If our goal were simply to obtain the mean, we could have more easily accomplished it by typing
egen avgx=mean(x), by(region); see [D] egen. egen, however, is written in Stata, and the above
is how egen’s mean() function works. The general principles are worth understanding.

Example 9

You have some patient data recording vital signs at various times during an experiment. The
variables include patient, an ID number or name of the patient; time, a variable recording the date
or time or epoch of the vital-sign reading; and vital, a vital sign. You probably have more than
one vital sign, but one is enough to illustrate the concept. Each observation in your data represents
a patient-time combination.

Let’s assume that you have 1,000 patients and, for every observation on the same patient, you
want to create a new variable called orig that records the patient’s initial value of this vital sign.

. use https://www.stata-press.com/data/r18/gxmpl8, clear

. sort patient time

. by patient: generate orig=vital[1]

Observe that vital[1] refers not to the first reading on the first patient but to the first reading on
the current patient, because we are performing the generate command by patient.

Example 10

Let’s do one more example with these patient data. Suppose that we want to create a new dataset
from our patient data that record not only the patient’s identification, the time of the reading of the
first vital sign, and the first vital sign reading itself, but also the time of the reading of the last vital
sign and its value. We want 1 observation per patient. Here’s how:

. sort patient time

. by patient: generate lasttime=time[_N]

. by patient: generate lastvital=vital[_N]

. by patient: drop if _n!=1

See Mitchell (2020, chap. 8) for numerous examples of subscripting and subscripting within groups.

https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctionssum()
https://www.stata.com/manuals/degen.pdf#degen


16 [ U ] 13 Functions and expressions

13.8 Using the Expression Builder
The Expression Builder in Stata provides a convenient way to create expressions using any of the

methods described above. To access the Expression Builder, click on the Create... button in a dialog
box of any command that allows an exp.

Within the Expression Builder, you can interactively browse and then select almost anything you
would want to add to an expression: mathematical constants, variables, system limits, local and global
macros, dataset and variable notes, and more. This is especially useful for accessing estimation results
and system values when you may not immediately know the name.



[ U ] 13 Functions and expressions 17

You may also find the Expression Builder helpful if you want to use a function because a description
of each function, as well as the order of the arguments for each function, is provided at the bottom
of the dialog box when it is selected.

Watch a video example of using the Expression Builder.

13.9 Indicator values for levels of factor variables
Stata’s factor-variable features let us access virtual indicator variables for categorical variables and

their interactions; see [U] 11.4.3 Factor variables and [U] 26 Working with categorical data and
factor variables. We can use those virtual indicator variables in expressions just as though the virtual
variables existed in our data. If you have not read about factor-variable varlists in [U] 11.4.3 Factor
variables, do so now.

If group is a categorical variable taking on the value 1, 2, or 3, consider the expression

. generate group1 = 1.group

We have taken the virtual indicator variable that is 1 when group = 1 and 0 when group 6= 1
and made it into a real variable—group1. That is strictly true only if group is never missing. If
group can be missing, we need to add that 1.group is missing when group is missing.

These virtual variables extend to interactions. If we also have a variable, sex, that is 0 for males
and 1 for females, then

. generate sex0grp2 = 0.sex#2.group

creates the variable sex0grp2, which is 1 when sex = 0 and group = 2, . (missing) when sex or
group is missing, and 0 otherwise.

Virtual indicator variables can be used in any expression, including if expressions.

https://www.youtube.com/watch?v=SVaxqlWXJpc
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u26.pdf#u26Workingwithcategoricaldataandfactorvariables
https://www.stata.com/manuals/u26.pdf#u26Workingwithcategoricaldataandfactorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables


18 [ U ] 13 Functions and expressions

Technical note
We have been using the shorthand notation for virtual indicators that drops the i prefix. We

have written 2.group rather than i2.group. There are three cases where we cannot drop the i
prefix—when our variable name is e, d, or x. These three letters can be used to construct numbers
such as 1e-3, which can also be typed 1.e-3. If we have a variable named e, are we to interpret
1.e-3 as the number 0.001 or as the virtual indicator variable 1.e with the number 3 subtracted?
Because of longstanding precedent, it is interpreted as the number 0.001. If we want 1.e interpreted
as a virtual indicator, we must include the i prefix—i1.e.

13.10 Time-series operators
Time-series operators allow you to refer to the lag of gnp by typing L.gnp, the second lag by

typing L2.gnp, etc. There are also operators for lead (sometimes called forward; F), difference (D),
and seasonal difference (S).

Time-series operators can be used with varlists and with expressions. See [U] 11.4.4 Time-series
varlists if you have not read it already. This section has to do with using time-series operators in
expressions such as with generate. You do not have to create new variables; you can use the
time-series operated variables directly.

13.10.1 Generating lags, leads, and differences

In a time-series context, referring to L2.gnp is better than referring to gnp[ n-2] because there
might be missing observations. Pretend that observation 4 contains data for t = 25 and observation
5 data for t = 27. L2.gnp will still produce correct answers; L2.gnp for observation 5 will be the
value from observation 4 because the time-series operators look at t to find the relevant observation.
The more mechanical gnp[ n-2] just goes 2 observations back, which, here, would not produce the
desired result.

This same idea holds for differences. In our example, D.gnp will produce a missing value in
observation 5 (t = 27) because there is no data recorded for t = 26, and therefore there is no first
difference for t = 27.

Time-series operators can be used with varlists or with expressions, so you can type
. regress val L.gnp r

or
. generate gnplagged = L.gnp

. regress val gnplagged

Before you can type either one, however, you must use the tsset command to tell Stata the identity
of the time variable; see [TS] tsset. Once you have tsset the data, anyplace you see an exp in a
syntax diagram, you may type time series–operated variables, so you can type

. summarize r if F.gnp < gnp

or
. generate grew = 1 if gnp > L.gnp & L.gnp < .
. replace grew = 0 if grew >= . & L.gnp < .

or
. generate grew = (gnp > L.gnp) if L.gnp < .

https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/tstsset.pdf#tstsset


[ U ] 13 Functions and expressions 19

13.10.2 Time-series operators and factor variables

As with varlists, factor variables may be combined with the L. (lag) and F. (lead) time-series
operators in expressions. We can generate a variable containing the lag of the level 2 indicator of
group (group = 2) by typing

. generate lag2group = 2L.group

The operators can be combined anywhere expressions are allowed. We can select observations for
which the lag of the second level of group is 1 by typing if i2L.group.

They can be combined in interactions. We can generate the lag of the interaction of sex = 1 with
group = 3 by typing

. generate lag1sexX3grp = 1L.sex#2L.group

See [U] 11.4.3.6 Using factor variables with time-series operators and [U] 11.4.4 Time-series
varlists for more on factor variables and time-series operators.

13.10.3 Operators within groups

Stata also understands panel or cross-sectional time-series data. For instance, if you type

. tsset country time

you are declaring that you have time-series data. The time variable is time, and you have time-series
data for separate countries.

Once you have tsset both cross-sectional and time identifiers, you proceed just as you would if
you had a simple time series.

. generate grew = (gnp > L.gnp) if L.gnp < .

would produce correct results. The L. operator will not confuse the observation at the end of one
panel with the beginning of the next.

13.10.4 Video example

Time series, part 3: Time-series operators

13.11 Label values
If you have not read [U] 12.6 Dataset, variable, and value labels, please do so. You may use

labels in an expression in place of the numeric values with which they are associated. To use a label
in this way, type the label in double quotes followed by a colon and the name of the value label.

Example 11

If the value label yesno associates the label yes with 1 and no with 0, then "yes":yesno (said
aloud as the value of yes under yesno) is evaluated as 1. If the double-quoted label is not defined
in the indicated value label, or if the value label itself is not found, a missing value is returned. Thus
the expression "maybe":yesno is evaluated as missing.

https://www.stata.com/manuals/u11.pdf#u11.4.3.6Usingfactorvariableswithtime-seriesoperators
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.youtube.com/watch?v=ik8r4WvrPkc
https://www.stata.com/manuals/u12.pdf#u12.6Dataset,variable,andvaluelabels


20 [ U ] 13 Functions and expressions

. use https://www.stata-press.com/data/r18/gxmpl9, clear

. list

name answer

1. Mikulin no
2. Gaines no
3. Hilbe yes
4. DeLeon no
5. Cain no

6. Wann yes
7. Schroeder no
8. Cox no
9. Bishop no

10. Hardin yes

11. Lancaster yes
12. Poole no

. list if answer=="yes":yesno

name answer

3. Hilbe yes
6. Wann yes

10. Hardin yes
11. Lancaster yes

In the above example, the variable answer is not a string variable; it is a numeric variable that has
the associated value label yesno. Because yesno associates yes with 1 and no with 0, we could
have typed list if answer==1 instead of what we did type. We could not have typed list if
answer=="yes" because answer is not a string variable. If we had, we would have received the
error message “type mismatch”.

13.12 Precision and problems therein
Examine the following short Stata session:

. drop _all

. input x y

x y
1. 1 1.1
2. 2 1.2
3. 3 1.3
4. end

. count if x==1
1

. count if y==1.1
0



[ U ] 13 Functions and expressions 21

. list

x y

1. 1 1.1
2. 2 1.2
3. 3 1.3

We created a dataset containing two variables, x and y. The first observation has x equal to 1 and
y equal to 1.1. When we asked Stata to count the number of times that the variable x took on the
value 1, we were told that it occurred once. Yet when we asked Stata to count the number of times
y took on the value 1.1, we were told zero—meaning that it never occurred. What has gone wrong?
When we list the data, we see that the first observation has y equal to 1.1.

Despite appearances, Stata has not made a mistake. Stata stores numbers internally in binary form,
and the number 1.1 has no exact binary representation—that is, there is no finite string of binary
digits that is equal to 1.1.

Technical note
The number 1.1 in binary form is 1.0001100110011 . . . , where the period represents the binary

point. The problem binary computers have with storing numbers like 1/10 is much like the problem
we base-10 users have in precisely writing 1/11, which is 0.0909090909 . . . .

For detailed information about precision on binary computers and how Stata stores binary floating-
point numbers, see Gould (2011a).

The number that appears as 1.1 in the listing above is actually 1.1000000238419, which is off by
roughly 2 parts in 108. Unless we tell Stata otherwise, it stores all numbers as floats, which are also
known as single-precision or 4-byte reals. On the other hand, Stata performs all internal calculations
in doubles, which are also known as double-precision or 8-byte reals. This is what leads to the
difficulty.

In the above example, we compared the number 1.1, stored as a float, with the number 1.1 stored
as a double. The double-precision representation of 1.1 is more accurate than the single-precision
representation, but it is also different. Those two numbers are not equal.

There are several ways around this problem. The problem with 1.1 apparently not equaling 1.1
would never arise if the storage precision and the precision of the internal calculations were the same.
Thus you could store all your data as doubles. This takes more computer memory, however, and it
is unlikely that your data are really that accurate and the extra digits would meaningfully affect any
calculated result, even if the data were that accurate.

Technical note

This is unlikely to affect any calculated result because Stata performs all internal calculations
in double precision. This is all rather ironic, because the problem would also not arise if we had
designed Stata to use single precision for its internal calculations. Stata would be less accurate, but
the problem would have been completely disguised from the user, making this entry unnecessary.

Another solution is to use the float() function. float(x) rounds x to its float representation.
If we had typed count if y==float(1.1) in the above example, we would have been informed
that there is one such value.

https://www.stata.com/manuals/fnprogrammingfunctions.pdf#fnProgrammingfunctionsfloat()


22 [ U ] 13 Functions and expressions

13.13 References
Cox, N. J. 2006. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision problems. Stata Journal 6: 282–283.

. 2011a. Speaking Stata: Compared with . . . . Stata Journal 11: 305–314.

. 2011b. Speaking Stata: Fun and fluency with functions. Stata Journal 11: 460–471.

. 2011c. Stata tip 96: Cube roots. Stata Journal 11: 149–154.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indicator or dummy variables. Stata
Journal 19: 246–259.

Crow, K. 2012. Building complicated expressions the easy way. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/02/07/building-complicated-expressions-the-easy-way/.

Gould, W. W. 2006. Mata Matters: Precision. Stata Journal 6: 550–560.

. 2011a. How to read the %21x format, part 2. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/.

. 2011b. Precision (yet again), Part I. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/06/17/precision-yet-again-part-i/.

. 2011c. Precision (yet again), Part II. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/06/23/precision-yet-again-part-ii/.

. 2012. The penultimate guide to precision. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255–268.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata
Press.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640–642.

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

http://www.stata-journal.com/article.html?article=dm0022
http://www.stata-journal.com/article.html?article=dm0055
http://www.stata-journal.com/article.html?article=dm0058
http://www.stata-journal.com/article.html?article=st0223
https://doi.org/10.1177/1536867X19830921
http://blog.stata.com/2012/02/07/building-complicated-expressions-the-easy-way/
http://blog.stata.com/2012/02/07/building-complicated-expressions-the-easy-way/
http://www.stata-journal.com/article.html?article=pr0025
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://blog.stata.com/2011/06/17/precision-yet-again-part-i/
http://blog.stata.com/2011/06/17/precision-yet-again-part-i/
http://blog.stata.com/2011/06/23/precision-yet-again-part-ii/
http://blog.stata.com/2011/06/23/precision-yet-again-part-ii/
http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/
http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/
http://www.stata-journal.com/article.html?article=pr0038
http://www.stata-press.com/books/data-management-using-stata/
http://www.stata-journal.com/article.html?article=st0181

