
vec intro — Introduction to vector error-correction models

Description Remarks and examples References Also see

Description
Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference on vector

error-correction (VEC) models with cointegrating variables. After fitting aVECmodel, the irf commands
can be used to obtain impulse–response functions (IRFs) and forecast-error variance decompositions

(FEVD). The table below describes the available commands.

Fitting a VEC model

vec [TS] vec Fit vector error-correction models

Model diagnostics and inference

vecrank [TS] vecrank Estimate the cointegrating rank of a VEC model

veclmar [TS] veclmar Perform LM test for residual autocorrelation

after vec
vecnorm [TS] vecnorm Test for normally distributed disturbances after vec
vecstable [TS] vecstable Check the stability condition of VEC model estimates

varsoc [TS] varsoc Obtain lag-order selection statistics for VAR

and VEC models

Forecasting from a VEC model

fcast compute [TS] fcast compute Compute dynamic forecasts

fcast graph [TS] fcast graph Graph forecasts after fcast compute

Working with IRFs and FEVD

irf [TS] irf Create and analyze IRFs and FEVD

This manual entry provides an overview of the commands forVECmodels; provides an introduction to

integration, cointegration, estimation, inference, and interpretation of VECmodels; and gives an example

of how to use Stata’s vec commands.

Remarks and examples
vec estimates the parameters of cointegrating VEC models. You may specify any of the five trend

specifications in Johansen (1995, sec. 5.7). By default, identification is obtained via the Johansen nor-

malization, but vec allows you to obtain identification by placing your own constraints on the parameters
of the cointegrating vectors. You may also put more restrictions on the adjustment coefficients.

vecrank is the command for determining the number of cointegrating equations. vecrank imple-

ments Johansen’s multiple trace test procedure, the maximum eigenvalue test, and a method based on

minimizing either of two different information criteria.

Because Nielsen (2006) has shown that the methods implemented in varsoc can be used to choose the
order of the autoregressive process, no separate vec command is needed; you can simply use varsoc.
veclmar tests that the residuals have no serial correlation, and vecnorm tests that they are normally

distributed.
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All the irf routines described in [TS] irf are available for estimating, interpreting, and managing

estimated IRFs and FEVD for VEC models.

Remarks are presented under the following headings:

Introduction to cointegrating VEC models
What is cointegration?
The multivariate VEC model specification
Trends in the Johansen VEC model framework

VEC model estimation in Stata
Selecting the number of lags
Testing for cointegration
Fitting a VEC model
Fitting VEC models with Johansen’s normalization
Postestimation specification testing
Impulse–response functions for VEC models
Forecasting with VEC models

Introduction to cointegrating VEC models
This section provides a brief introduction to integration, cointegration, and cointegrated vector error-

correction models. For more details about these topics, see Hamilton (1994), Johansen (1995), Lütkepohl

(2005), Watson (1994), and Becketti (2020).

What is cointegration?
Standard regression techniques, such as ordinary least squares (OLS), require that the variables be

covariance stationary. A variable is covariance stationary if its mean and all its autocovariances are finite

and do not change over time. Cointegration analysis provides a framework for estimation, inference, and

interpretation when the variables are not covariance stationary.

Instead of being covariance stationary, many economic time series appear to be “first-difference sta-

tionary”. This means that the level of a time series is not stationary but its first difference is. First-

difference stationary processes are also known as integrated processes of order 1, or I(1) processes.

Covariance-stationary processes are I(0). In general, a process whose 𝑑th difference is stationary is an

integrated process of order 𝑑, or I(𝑑).
The canonical example of a first-difference stationary process is the random walk. This is a variable

𝑥𝑡 that can be written as

𝑥𝑡 = 𝑥𝑡−1 + 𝜖𝑡 (1)

where the 𝜖𝑡 are independent and identically distributedwithmean zero and a finite variance𝜎2. Although

𝐸[𝑥𝑡] = 0 for all 𝑡, Var[𝑥𝑡] = 𝑇 𝜎2 is not time invariant, so 𝑥𝑡 is not covariance stationary. Because

Δ𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 = 𝜖𝑡 and 𝜖𝑡 is covariance stationary, 𝑥𝑡 is first-difference stationary.

These concepts are important because, although conventional estimators are well behaved when ap-

plied to covariance-stationary data, they have nonstandard asymptotic distributions and different rates of

convergence when applied to I(1) processes. To illustrate, consider several variants of the model

𝑦𝑡 = 𝑎 + 𝑏𝑥𝑡 + 𝑒𝑡 (2)

Throughout the discussion, we maintain the assumption that 𝐸[𝑒𝑡] = 0.

https://www.stata.com/manuals/tsirf.pdf#tsirf
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If both 𝑦𝑡 and 𝑥𝑡 are covariance-stationary processes, 𝑒𝑡 must also be covariance stationary. As long

as 𝐸[𝑥𝑡𝑒𝑡] = 0, we can consistently estimate the parameters 𝑎 and 𝑏 by using OLS. Furthermore, the

distribution of the OLS estimator converges to a normal distribution centered at the true value as the

sample size grows.

If 𝑦𝑡 and 𝑥𝑡 are independent random walks and 𝑏 = 0, there is no relationship between 𝑦𝑡 and 𝑥𝑡, and

(2) is called a spurious regression. Granger and Newbold (1974) performed Monte Carlo experiments

and showed that the usual 𝑡 statistics from OLS regression provide spurious results: given a large enough

dataset, we can almost always reject the null hypothesis of the test that 𝑏 = 0 even though 𝑏 is in fact

zero. Here the OLS estimator does not converge to any well-defined population parameter.

Phillips (1986) later provided the asymptotic theory that explained the Granger and Newbold (1974)

results. He showed that the random walks 𝑦𝑡 and 𝑥𝑡 are first-difference stationary processes and that

the OLS estimator does not have its usual asymptotic properties when the variables are first-difference

stationary.

Because Δ𝑦𝑡 and Δ𝑥𝑡 are covariance stationary, a simple regression of Δ𝑦𝑡 on Δ𝑥𝑡 appears to be a

viable alternative. However, if 𝑦𝑡 and 𝑥𝑡 cointegrate, as defined below, the simple regression of Δ𝑦𝑡 on

Δ𝑥𝑡 is misspecified.

If 𝑦𝑡 and 𝑥𝑡 are I(1) and 𝑏 ≠ 0, 𝑒𝑡 could be either I(0) or I(1). Phillips and Durlauf (1986) have

derived the asymptotic theory for the OLS estimator when 𝑒𝑡 is I(1), though it has not been widely used

in applied work. More interesting is the case in which 𝑒𝑡 = 𝑦𝑡 − 𝑎 − 𝑏𝑥𝑡 is I(0). 𝑦𝑡 and 𝑥𝑡 are then said

to be cointegrated. Two variables are cointegrated if each is an I(1) process but a linear combination of

them is an I(0) process.

It is not possible for 𝑦𝑡 to be a random walk and 𝑥𝑡 and 𝑒𝑡 to be covariance stationary. As Granger

(1981) pointed out, because a random walk cannot be equal to a covariance-stationary process, the equa-

tion does not “balance”. An equation balances when the processes on each side of the equal sign are of

the same order of integration. Before attacking any applied problem with integrated variables, make sure

that the equation balances before proceeding.

An example from Engle and Granger (1987) provides more intuition. Redefine 𝑦𝑡 and 𝑥𝑡 to be

𝑦𝑡 + 𝛽𝑥𝑡 = 𝜖𝑡, 𝜖𝑡 = 𝜖𝑡−1 + 𝜉𝑡 (3)

𝑦𝑡 + 𝛼𝑥𝑡 = 𝜈𝑡, 𝜈𝑡 = 𝜌𝜈𝑡−1 + 𝜁𝑡, |𝜌| < 1 (4)

where 𝜉𝑡 and 𝜁𝑡 are i.i.d. disturbances over time that are correlated with each other. Because 𝜖𝑡 is I(1),

(3) and (4) imply that both 𝑥𝑡 and 𝑦𝑡 are I(1). The condition that |𝜌| < 1 implies that 𝜈𝑡 and 𝑦𝑡 + 𝛼𝑥𝑡 are

I(0). Thus 𝑦𝑡 and 𝑥𝑡 cointegrate, and (1, 𝛼) is the cointegrating vector.
Using a bit of algebra, we can rewrite (3) and (4) as

Δ𝑦𝑡 =𝛽𝛿𝑧𝑡−1 + 𝜂1𝑡 (5)
Δ𝑥𝑡 = − 𝛿𝑧𝑡−1 + 𝜂2𝑡 (6)

where 𝛿 = (1− 𝜌)/(𝛼 − 𝛽), 𝑧𝑡 = 𝑦𝑡 + 𝛼𝑥𝑡, and 𝜂1𝑡 and 𝜂2𝑡 are distinct, stationary, linear combinations

of 𝜉𝑡 and 𝜁𝑡. This representation is known as the VEC model. One can think of 𝑧𝑡 = 0 as being the point

at which 𝑦𝑡 and 𝑥𝑡 are in equilibrium. The coefficients on 𝑧𝑡−1 describe how 𝑦𝑡 and 𝑥𝑡 adjust to 𝑧𝑡−1
being nonzero, or out of equilibrium. 𝑧𝑡 is the “error” in the system, and (5) and (6) describe how system

adjusts or corrects back to the equilibrium. As 𝜌 → 1, the system degenerates into a pair of correlated

random walks. The VEC model parameterization highlights this point, because 𝛿 → 0 as 𝜌 → 1.

https://www.stata.com/manuals/tsvecintro.pdf#tsvecintroRemarksandexampleseq2
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If we knew 𝛼, we would know 𝑧𝑡, and we could work with the stationary system of (5) and (6).

Although knowing 𝛼 seems silly, we can conduct much of the analysis as if we knew 𝛼 because there

is an estimator for the cointegrating parameter 𝛼 that converges to its true value at a faster rate than the

estimator for the adjustment parameters 𝛽 and 𝛿.
The definition of a bivariate cointegrating relation requires simply that there exist a linear combination

of the I(1) variables that is I(0). If 𝑦𝑡 and 𝑥𝑡 are I(1) and there are two finite real numbers 𝑎 ≠ 0 and

𝑏 ≠ 0, such that 𝑎𝑦𝑡 + 𝑏𝑥𝑡 is I(0), then 𝑦𝑡 and 𝑥𝑡 are cointegrated. Although there are two parameters, 𝑎
and 𝑏, only one will be identifiable because if 𝑎𝑦𝑡 + 𝑏𝑥𝑡 is I(0), so is 𝑐𝑎𝑦𝑡 + 𝑐𝑏𝑥𝑡 for any finite, nonzero,

real number 𝑐. Obtaining identification in the bivariate case is relatively simple. The coefficient on 𝑦𝑡 in

(4) is unity. This natural construction of the model placed the necessary identification restriction on the

cointegrating vector. As we discuss below, identification in the multivariate case is more involved.

If y𝑡 is a 𝐾 × 1 vector of I(1) variables and there exists a vector β, such that βy𝑡 is a vector of I(0)

variables, then y𝑡 is said to be cointegrating of order (1, 0) with cointegrating vector β. We say that the

parameters in β are the parameters in the cointegrating equation. For a vector of length 𝐾, there may be

at most𝐾 −1 distinct cointegrating vectors. Engle and Granger (1987) provide a more general definition

of cointegration, but this one is sufficient for our purposes.

The multivariate VEC model specification
In practice, most empirical applications analyze multivariate systems, so the rest of our discussion

focuses on that case. Consider a vector autoregressive (VAR) model with 𝑝 lags

y𝑡 = v + A1y𝑡−1 + A2y𝑡−2 + · · · + A𝑝y𝑡−𝑝 + ε𝑡 (7)

where y𝑡 is a 𝐾 × 1 vector of variables, v is a 𝐾 × 1 vector of parameters, A1–A𝑝 are 𝐾 × 𝐾 matrices

of parameters, and ε𝑡 is a 𝐾 × 1 vector of disturbances. ε𝑡 has mean 0, has covariance matrix 𝚺, and

is i.i.d. normal over time. Any VAR(𝑝) can be rewritten as a VEC model. Using some algebra, we can

rewrite (7) in VEC model form as

Δy𝑡 = v + 𝚷y𝑡−1 +
𝑝−1

∑
𝑖=1

𝚪𝑖Δy𝑡−𝑖 + ε𝑡 (8)

where 𝚷 = ∑𝑗=𝑝
𝑗=1 A𝑗 − I𝑘 and 𝚪𝑖 = − ∑𝑗=𝑝

𝑗=𝑖+1 A𝑗. The v and ε𝑡 in (7) and (8) are identical.

Engle and Granger (1987) show that if the variables y𝑡 are I(1) the matrix 𝚷 in (8) has rank 0 ≤
𝑟 < 𝐾, where 𝑟 is the number of linearly independent cointegrating vectors. If the variables cointegrate,
0 < 𝑟 < 𝐾 and (8) shows that aVARmodel in first differences is misspecified because it omits the lagged

level term 𝚷y𝑡−1.

Assume that 𝚷 has reduced rank 0 < 𝑟 < 𝐾 so that it can be expressed as 𝚷 = αβ′, where α
and β are both 𝑟 × 𝐾 matrices of rank 𝑟. Without further restrictions, the cointegrating vectors are not

identified: the parameters (α,β) are indistinguishable from the parameters (αQ,βQ−1′) for any 𝑟 × 𝑟
nonsingular matrix Q. Because only the rank of 𝚷 is identified, the VEC model is said to identify the

rank of the cointegrating space, or equivalently, the number of cointegrating vectors. In practice, the

estimation of the parameters of a VEC model requires at least 𝑟2 identification restrictions. Stata’s vec
command can apply the conventional Johansen restrictions discussed below or use constraints that the

user supplies.

The VEC model in (8) also nests two important special cases. If the variables in y𝑡 are I(1) but not

cointegrated, 𝚷 is a matrix of zeros and thus has rank 0. If all the variables are I(0), 𝚷 has full rank 𝐾.

https://www.stata.com/manuals/tsvecintro.pdf#tsvecintroRemarksandexampleseq5-6
https://www.stata.com/manuals/tsvecintro.pdf#tsvecintroRemarksandexampleseq5-6
https://www.stata.com/manuals/tsvecintro.pdf#tsvecintroRemarksandexampleseq4
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There are several different frameworks for estimation and inference in cointegrating systems. Al-

though the methods in Stata are based on the maximum likelihood (ML) methods developed by Johansen

(1988, 1991, 1995), other useful frameworks have been developed by Park and Phillips (1988, 1989);

Sims, Stock, and Watson (1990); Stock (1987); and Stock and Watson (1988); among others. The ML

framework developed by Johansen was independently developed by Ahn and Reinsel (1990). Maddala

and Kim (1998) and Watson (1994) survey all of these methods. The cointegration methods in Stata

are based on Johansen’s maximum likelihood framework because it has been found to be particularly

useful in several comparative studies, including Gonzalo (1994) and Hubrich, Lütkepohl, and Saikkonen

(2001).

Trends in the Johansen VEC model framework
Deterministic trends in a cointegrating VEC model can stem from two distinct sources; the mean of

the cointegrating relationship and the mean of the differenced series. Allowing for a constant and a linear

trend and assuming that there are 𝑟 cointegrating relations, we can rewrite the VEC model in (8) as

Δy𝑡 = αβ′
y𝑡−1 +

𝑝−1

∑
𝑖=1

𝚪𝑖Δy𝑡−𝑖 + v + δ𝑡 + 𝜖𝑡 (9)

where δ is a 𝐾 × 1 vector of parameters. Because (9) models the differences of the data, the constant

implies a linear time trend in the levels, and the time trend δ𝑡 implies a quadratic time trend in the levels
of the data. Often we may want to include a constant or a linear time trend for the differences without

allowing for the higher-order trend that is implied for the levels of the data. VEC models exploit the

properties of the matrix α to achieve this flexibility.

Because α is a 𝐾 × 𝑟 rank matrix, we can rewrite the deterministic components in (9) as

v = αµ + 𝛄 (10a)

δ𝑡 = αρ𝑡 + τ𝑡 (10b)

where µ and ρ are 𝑟 × 1 vectors of parameters and 𝛄 and τ are 𝐾 × 1 vectors of parameters. 𝛄 is

orthogonal to αµ, and τ is orthogonal to αρ; that is, 𝛄′αµ = 0 and τ′αρ = 0, allowing us to rewrite

(9) as

Δy𝑡 = α(β′
y𝑡−1 + µ + ρ𝑡) +

𝑝−1

∑
𝑖=1

𝚪𝑖Δy𝑡−𝑖 + 𝛄 + τ 𝑡 + 𝜖𝑡 (11)

Placing restrictions on the trend terms in (11) yields five cases.

CASE 1: Unrestricted trend

If no restrictions are placed on the trend parameters, (11) implies that there are quadratic trends in

the levels of the variables and that the cointegrating equations are stationary around time trends

(trend stationary).

CASE 2: Restricted trend, τ = 0

By setting τ = 0, we assume that the trends in the levels of the data are linear but not quadratic.

This specification allows the cointegrating equations to be trend stationary.

CASE 3: Unrestricted constant, τ = 0 and ρ = 0

By setting τ = 0 and ρ = 0, we exclude the possibility that the levels of the data have quadratic

trends, and we restrict the cointegrating equations to be stationary around constant means. Because

𝛄 is not restricted to zero, this specification still puts a linear time trend in the levels of the data.

https://www.stata.com/manuals/tsvecintro.pdf#tsvecintroRemarksandexampleseq8
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CASE 4: Restricted constant, τ = 0, ρ = 0, and 𝛄 = 0

By adding the restriction that 𝛄 = 0, we assume there are no linear time trends in the levels of

the data. This specification allows the cointegrating equations to be stationary around a constant

mean, but it allows no other trends or constant terms.

CASE 5: No trend, τ = 0, ρ = 0, 𝛄 = 0, and µ = 0

This specification assumes that there are no nonzero means or trends. It also assumes that the

cointegrating equations are stationary with means of zero and that the differences and the levels of

the data have means of zero.

This flexibility does come at a price. Belowwe discuss testing procedures for determining the number

of cointegrating equations. The asymptotic distribution of the LR for hypotheses about 𝑟 changes with the
trend specification, so we must first specify a trend specification. A combination of theory and graphical

analysis will aid in specifying the trend before proceeding with the analysis.

VEC model estimation in Stata
We provide an overview of the vec commands in Stata through an extended example. We have

monthly data on the average selling prices of houses in four cities in Texas: Austin, Dallas, Houston, and

SanAntonio. In the dataset, these average housing prices are contained in the variables austin, dallas,
houston, and sa. The series begin in January of 1990 and go through December 2003, for a total of 168
observations. The following graph depicts our data.

11.2

11.4

11.6

11.8

12

12.2

1990m1 1995m1 2000m1 2005m1
Time

ln of house prices in Austin ln of house prices in Dallas
ln of house prices in Houston ln of house prices in San Antonio

The plots on the graph indicate that all the series are trending and potential I(1) processes. In a

competitive market, the current and past prices contain all the information available, so tomorrow’s price

will be a random walk from today’s price. Some researchers may opt to use [TS] dfgls to investigate the

presence of a unit root in each series, but the test for cointegration we use includes the case in which all

the variables are stationary, so we defer formal testing until we test for cointegration. The time trends in

the data appear to be approximately linear, so we will specify trend(constant) when modeling these

series, which is the default with vec.

The next graph shows just Dallas’s and Houston’s data, so we can more carefully examine their rela-

tionship.

https://www.stata.com/manuals/tsdfgls.pdf#tsdfgls
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Time

ln of house prices in Dallas ln of house prices in Houston

Except for the crash at the end of 1991, housing prices in Dallas and Houston appear closely related.

Although average prices in the two cities will differ because of resource variations and other factors, if the

housingmarkets become too dissimilar, people and businesses will migrate, bringing the average housing

prices back toward each other. We therefore expect the series of average housing prices in Houston to

be cointegrated with the series of average housing prices in Dallas.

Selecting the number of lags
To test for cointegration or fit cointegrating VEC models, we must specify how many lags to include.

Building on the work of Tsay (1984) and Paulsen (1984), Nielsen (2006) has shown that the methods

implemented in varsoc can be used to determine the lag order for a VAR model with I(1) variables.

As can be seen from (9), the order of the corresponding VEC model is always one less than the VAR

model. vec makes this adjustment automatically, so we will always refer to the order of the underlying

VAR model. The output below uses varsoc to determine the lag order of the VAR model of the average

housing prices in Dallas and Houston.

. use https://www.stata-press.com/data/r19/txhprice

. varsoc dallas houston
Lag-order selection criteria

Sample: 1990m5 thru 2003m12 Number of obs = 164

Lag LL LR df p FPE AIC HQIC SBIC

0 299.525 .000091 -3.62835 -3.61301 -3.59055
1 577.483 555.92 4 0.000 3.2e-06 -6.9693 -6.92326 -6.85589
2 590.978 26.991* 4 0.000 2.9e-06* -7.0851* -7.00837* -6.89608*
3 593.437 4.918 4 0.296 2.9e-06 -7.06631 -6.95888 -6.80168
4 596.364 5.8532 4 0.210 3.0e-06 -7.05322 -6.9151 -6.71299

* optimal lag
Endogenous: dallas houston
Exogenous: _cons

We will use two lags for this bivariate model because the Hannan–Quinn information criterion (HQIC)

method, Schwarz’s Bayesian information criterion (BIC) method, and sequential likelihood-ratio (LR) test

all chose two lags, as indicated by the “*” in the output.

https://www.stata.com/manuals/tsvecintro.pdf#tsvecintroRemarksandexampleseq9
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The reader can verify that when all four cities’ data are used, the LR test selects three lags, the HQIC

method selects two lags, and the BIC method selects one lag. We will use three lags in our four-variable

model.

Testing for cointegration
The tests for cointegration implemented in vecrank are based on Johansen’s method. If the log

likelihood of the unconstrained model that includes the cointegrating equations is significantly different

from the log likelihood of the constrained model that does not include the cointegrating equations, we

reject the null hypothesis of no cointegration.

Here we use vecrank to determine the number of cointegrating equations:

. vecrank dallas houston
Johansen tests for cointegration
Trend: Constant Number of obs = 166
Sample: 1990m3 thru 2003m12 Number of lags = 2

Critical
Maximum Trace value

rank Params LL Eigenvalue statistic 5%
0 6 576.26444 . 46.8252 15.41
1 9 599.58781 0.24498 0.1785* 3.76
2 10 599.67706 0.00107

* selected rank

Besides presenting information about the sample size and time span, the header indicates that test

statistics are based on a model with two lags and a constant trend. The body of the table presents test

statistics and their critical values of the null hypotheses of no cointegration (line 1) and one or fewer coin-

tegrating equations (line 2). The eigenvalue shown on the last line is used to compute the trace statistic

in the line above it. Johansen’s testing procedure starts with the test for zero cointegrating equations (a

maximum rank of zero) and then accepts the first null hypothesis that is not rejected.

In the output above, we strongly reject the null hypothesis of no cointegration and fail to reject the

null hypothesis of at most one cointegrating equation. Thus we accept the null hypothesis that there is

one cointegrating equation in the bivariate model.

Using all four series and a model with three lags, we find that there are two cointegrating relationships.

. vecrank austin dallas houston sa, lag(3)
Johansen tests for cointegration
Trend: Constant Number of obs = 165
Sample: 1990m4 thru 2003m12 Number of lags = 3

Critical
Maximum Trace value

rank Params LL Eigenvalue statistic 5%
0 36 1107.7833 . 101.6070 47.21
1 43 1137.7484 0.30456 41.6768 29.68
2 48 1153.6435 0.17524 9.8865* 15.41
3 51 1158.4191 0.05624 0.3354 3.76
4 52 1158.5868 0.00203

* selected rank
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Fitting a VEC model
vec estimates the parameters of cointegrating VEC models. There are four types of parameters of

interest:

1. The parameters in the cointegrating equations β

2. The adjustment coefficients α

3. The short-run coefficients

4. Some standard functions of β and α that have useful interpretations

Although all four types are discussed in [TS] vec, here we discuss only types 1–3 and how they appear

in the output of vec.

Having determined that there is a cointegrating equation between the Dallas and Houston series, we

now want to estimate the parameters of a bivariate cointegrating VECmodel for these two series by using

vec.

. vec dallas houston
Vector error-correction model
Sample: 1990m3 thru 2003m12 Number of obs = 166

AIC = -7.115516
Log likelihood = 599.5878 HQIC = -7.04703
Det(Sigma_ml) = 2.50e-06 SBIC = -6.946794
Equation Parms RMSE R-sq chi2 P>chi2

D_dallas 4 .038546 0.1692 32.98959 0.0000
D_houston 4 .045348 0.3737 96.66399 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

D_dallas
_ce1
L1. -.3038799 .0908504 -3.34 0.001 -.4819434 -.1258165

dallas
LD. -.1647304 .0879356 -1.87 0.061 -.337081 .0076202

houston
LD. -.0998368 .0650838 -1.53 0.125 -.2273988 .0277251

_cons .0056128 .0030341 1.85 0.064 -.0003339 .0115595

D_houston
_ce1
L1. .5027143 .1068838 4.70 0.000 .2932258 .7122028

dallas
LD. -.0619653 .1034547 -0.60 0.549 -.2647327 .1408022

houston
LD. -.3328437 .07657 -4.35 0.000 -.4829181 -.1827693

_cons .0033928 .0035695 0.95 0.342 -.0036034 .010389

https://www.stata.com/manuals/tsvec.pdf#tsvec
https://www.stata.com/manuals/tsvecintro.pdf#tsvecintroRemarksandexamplesparameters
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Cointegrating equations
Equation Parms chi2 P>chi2

_ce1 1 1640.088 0.0000

Identification: beta is exactly identified
Johansen normalization restriction imposed

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
dallas 1 . . . . .

houston -.8675936 .0214231 -40.50 0.000 -.9095821 -.825605
_cons -1.688897 . . . . .

The header contains information about the sample, the fit of each equation, and overall model fit

statistics. The first estimation table contains the estimates of the short-run parameters, along with their

standard errors, 𝑧 statistics, and confidence intervals. The two coefficients on L. ce1 are the parameters

in the adjustment matrixα for this model. The second estimation table contains the estimated parameters

of the cointegrating vector for this model, along with their standard errors, 𝑧 statistics, and confidence

intervals.

Using our previous notation, we have estimated

α̂ = (−0.304, 0.503) β̂ = (1, −0.868) v̂ = (0.0056, 0.0034)

and

�̂� = (−0.165 −0.0998
−0.062 −0.333 )

Overall, the output indicates that the model fits well. The coefficient on houston in the cointegrating

equation is statistically significant, as are the adjustment parameters. The adjustment parameters in this

bivariate example are easy to interpret, and we can see that the estimates have the correct signs and imply

rapid adjustment toward equilibrium. When the predictions from the cointegrating equation are positive,

dallas is above its equilibrium value because the coefficient on dallas in the cointegrating equation is

positive. The estimate of the coefficient [D dallas]L. ce1 is −0.3. Thus when the average housing

price in Dallas is too high, it quickly falls back toward the Houston level. The estimated coefficient

[D houston]L. ce1 of 0.5 implies that when the average housing price in Dallas is too high, the aver-

age price in Houston quickly adjusts toward the Dallas level at the same time that the Dallas prices are

adjusting.

Fitting VEC models with Johansen’s normalization
As discussed by Johansen (1995), if there are 𝑟 cointegrating equations, then at least 𝑟2 restrictions

are required to identify the free parameters in β. Johansen proposed a default identification scheme

that has become the conventional method of identifying models in the absence of theoretically justified

restrictions. Johansen’s identification scheme is

β′ = (I𝑟, β̃
′
)

where I𝑟 is the 𝑟 × 𝑟 identity matrix and β̃ is an (𝐾 − 𝑟) × 𝑟 matrix of identified parameters. vec applies

Johansen’s normalization by default.



vec intro — Introduction to vector error-correction models 11

To illustrate, we fit a VECmodel with two cointegrating equations and three lags on all four series. We

are interested only in the estimates of the parameters in the cointegrating equations, so we can specify

the noetable option to suppress the estimation table for the adjustment and short-run parameters.

. vec austin dallas houston sa, lags(3) rank(2) noetable
Vector error-correction model
Sample: 1990m4 thru 2003m12 Number of obs = 165

AIC = -13.40174
Log likelihood = 1153.644 HQIC = -13.03496
Det(Sigma_ml) = 9.93e-12 SBIC = -12.49819
Cointegrating equations
Equation Parms chi2 P>chi2

_ce1 2 586.3044 0.0000
_ce2 2 2169.826 0.0000

Identification: beta is exactly identified
Johansen normalization restrictions imposed

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
austin 1 . . . . .
dallas 0 (omitted)

houston -.2623782 .1893625 -1.39 0.166 -.6335219 .1087655
sa -1.241805 .229643 -5.41 0.000 -1.691897 -.7917128

_cons 5.577099 . . . . .

_ce2
austin 0 (omitted)
dallas 1 . . . . .

houston -1.095652 .0669898 -16.36 0.000 -1.22695 -.9643545
sa .2883986 .0812396 3.55 0.000 .1291718 .4476253

_cons -2.351372 . . . . .

The Johansen identification scheme has placed four constraints on the parameters in β:
[ ce1]austin = 1, [ ce1]dallas = 0, [ ce2]austin = 0, and [ ce2]dallas = 1. We in-

terpret the results of the first equation as indicating the existence of an equilibrium relationship between

the average housing price in Austin and the average prices of houses in Houston and San Antonio.

The Johansen normalization restricted the coefficient on dallas to be unity in the second cointegrat-

ing equation, but we could instead constrain the coefficient on houston. Both sets of restrictions define
just-identifiedmodels, so fitting themodel with the latter set of restrictions will yield the samemaximized

log-likelihood. To impose the alternative set of constraints, we use the constraint command.

. constraint define 1 [_ce1]austin = 1

. constraint define 2 [_ce1]dallas = 0

. constraint define 3 [_ce2]austin = 0

. constraint define 4 [_ce2]houston = 1
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. vec austin dallas houston sa, lags(3) rank(2) noetable bconstraints(1/4)
Iteration 1: Log likelihood = 1148.875
(iteration log omitted)

Iteration 25: Log likelihood = 1153.644
Vector error-correction model
Sample: 1990m4 thru 2003m12 Number of obs = 165

AIC = -13.40174
Log likelihood = 1153.644 HQIC = -13.03496
Det(Sigma_ml) = 9.93e-12 SBIC = -12.49819
Cointegrating equations
Equation Parms chi2 P>chi2

_ce1 2 586.3392 0.0000
_ce2 2 3455.469 0.0000

Identification: beta is exactly identified
( 1) [_ce1]austin = 1
( 2) [_ce1]dallas = 0
( 3) [_ce2]austin = 0
( 4) [_ce2]houston = 1

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
austin 1 . . . . .
dallas 0 (omitted)

houston -.2623784 .1876727 -1.40 0.162 -.6302102 .1054534
sa -1.241805 .2277537 -5.45 0.000 -1.688194 -.7954157

_cons 5.577099 . . . . .

_ce2
austin 0 (omitted)
dallas -.9126985 .0595804 -15.32 0.000 -1.029474 -.7959231

houston 1 . . . . .
sa -.2632209 .0628791 -4.19 0.000 -.3864617 -.1399802

_cons 2.146094 . . . . .

Only the estimates of the parameters in the second cointegrating equation have changed, and the new

estimates are simply the old estimates divided by −1.095652 because the new constraints are just an

alternative normalization of the same just-identified model. With the new normalization, we can inter-

pret the estimates of the parameters in the second cointegrating equation as indicating an equilibrium

relationship between the average house price in Houston and the average prices of houses in Dallas and

San Antonio.

Postestimation specification testing
Inference on the parameters in α depends crucially on the stationarity of the cointegrating equations,

so we should check the specification of the model. As a first check, we can predict the cointegrating

equations and graph them over time.

. predict ce1, ce equ(#1)

. predict ce2, ce equ(#2)
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Although the large shocks apparent in the graph of the levels have clear effects on the predictions from

the cointegrating equations, our only concern is the negative trend in the first cointegrating equation since

the end of 2000. The graph of the levels shows that something put a significant brake on the growth of

housing prices after 2000 and that the growth of housing prices in San Antonio slowed during 2000 but

then recuperated while Austin maintained slower growth. We suspect that this indicates that the end of

the high-tech boom affected Austin more severely than San Antonio. This difference is what causes the

trend in the first cointegrating equation. Although we could try to account for this effect with a more

formal analysis, we will proceed as if the cointegrating equations are stationary.

We can use vecstable to check whether we have correctly specified the number of cointegrating

equations. As discussed in [TS] vecstable, the companion matrix of a VEC model with 𝐾 endogenous

variables and 𝑟 cointegrating equations has 𝐾 − 𝑟 unit eigenvalues. If the process is stable, the moduli
of the remaining 𝑟 eigenvalues are strictly less than one. Because there is no general distribution theory
for the moduli of the eigenvalues, ascertaining whether the moduli are too close to one can be difficult.

https://www.stata.com/manuals/tsvecstable.pdf#tsvecstable


vec intro — Introduction to vector error-correction models 14

. vecstable, graph
Eigenvalue stability condition

Eigenvalue Modulus

1 1
1 1

-.6698661 .669866
.3740191 + .4475996i .583297
.3740191 - .4475996i .583297
-.386377 + .395972i .553246
-.386377 - .395972i .553246
.540117 .540117

-.0749239 + .5274203i .532715
-.0749239 - .5274203i .532715
-.2023955 .202395
.09923966 .09924

The VECM specification imposes 2 unit moduli.
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The VECM specification imposes 2 unit moduli.

Roots of the companion matrix

Because we specified the graph option, vecstable plotted the eigenvalues of the companion matrix.

The graph of the eigenvalues shows that none of the remaining eigenvalues appears close to the unit circle.

The stability check does not indicate that our model is misspecified.

Here we use veclmar to test for serial correlation in the residuals.

. veclmar, mlag(4)
Lagrange-multiplier test

lag chi2 df Prob > chi2

1 56.8757 16 0.00000
2 31.1970 16 0.01270
3 30.6818 16 0.01477
4 14.6493 16 0.55046

H0: no autocorrelation at lag order
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The results clearly indicate serial correlation in the residuals. The results in Gonzalo (1994) indicate

that underspecifying the number of lags in a VEC model can significantly increase the finite-sample bias

in the parameter estimates and lead to serial correlation. For this reason, we refit the model with five

lags instead of three.

. vec austin dallas houston sa, lags(5) rank(2) noetable bconstraints(1/4)
Iteration 1: Log likelihood = 1200.54
(iteration log omitted)

Iteration 20: Log likelihood = 1203.946
Vector error-correction model
Sample: 1990m6 thru 2003m12 Number of obs = 163

AIC = -13.79075
Log likelihood = 1203.946 HQIC = -13.1743
Det(Sigma_ml) = 4.51e-12 SBIC = -12.27235
Cointegrating equations
Equation Parms chi2 P>chi2

_ce1 2 498.4682 0.0000
_ce2 2 4125.926 0.0000

Identification: beta is exactly identified
( 1) [_ce1]austin = 1
( 2) [_ce1]dallas = 0
( 3) [_ce2]austin = 0
( 4) [_ce2]houston = 1

beta Coefficient Std. err. z P>|z| [95% conf. interval]

_ce1
austin 1 . . . . .
dallas 0 (omitted)

houston -.6525574 .2047061 -3.19 0.001 -1.053774 -.2513407
sa -.6960166 .2494167 -2.79 0.005 -1.184864 -.2071688

_cons 3.846275 . . . . .

_ce2
austin 0 (omitted)
dallas -.932048 .0564332 -16.52 0.000 -1.042655 -.8214409

houston 1 . . . . .
sa -.2363915 .0599348 -3.94 0.000 -.3538615 -.1189215

_cons 2.065719 . . . . .

Comparing these results with those from the previous model reveals that

1. there is now evidence that the coefficient [ ce1]houston is not equal to zero,

2. the two sets of estimated coefficients for the first cointegrating equation are different, and

3. the two sets of estimated coefficients for the second cointegrating equation are similar.

The assumption that the errors are independent and are identically and normally distributed with zero

mean and finite variance allows us to derive the likelihood function. If the errors do not come from a

normal distribution but are just independent and identically distributedwith zeromean and finite variance,

the parameter estimates are still consistent, but they are not efficient.
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We use vecnorm to test the null hypothesis that the errors are normally distributed.

. quietly vec austin dallas houston sa, lags(5) rank(2) bconstraints(1/4)

. vecnorm
Jarque-Bera test

Equation chi2 df Prob > chi2

D_austin 74.324 2 0.00000
D_dallas 3.501 2 0.17370

D_houston 245.032 2 0.00000
D_sa 8.426 2 0.01481
ALL 331.283 8 0.00000

Skewness test

Equation Skewness chi2 df Prob > chi2

D_austin .60265 9.867 1 0.00168
D_dallas .09996 0.271 1 0.60236

D_houston -1.0444 29.635 1 0.00000
D_sa .38019 3.927 1 0.04752
ALL 43.699 4 0.00000

Kurtosis test

Equation Kurtosis chi2 df Prob > chi2

D_austin 6.0807 64.458 1 0.00000
D_dallas 3.6896 3.229 1 0.07232

D_houston 8.6316 215.397 1 0.00000
D_sa 3.8139 4.499 1 0.03392
ALL 287.583 4 0.00000

The results indicate that we can strongly reject the null hypothesis of normally distributed errors. Most

of the errors are both skewed and kurtotic.

Impulse–response functions for VEC models
With a model that we now consider acceptably well specified, we can use the irf commands to

estimate and interpret the IRFs. Whereas IRFs from a stationary VAR model die out over time, IRFs from

a cointegrating VEC model do not always die out. Because each variable in a stationary VAR model

has a time-invariant mean and finite, time-invariant variance, the effect of a shock to any one of these

variables must die out so that the variable can revert to its mean. In contrast, the I(1) variables modeled

in a cointegrating VECmodel are not mean reverting, and the unit moduli in the companion matrix imply

that the effects of some shocks will not die out over time.

These two possibilities gave rise to new terms. When the effect of a shock dies out over time, the

shock is said to be transitory. When the effect of a shock does not die out over time, the shock is said to

be permanent.
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Below we use irf create to estimate the IRFs and irf graph to graph two of the orthogonalized

IRFs.

. irf create vec1, set(vecintro, replace) step(24)
(file vecintro.irf created)
(file vecintro.irf now active)
(file vecintro.irf updated)
. irf graph oirf, impulse(austin dallas) response(sa) yline(0)

0

.005

.01

.015

0 10 20 30 0 10 20 30

vec1, austin, sa vec1, dallas, sa

Step
Graphs by irfname, impulse variable, and response variable

The graphs indicate that an orthogonalized shock to the average housing price inAustin has a permanent

effect on the average housing price in SanAntonio but that an orthogonalized shock to the average price

of housing in Dallas has a transitory effect. According to this model, unexpected shocks that are local

to the Austin housing market will have a permanent effect on the housing market in San Antonio, but

unexpected shocks that are local to the Dallas housing market will have only a transitory effect on the

housing market in San Antonio.

Forecasting with VEC models
Cointegrating VEC models are also used to produce forecasts of both the first-differenced variables

and the levels of the variables. Comparing the variances of the forecast errors of stationary VAR models

with those from a cointegrating VEC model reveals a fundamental difference between the two models.

Whereas the variances of the forecast errors for a stationary VAR model converge to a constant as the

prediction horizon grows, the variances of the forecast errors for the levels of a cointegrating VECmodel

diverge with the forecast horizon. (See sec. 6.5 of Lütkepohl [2005] for more about this result.) Because

all the variables in the model for the first differences are stationary, the forecast errors for the dynamic

forecasts of the first differences remain finite. In contrast, the forecast errors for the dynamic forecasts

of the levels diverge to infinity.
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We use fcast compute to obtain dynamic forecasts of the levels and fcast graph to graph these

dynamic forecasts, along with their asymptotic confidence intervals.

. tsset
Time variable: t, 1990m1 to 2003m12

Delta: 1 month
. fcast compute m1_, step(24)
. fcast graph m1_austin m1_dallas m1_houston m1_sa
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95% CI Forecast

As expected, the widths of the confidence intervals grow with the forecast horizon.
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