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Description
ivsvar estimates the parameters of structural vector autoregressive (SVAR) models by instrumen-

tal variables. Instrumental-variables SVAR models are an alternative to the short-run SVAR models fit

by svar, requiring fewer constraints than would be necessary in those models to identify the structural
impulse–response functions (IRFs). They need fewer constraints because the shocks of interest, target

shocks, are modeled using instrumental variables. The structural IRFs are then estimated only for the

target shocks. Instrumental-variables SVAR models are also called proxy SVAR models. ivsvar pro-

vides two estimators: a generalized method of moments (GMM) estimator for a single target shock and a

minimum distance estimator for multiple target shocks.

Quick start
Fit an instrumental-variables SVAR model for the variables y1, y2, and y3, with y3 instrumented by z

using the GMM estimator

ivsvar gmm y1 y2 (y3 = z)

Same as above, but run the reduced-form vector autoregressive (VAR) model with lags 1 through 4 instead

of the default 1 through 2

ivsvar gmm y1 y2 (y3 = z), lags(1/4)

Add exogenous variables x1 and x2
ivsvar gmm y1 y2 (y3 = z), lags(1/4) exog(x1 x2)

Instrumental-variables SVAR with the minimum distance estimator, using short-run constraints given by

predefined matrix P
ivsvar mdist y1 (y2 y3 = z1 z2), peq(P)

Menu
Statistics > Multivariate time series > Instrumental-variables SVAR
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Syntax
Generalized method of moments (GMM) estimator

ivsvar gmm depvarlist (varnametarget = varlistiv) [ if ] [ in ] [ , options gmm options ]

Minimum distance estimator

ivsvar mdist depvarlist (varlisttarget = varlistiv) [ if ] [ in ] [ , options mdist options ]

varnametarget is a dependent variable corresponding to the target shock.

varlistiv is a list of instruments.

varlisttarget is a list of dependent variables corresponding to the target shocks.

options Description

Model

noconstant suppress constant term

nozconstant suppress constant terms for the instruments z

lags(numlist) specify a list of lags for the VAR model; default is lags(1 2)
exog(varlistexog) specify exogenous variables

zlags(numlist) specify a list of lags for the instruments z; default is no lags for

the instruments

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

gmm options Description

Model 2

scale(#) set scale for impact effect; default is scale(1)
showgmm display underlying GMM output

norescale do not rescale GMM output

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, or hac hacspec

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/tsvarivsvar.pdf#tsvarivsvarOptionsdisplay_options
https://www.stata.com/manuals/tsvarivsvar.pdf#tsvarivsvarOptionsvcetype
https://www.stata.com/manuals/tsvarivsvar.pdf#tsvarivsvarOptionshacspec
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mdist options Description

Model 2

beq(matrixbeq) define and apply to B equality constraint matrix matrixbeq
peq(matrixpeq) define and apply to Pz equality constraint matrix matrixpeq
qmatrix(matrix) specify minimum distance weight matrix Q

showvar display underlying VAR output

showzvar display underlying VAR output for the instruments

Maximization

maximize options control the maximization process; seldom used

You must tsset your data before using ivsvar; see [TS] tsset.
collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant term in the reduced-form VAR model.

nozconstant suppresses the constant terms in preliminary regressions on the instruments z.

lags(numlist) specifies the lags to be included in the reduced-form VAR model. The default is

lags(1 2). This option takes a numlist and not simply an integer for the maximum lag. For in-

stance, lags(2) would include only the second lag in the model, whereas lags(1/2) would include

both the first and second lags in the model. See [U] 11.1.8 numlist and [U] 11.4.4 Time-series varlists

for further discussion of numlists and lags.

exog(varlistexog) specifies a list of exogenous variables to be included in the reduced-form VAR model.

zlags(numlist) specifies that the lags in numlist be partialed out when running preliminary regressions

on the instruments z. The residuals from these regressions are then used as the instruments. See

[U] 11.1.8 numlist and [U] 11.4.4 Time-series varlists for further discussion of numlists and lags.

� � �
Model 2 �

The following options are specific to the GMM estimator:

scale(#) specifies the scaling factor used in computing impact effects. For example, an impact effect

of 0.25 may be computed with scale(0.25). The default is scale(1).

showgmm specifies that the output from gmm also be displayed. By default, it is fit quietly.

norescale removes rescaling entirely. The coefficients estimated by GMM are reported.

The following options are specific to the minimum distance estimator:

beq(matrixbeq) and peq(matrixpeq) specify the short-run constraints in an instrumental-variables SVAR

model. Short-run constraints are required any time there is more than one target shock. The beq()
option specifies constraints on the parameters of the B matrix; the peq() option specifies constraints

on the parameters of the Pz matrix (see Multiple target shocks for more details on the B and Pz
matrices). An instrumental-variables SVAR model requires at least 𝑟(𝑟 − 1)/2 constraints, where 𝑟 is
the number of target shocks.

https://www.stata.com/manuals/tsvarivsvar.pdf#tsvarivsvarOptionsmaxopts
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/tsvarivsvar.pdf#tsvarivsvarRemarksandexamplesMultipletargetshocks
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beq(matrixbeq) specifies a matrix that defines a set of equality constraints. The B matrix must be

of dimension 𝑘 × 𝑟, where 𝑘 is the number of variables in the VAR model and 𝑟 is the number of

target shocks. The elements of this matrix must be missing or real numbers. A missing value in

the (𝑖, 𝑗) element of this matrix specifies that the (𝑖, 𝑗) element of B is a free parameter. A real

number in the (𝑖, 𝑗) element of this matrix constrains the (𝑖, 𝑗) element of B to this real number. If

beq(matrixbeq) is not specified, all elements in B are assumed to be free parameters.

peq(matrixpeq) specifies a matrix that defines a set of equality constraints. The Pz matrix must be of

dimension 𝑟 × 𝑟. It follows the same rules as described in beq(matrixbeq), except that it applies
to Pz rather than B. If peq(matrixpeq) is not specified, all elements in Pz are assumed to be free

parameters. For example, if there are two instruments for two target shocks, the matrix

Pz = [. 0
0 .]

specifies that the first instrument is correlated with the first target shock, the second instrument is

correlated with the second target shock, and the cross-correlations are constrained to be zero. By

contrast, the matrix

Pz = [. 0
. .]

continues to impose that the first instrument is not affected by the second target shock, but allows

the second instrument to be correlated with both target shocks.

qmatrix(matrix) specifies the weight matrix Q used in minimum distance estimation. By default, the

inverse variance matrix of the reduced-form parameters is used.

showvar specifies that the output from the underlying VAR model also be displayed.

showzvar specifies that the output from the underlyingVARmodel for the instruments z also be displayed.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

vce(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) variance–

covariance matrix. The full syntax of hacspec is one of the following:

vce(hac kernel [ # ]) requests a HAC variance–covariance matrix using the specified kernel (see

below) with optional # lags. The bandwidth of a kernel is equal to # + 1. If # is not specified,

a kernel with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

vce(hac kernel opt [ # ]) requests a HAC variance–covariance matrix using the specified kernel

(see below), and the lag order is selected using Newey andWest’s (1994) optimal lag-selection

algorithm. # is an optional tuning parameter that affects the lag order selected; see the discussion

in Methods and formulas in [R] ivregress.

kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rivregress.pdf#rivregressMethodsandformulaswmatrixopt
https://www.stata.com/manuals/rivregress.pdf#rivregress
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� � �
Reporting �

level(#); see [R] Estimation options.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), and sformat(% fmt); see

[R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following option is available with ivsvar but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Structural VAR models with external instruments
Multiple target shocks

Introduction
This entry assumes that you are familiar with VAR model and SVAR model estimation. If you are not,

please look at [TS] var intro, [TS] var, [TS] var svar, and the references therein. Here, we illustrate how

to fit SVAR models with instrumental variables, also known as proxies. This method is an alternative to

that described in [TS] var svar, which fits SVARmodels subject to short-run and long-run restrictions. For

more detailed information on SVARmodels, see Amisano and Giannini (1997) and Hamilton (1994). For

good introductions to VAR models, see Lütkepohl (2005), Hamilton (1994), Stock and Watson (2001),

and Becketti (2020).

Instrumental-variables SVAR models were introduced by Stock and Watson (2012), with early appli-

cations by Mertens and Ravn (2013) and Gertler and Karadi (2015). Montiel Olea, Stock, and Watson

(2021) provide a treatment of the GMM estimator. The minimum distance estimator for instrumental-

variables SVAR models is due to Angelini and Fanelli (2019).

Structural VAR models with external instruments
A reduced-form VAR model without exogenous variables can be written as

y𝑡 = A1y𝑡−1 + · · · + A𝑝y𝑡−𝑝 + u𝑡

where y𝑡 is a 𝑘 × 1 vector of endogenous variables, (A1, . . . ,A𝑝) are 𝑘 × 𝑘 matrices of parameters, and

u𝑡 is a 𝑘 × 1 vector of residuals. The residuals have 𝑘 × 𝑘 covariance matrix 𝚺. As in [TS] var svar, we

assume the reduced-form residuals u𝑡 can be written as linear combinations of underlying independent

shocks e𝑡 by

u𝑡 = Be𝑡

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/tsvarintro.pdf#tsvarintro
https://www.stata.com/manuals/tsvar.pdf#tsvar
https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvar
https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvar
https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvar
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where B is a 𝑘 × 𝑘 matrix and e𝑡 is a 𝑘 × 1 vector of shocks. The matrix B is related to the reduced-form

residual covariance matrix by

𝚺 = BB′ (1)

where 𝐸(e𝑡e
′
𝑡) = I.

There are 𝑘2 entries in B, but the data provide only 𝑘(𝑘−1)/2 pieces of information in the symmetric
matrix 𝚺. An SVARmodel places restrictions on some entries of B to estimate the remaining entries. For

example, a researcher might set B to be lower triangular, leaving the 𝑘(𝑘 − 1)/2 diagonal and lower-

diagonal elements to be estimated.

Instrumental-variables SVAR models estimate the same parameters as traditional SVAR models; the

object of interest is one or more columns ofB. Instrumental-variables SVARmodels impose fewer restric-

tions on B than would be required in an SVAR model. This is accomplished by incorporating additional

information that supplements the covariance restriction in (1). In an instrumental-variables SVARmodel,

there exists a variable 𝑧𝑡 with the following properties:

𝐸(𝑧𝑡𝑒1,𝑡) = 𝑝𝑧

𝐸(𝑧𝑡𝑒𝑗,𝑡) = 0 ∀𝑗 ≠ 1

We call 𝑒1,𝑡 the target shock. The variable 𝑧𝑡 is correlated with the shock 𝑒1,𝑡 and is uncorrelated with

all other shocks. We say 𝑧𝑡 is an instrument, and it can be used to recover the first column of B.

One can write

𝐸(u𝑡𝑧𝑡) = 𝐸(Be𝑡𝑧𝑡)
= B1𝐸(𝑧𝑡𝑒1,𝑡) + B2𝐸(𝑧𝑡𝑒2,𝑡) + · · · + B𝑘𝐸(𝑧𝑡𝑒𝑘,𝑡)
= B1𝑝𝑧

so that the column of B associated with the target shock 𝑒1,𝑡 is identified, up to scale factor 𝑝𝑧. The

instrumental-variables SVAR model does not attempt to identify the remaining columns of B, which cor-

respond to the nontarget shocks.

The instrumental-variables SVAR model identifies the first column of B up to a scale factor. The final

normalization is the unit effect normalization: for a specified target variable, the effect on impact is

normalized to 1.

Instrumental-variables SVAR models come with benefits and costs. The benefit is that the researcher

needs to impose fewer restrictions on the impact effect matrix B than would be necessary in an SVAR

model identified by short-run restrictions. The cost is that the instrumental-variables SVAR model es-

timates only the columns of B related to the target shocks; it can say nothing about the columns of B

related to the nontarget shocks.

https://www.stata.com/manuals/tsvarivsvar.pdf#tsvarivsvarRemarksandexampleseq1
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Example 1: Instrumental-variables SVAR model
In this example, we use common US macroeconomic data. We have data on US industrial production

growth (ip growth), consumer price index inflation (inflation), and the interest rate (fedfunds).
These three variables are the outcome variables of interest. We also have two instruments. The first is

a proxy for monetary policy shocks (money inst), the surprise component of interest rate movements
used in Romer and Romer (2004) and Wieland and Yang (2020). The second is a proxy variable for

oil shocks (oil inst), the net oil price increase over the previous 12 months, similar to a measure

constructed in Hamilton (2003). These two proxies are used to instrument for interest rate shocks and

inflation shocks, respectively.

We first fit an instrumental-variables SVARmodel on inflation, the interest rate, and industrial produc-

tion growth, using the oil price instrument as a proxy for the inflation shock.

. use https://www.stata-press.com/data/r19/usmacro3
(Federal Reserve Economic Data - St. Louis Fed, 2023-09-01)
. ivsvar gmm fedfunds ip_growth (inflation = oil_inst)
Step 1:
Iteration 0: GMM criterion = .74206787
Iteration 1: GMM criterion = 2.677e-31
Iteration 2: GMM criterion = 1.678e-31
Step 2:
Iteration 0: GMM criterion = 4.547e-31
Iteration 1: GMM criterion = 4.547e-31 (backed up)
note: model is exactly identified.
Instrumental-variables SVAR Number of obs = 783
VAR sample: 1954m10 thru 2019m12
GMM sample: 1954m10 thru 2019m12
( 1) [e.inflation]inflation = 1

Robust
Effect Coefficient std. err. z P>|z| [95% conf. interval]

e.inflation
fedfunds .0046142 .271441 0.02 0.986 -.5274004 .5366288

ip_growth -.31198 .4330713 -0.72 0.471 -1.160784 .5368241
inflation 1 (constrained)

Note: Underlying VAR fit with 2 lags.
Dependent variables: fedfunds ip_growth inflation
Instrumented shock: inflation
Instrument: oil_inst

The output displays only the impact coefficients; the reduced-form VAR lag coefficients are sup-

pressed. The impact effects are the elements of the column of B that correspond to the structural

inflation shock. The impact effects are shown only for the target shock, in this case, the inflation

shock (e.inflation). The first response is the impact effect of the inflation shock on the interest rate
(fedfunds), which is close to zero. The second response is the impact effect of the inflation shock on
the growth rate of industrial production (ip growth); the estimated impact effect is −0.31, though the

95% confidence interval includes zero. The third response is the effect of an inflation shock on inflation

itself (inflation), which is scaled to 1.

In a short-run SVARmodel fit by the svar command, all elements of the impact matrixB are displayed,

arranged by column. In the present ivsvar output, only columns of B associated with the target shock

are estimated and displayed. Hence, the output above contains only the impact effects of the inflation

shock.
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To trace out the dynamic effects of the inflation shock, we create and graph the structural IRFs with

the irf suite of commands:

. irf set ivsvarirf.irf, replace

. irf create model1, step(36)

. irf graph sirf, impulse(inflation)

sirf requests that structural IRFs be displayed.

-1

-.5

0

.5

1

-1

-.5

0

.5

1

0 12 24 36

0 12 24 36

model1, inflation, fedfunds model1, inflation, inflation

model1, inflation, ip_growth

95% CI Structural IRF

Step

Graphs by irfname, impulse variable, and response variable

Each panel displays the dynamic response of one variable to the shock. The 𝑥 axis measures time in

the units of the data, in this case months. The 𝑦 axis has the same units as the variables, in this case,

percentage points. The interest rate (top left) shows little response to the shock at any time horizon.

Inflation (top right) rises by 1% on impact by construction, falling back to its long-run average within 6

steps (6 months). Industrial production falls on impact but returns to its long-run average quickly.
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Example 2: Including additional lags in the VAR model
We continue with the above example and now include 12 lags in the reduced-form VARmodel instead

of the default 2 lags. These additional lags can detect more complicated short-run dynamics in the periods

after a shock. We can then graph the dynamic responses from both models on the same set of IRF graphs:

. ivsvar gmm fedfunds ip_growth (inflation = oil_inst), lags(1/12)
(output omitted )

. irf create model2, step(36)
irfname model2 not found in ivsvarirf.irf
(file ivsvarirf.irf updated)
. irf graph sirf, impulse(inflation)

-1

0

1

2

-1

0

1

2

0 12 24 36 0 12 24 36 0 12 24 36

model1, inflation, fedfunds model1, inflation, inflation model1, inflation, ip_growth

model2, inflation, fedfunds model2, inflation, inflation model2, inflation, ip_growth

95% CI Structural IRF

Step

Graphs by irfname, impulse variable, and response variable

Each row contains the dynamic responses from one model. The top row reproduces the IRF graphs for

the 2-lag model. The bottom row produces the IRF graphs for the 12-lag model. With these additional

lags, the interest rate response is positive one year after the shock and does not return to steady state even

36 months after the shock. In the two-lag model shown on the top row, the inflation response quickly

returns to zero, whereas in the many-lag model, there is additional persistence in the inflation response.

Industrial production declines on impact as in the two-lag model, with additional declines in the months

following the shock.

Multiple target shocks
So far we have considered aVARmodel with a single instrument and a single target shock. The ivsvar

mdist estimator is available for models with multiple instruments and multiple target shocks. As before,

there is a VAR model:

y𝑡 = A1y𝑡−1 + · · · + A𝑝y𝑡−𝑝 + u𝑡

As before, we assume the reduced-form residuals u𝑡 can be written as linear combinations of underlying

independent shocks e𝑡 by

u𝑡 = Be𝑡

For convenience, we split the 𝑘 shocks into two groups: 𝑟 target shocks and (𝑘 − 𝑟) nontarget shocks.

u𝑡 = B1e1𝑡 + B2e2𝑡
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There is an 𝑟×1 vector of instruments z𝑡 that is related to the target shocks e1𝑡 (the relevance assumption)

and is unrelated to the nontarget shocks e2𝑡 (the exclusion assumption), satisfying

z𝑡 = Pze1𝑡 + ω𝑡

where Pz is a 𝑟 × 𝑟 matrix describing the relationship of the instruments to the target shocks and ω𝑡 is

noise.

Example 3: Multiple target shocks
We fit an instrumental-variables SVAR model with two instruments for two target shocks. The instru-

ments are the monetary instrument and the oil price instrument; the target shocks are the interest rate and

inflation shocks. Because we have two instruments and two shocks, one restriction is required to estimate

the remaining parameters. This could be a restriction on the impact coefficients B1 or a restriction on

how the instruments are related to the target shocks. If each instrument is correlated only with one target

shock, then the Pz matrix will be diagonal, giving us two restrictions. We can relax this assumption,

allowing one of the two instruments to additionally be related to a second target shock. Setting up the

matrix

. matrix P = (., 0 \ ., .)

specifies that the first instrument is related only to the first target shock and the second instrument is

potentially related to both target shocks. Thus, order matters when specifying the instruments and target

shocks.
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. ivsvar mdist ip_growth (fedfunds inflation = money_inst oil_inst),
> lags(1/12) peq(P)
Estimating short-run parameters:
Iteration 0: Distance criterion = 6.333e-32
Iteration 1: Distance criterion = 5.009e-32
Refining estimates:
Iteration 0: Distance criterion = 1.919e-33
Iteration 1: Distance criterion = 1.906e-33
Instrumental-variables SVAR Number of obs = 468
Endogenous sample: 1955m8 thru 2019m12
Instrument sample: 1969m1 thru 2007m12
( 1) [e.inflation]money_inst = 0

Effect Coefficient Std. err. z P>|z| [95% conf. interval]

e.fedfunds
ip_growth .162055 .0627292 2.58 0.010 .0391079 .285002
fedfunds .4161643 .014041 29.64 0.000 .3886445 .4436841

inflation .0319081 .0179481 1.78 0.075 -.0032696 .0670858

e.inflation
ip_growth -.0980082 .1484195 -0.66 0.509 -.3889051 .1928888
fedfunds -.0313886 .0297882 -1.05 0.292 -.0897724 .0269952

inflation .2118086 .0084356 25.11 0.000 .1952751 .2283421

e.fedfunds
money_inst .1626293 .0126147 12.89 0.000 .1379049 .1873537

oil_inst .0470263 .2422618 0.19 0.846 -.4277982 .5218507

e.inflation
money_inst 0 (constrained)

oil_inst 1.138002 .2256836 5.04 0.000 .6956705 1.580334

Wald test of instrument relevance: chi2(6) = 218.1 Prob > chi2 = 0.000
Note: Underlying VAR fit with 12 lags.
Dependent variables: ip_growth fedfunds inflation
Instrumented shocks: fedfunds inflation
Instruments: money_inst oil_inst

Before we discuss the estimation output, notice from the header output that the endogenous variables

are measured from 1955m8 and the instruments are measured from 1969m1. The endogenous sample

and instrument sample may differ, which is useful when the instrument is measured on a shorter sample

than the endogenous variables (or vice versa).

The estimation output is separated into blocks. Each block is the impact effect of one shock either on

the endogenous variables or on the instruments. In the above output, the first two blocks are columns of

the B1 matrix; the coefficients are the impact effects of the shocks on the endogenous variables. The last

two blocks are the columns of the Pz matrix; the coefficients are the impact effects of the shocks on the

instruments.

From the first block, we see that on impact, an interest rate shock raises the interest rate, inflation, and

industrial production growth. From the second block, we find that an inflation shock increases inflation,

reduces the interest rate, and reduces industrial production growth on impact. Importantly, no elements

of B1 needed to be constrained, unlike in a short-run SVAR model.

The third block displays the effect of an interest rate shock on the two instruments. The interest rate

shock is positively related to the monetary instrument. In addition, we have allowed the interest rate

shock to be correlated with the oil price instrument. This coefficient of 0.047 indicates that when there is
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an interest rate shock, the oil price instrument rises by 0.047. Allowing for these cross-effects—nonzero

response of some instruments to the “wrong” shock—is a useful feature of the multiple-shock approach.

The final block displays the effect of an inflation shock on the two instruments. In the final block, we

have assumed no influence of the inflation shock on the monetary instrument and allowed the inflation

shock to influence the oil price instrument.

We can compute impulse–response functions for each instrumented shock.

. irf create model3, step(36)

Responses to an interest rate shock are

. irf graph sirf, irf(model3) impulse(fedfunds) response(inflation ip_growth)

-.1

0

.1

.2

.3

0 12 24 36 0 12 24 36

model3, fedfunds, inflation model3, fedfunds, ip_growth

95% CI Structural IRF

Step

Graphs by irfname, impulse variable, and response variable

The inflation response is slightly positive for all 36 periods. Industrial production growth rises slightly

initially but then falls within six months of the shock.

Responses to an inflation shock are

. irf graph sirf, irf(model3) impulse(inflation) response(inflation ip_growth)

-.4

-.2

0

.2

0 12 24 36 0 12 24 36

model3, inflation, inflation model3, inflation, ip_growth

95% CI Structural IRF

Step

Graphs by irfname, impulse variable, and response variable

Responses here are similar to what was estimated in the ivsvar gmm case.
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Stored results
ivsvar stores the following in e():

Scalars

e(N) number of observations

e(neqs) number of equations

e(k eq) number of equations in e(b)
e(k dv) number of dependent variables

e(k exo) number of exogenous variables

e(k eq var) number of equations in underlying VAR models

e(dist) distance

e(tmin var) minimum time for VAR equations

e(tmax var) maximum time for VAR equations

e(tmin inst) minimum time for instrument equations

e(tmax inst) maximum time for instrument equations

e(mlag var) highest lag in VAR

e(N clust) number of clusters

e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) ivsvar
e(cmdline) command as typed

e(estimator) gmm or mdist
e(tmins var) formatted minimum time for VAR equations

e(tmaxs var) formatted maximum time for VAR equations

e(tmins inst) formatted minimum time for instrument equations

e(tmaxs inst) formatted maximum time for instrument equations

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(lags var) lags in model

e(endog var) names of endogenous variables

e(exog var) names of exogenous variables, if specified

e(instruments) names of instruments

e(nocons var) nocons, if noconstant specified

e(eqnames var) names of equations

e(tsfmt) format for the current time variable

e(timevar) name of time variable

e(title) title in estimation output

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(Sigma) �̂� matrix

e(V) variance–covariance matrix of the estimators

e(Cholesky) Cholesky factor of Sigma matrix

e(B1) estimated B1 matrix

e(P) estimated P matrix, if the minimum distance estimator was used

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

GMM
Minimum distance

GMM
AVAR(𝑝) model without exogenous variables can be written

y𝑡 = A1y𝑡−1 + · · · + A𝑝y𝑡−𝑝 + u𝑡

where y𝑡 is a 𝑘×1 vector of endogenous variables, each of (A1, . . . ,A𝑝) is a 𝑘×𝑘 matrix of coefficients,
and u𝑡 is a 𝑘×1 vector of disturbances. These are referred to as the VAR equations. The VAR disturbances

are related to the underlying shocks via

u𝑡 = Be𝑡

where B is a 𝑘 × 𝑘 matrix of impact effects and e𝑡 is a 𝑘 × 1 vector of shocks. There is one target shock

whose effects we are interested in, and we wish to identify the column of B associated with the target

shock. Without loss of generality, let the target shock be 𝑒1,𝑡.

There is an instrument 𝑧𝑡 with the relevance and exclusion restrictions

𝐸(𝑧𝑡𝑒1𝑡) = 𝑝𝑧

𝐸(𝑧𝑡𝑒𝑗𝑡) = 0 ∀𝑗 ≠ 1

These conditions together imply the moment condition

𝐸(u𝑡𝑧𝑡) = B1𝑝𝑧

that is, it identifies the column of B associated with the target shock 𝑒1,𝑡 up to scale 𝑝𝑧.

It is possible to partial out a constant term and lags of the instrument, leading to the instrument equa-

tion,

𝑧𝑡 = 𝛾0 + 𝛾1𝑧𝑡−1 + · · · + 𝛾𝑙𝑧𝑡−𝑙 + 𝑣𝑡

where the 𝛾𝑖 are coefficients. In this case, the moment condition relating the instruments and the VAR

residuals is stated in terms of the instrument residuals,

𝐸(u𝑡𝑣𝑡) = B1𝑝𝑧

ivsvar gmm estimates the VAR equations, any instrument equations, and the instrument moment condi-

tions jointly. The moment condition is then rescaled so that the impact effect of the target shock is 1 for

a prespecified variable.
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Minimum distance
Same as above, let y𝑡 be a 𝑘 × 1 collection of endogenous variables with the VAR(𝑝) representation

y𝑡 = A1y𝑡−1 + · · · + A𝑝y𝑡−𝑝 + u𝑡

The VAR residuals continue to be related to the underlying shocks via

u𝑡 = Be𝑡

where B is a 𝑘 × 𝑘 matrix and e𝑡 is a 𝑘 × 1 vector of shocks. We partition the shocks into (e1,𝑡, e2,𝑡),

u𝑡 = B1e1,𝑡 + B2e2,𝑡

where e1,𝑡 is a 𝑔 × 1 collection of target shocks and e2,𝑡 is a (𝑘 − 𝑔) × 1 collection of nontarget shocks.

Hence, B1 is 𝑘 × 𝑔 and B2 is 𝑘 × (𝑘 − 𝑔). The parameters of interest are B1, which are the columns of

B corresponding to the target shocks.

We have an 𝑟 × 1 collection of instruments z𝑡 associated with the target shocks e1,𝑡. The instruments

are related to the target shocks by an 𝑟 × 𝑔 matrix Pz and are not related to nontarget shocks. This

relationship is parameterized by

z𝑡 = Pze1𝑡 + ω𝑡

where ω𝑡 is an 𝑟 × 1 vector of white-noise disturbance terms. Lags of z𝑡 can be added to the right-hand

side of this equation if desired. This equation is the analogue of the relevance and exclusion restrictions

in the GMM case. The matrix Pz measures the strength of association between the instruments and the

target shocks and is estimated.

The minimum distance estimator estimates the structural parameters (B1,Pz). The estimator mini-
mizes the distance between reduced-form covariances and covariances implied by the model.

AB-type SVAR model implies a relationship between the covariance matrix of the VAR residuals, 𝚺u,

and the impact matrix B,

𝚺u = BB′

This equation provides a mapping between the 𝑘2 structural parameters in B and the 𝑘(𝑘 + 1)/2 unique
elements of 𝚺u. With 𝑘(𝑘 − 1)/2 additional restrictions in place, the parameters in B can be estimated

so that the mapping holds as closely as possible.

The instrumental-variables SVAR model implies an analogous set of mappings. Let 𝚺zu = Z′U/𝑇
and let 𝚺uz = 𝚺′

zu. Then the relationships are

𝚺zu = PzB
′
1 (2)

and

𝚺zu𝚺
−1
u 𝚺uz = PzPz

′ (3)

The left-hand side of each expression (2) and (3) consists of reduced-form parameters that can be com-

puted from the instruments z𝑡 and the VAR residuals u𝑡. The right-hand side of each expression (2) and

(3) consists of structural parameters to be estimated. 𝚺zu is an 𝑟 × 𝑘 matrix; 𝚺zu𝚺−1
u 𝚺uz is an 𝑟 × 𝑟

symmetric matrix.
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Let

θ = [vec(B1)
vec(Pz)

]

collect all structural parameters to be estimated. θ is a 𝑘𝑔 + 𝑟𝑔 × 1 column vector, so let 𝑛𝜃 = 𝑘𝑔 + 𝑟𝑔
denote the number of structural parameters. Analogously, let

π = [ vec(𝚺zu)
vech(𝚺zu𝚺−1

u 𝚺uz)
]

collect all the reduced-form parameters. π has 𝑘𝑟 + 𝑟(𝑟 + 1)/2 elements, so let 𝑛𝜋 = 𝑘𝑟 + 𝑟(𝑟 + 1)/2.
Finally, let V𝜋 be the variance–covariance matrix of π.

For any candidate θ, define the function f(θ) as

f(θ) = [ vec(PzB′
1)

vech(PzPz′)]

which maps θ into π. Then the distance function 𝑑(θ) is defined as

𝑑(θ) = {π − f(θ)}′V−1
π {π − f(θ)}

and θ̂ minimizes the distance function.

Standard errors for θ̂ are computed via

V
θ̂

= (F′
θV

−1
π Fθ)

−1

where

Fθ = [ 0𝑟(𝑟+1)/2×𝑘𝑔 2D+
𝑟 (Pz ⊗ I𝑟)

(I𝑘 ⊗ Pz)K𝑘𝑔 B1 ⊗ I𝑟
]

is the 𝑛𝜋 × 𝑛𝜃 derivative matrix of f(θ) with respect to θ. In this expression, D+
𝑟 is the Moore–Penrose

inverse of the duplication matrix, andK is the commutation matrix as defined in Magnus and Neudecker

(2019, 54–55).

If qmatrix() is specified, then the 𝑛𝜋 × 𝑛𝜋 symmetric weight matrixQ is used in place of V𝜋 in the

distance function and in the variance calculation. The variance formula for θ̂ takes the expression

V
θ̂

= (F′
θQFθ)−1F′

θQV𝜋QFθ(F′
θQFθ)−1

There must be at least as many reduced-form parameters as there are structural parameters to be

estimated; 𝑛𝜋 ≥ 𝑛𝜃. With more than one target shock, 𝑛𝜃 exceeds 𝑛𝜋, and constraints must be placed on

the elements of B1 or Pz. There must be 𝑔(𝑔 − 1)/2 such constraints.
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