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Description
Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference on vector

autoregressive (VAR) models and structural vector autoregressive (SVAR) models. The suite includes sev-

eral commands for estimating and interpreting impulse–response functions (IRFs), dynamic-multiplier

functions, and forecast-error variance decompositions (FEVDs). The table below describes the available

commands.

Fitting a VAR or SVAR

var [TS] var Fit VAR models

svar [TS] var svar Fit SVAR models

ivsvar [TS] var ivsvar Fit instrumental-variables SVAR models

varbasic [TS] varbasic Fit a simple VAR and graph IRFs or FEVDs

Model diagnostics and inference

varstable [TS] varstable Check eigenvalue stability condition

varsoc [TS] varsoc Obtain lag-order selection statistics for VAR

and VEC models

varwle [TS] varwle Obtain Wald lag-exclusion statistics

vargranger [TS] vargranger Perform pairwise Granger causality tests

varlmar [TS] varlmar Perform LM test for residual autocorrelation

varnorm [TS] varnorm Test for normally distributed disturbances

Forecasting after fitting a VAR or SVAR

fcast compute [TS] fcast compute Compute dynamic forecasts

fcast graph [TS] fcast graph Graph forecasts after fcast compute

Working with IRFs, dynamic-multiplier functions, and FEVDs

irf [TS] irf Create and analyze IRFs, dynamic-multiplier functions,

and FEVDs

This entry provides an overview of vector autoregressions and structural vector autoregressions. More

rigorous treatments can be found in Hamilton (1994), Lütkepohl (2005), and Amisano and Giannini

(1997). Stock and Watson (2001) provide an excellent nonmathematical treatment of vector autore-

gressions and their role in macroeconomics. Becketti (2020) provides an excellent introduction to VAR

analysis with an emphasis on how it is done in practice.
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Remarks and examples
Remarks are presented under the following headings:

Introduction to VAR models
Introduction to SVAR models
Short-run SVAR models
Long-run restrictions
IRFs and FEVDs
Instrumental-variables SVAR models

Introduction to VAR models
AVAR model is a model in which 𝐾 variables are specified as linear functions of 𝑝 of their own lags,

𝑝 lags of the other 𝐾 −1 variables, and possibly additional exogenous variables. Algebraically, a 𝑝-order
VAR model, written VAR(𝑝), with exogenous variables x𝑡 is given by

y𝑡 = v + A1y𝑡−1 + · · · + A𝑝y𝑡−𝑝 + B0x𝑡 + B1x𝑡−1 + · · · + B𝑠x𝑡−𝑠 + u𝑡 𝑡 ∈ {−∞, ∞} (1)

where
y𝑡 = (𝑦1𝑡, . . . , 𝑦𝐾𝑡)′ is a 𝐾 × 1 random vector,

A1 through A𝑝 are 𝐾 × 𝐾 matrices of parameters,

x𝑡 is an 𝑀 × 1 vector of exogenous variables,

B0 through B𝑠 are 𝐾 × 𝑀 matrices of coefficients,

v is a 𝐾 × 1 vector of parameters, and

u𝑡 is assumed to be white noise; that is,

𝐸(u𝑡) = 0,

𝐸(u𝑡u
′
𝑡) = 𝚺, and

𝐸(u𝑡u
′
𝑠) = 0 for 𝑡 ≠ 𝑠

There are 𝐾2 × 𝑝 + 𝐾 × (𝑀(𝑠 + 1) + 1) parameters in the equation for y𝑡, and there are

{𝐾 × (𝐾 + 1)}/2 parameters in the covariance matrix 𝚺. One way to reduce the number of parameters

is to specify an incomplete VAR model, in which some of the A or B matrices are set to zero. Another

way is to specify linear constraints on some of the coefficients in the VAR model.

A VAR model can be viewed as the reduced form of a system of dynamic simultaneous equations.

Consider the system

W0y𝑡 = a + W1y𝑡−1 + · · · + W𝑝y𝑡−𝑝 + W̃1x𝑡 + W̃2x𝑡−2 + · · · + W̃𝑠x𝑡−𝑠 + e𝑡 (2)

where a is a 𝐾 × 1 vector of parameters, eachW𝑖, 𝑖 = 0, . . . , 𝑝, is a 𝐾 × 𝐾 matrix of parameters, and

e𝑡 is a 𝐾 × 1 disturbance vector. In the traditional dynamic simultaneous equations approach, sufficient

restrictions are placed on the W𝑖 to obtain identification. Assuming that W0 is nonsingular, (2) can be

rewritten as

y𝑡 =W−1
0 a + W−1

0 W1y𝑡−1 + · · · + W−1
0 W𝑝y𝑡−𝑝

+ W−1
0 W̃1x𝑡 + W−1

0 W̃2x𝑡−2 + · · · + W−1
0 W̃𝑠x𝑡−𝑠 + W−1

0 e𝑡
(3)

which is a VAR model with

v = W−1
0 a

A𝑖 = W−1
0 W𝑖

B𝑖 = W−1
0 W̃𝑖

u𝑡 = W−1
0 e𝑡
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The cross-equation error variance–covariance matrix 𝚺 contains all the information about contempora-

neous correlations in a VAR model and may be the VAR model’s greatest strength and its greatest weak-

ness. Because no questionable a priori assumptions are imposed, fitting a VAR model allows the dataset

to speak for itself. However, without imposing some restrictions on the structure of 𝚺, we cannot make

a causal interpretation of the results.

If we make additional technical assumptions, we can derive another representation of the VAR model

in (1). If the VAR model is stable (see [TS] varstable), we can rewrite y𝑡 as

y𝑡 = µ +
∞

∑
𝑖=0

D𝑖x𝑡−𝑖 +
∞

∑
𝑖=0

𝚽𝑖u𝑡−𝑖 (4)

whereµ is the𝐾×1 time-invariant mean of the process andD𝑖 and𝚽𝑖 are𝐾×𝑀 and𝐾×𝐾matrices of

parameters, respectively. Equation (4) states that the process by which the variables in y𝑡 fluctuate about

their time-invariant means,µ, is completely determined by the parameters inD𝑖 and 𝚽𝑖 and the (infinite)

past history of the exogenous variables x𝑡 and the independent and identically distributed (i.i.d.) shocks

or innovations, u𝑡−1,u𝑡−2, . . . . Equation (4) is known as the vector moving-average representation of

the VARmodel. The D𝑖 are the dynamic-multiplier functions, or transfer functions. The moving-average

coefficients 𝚽𝑖 are also known as the simple IRFs at horizon 𝑖. The precise relationships between the

VAR parameters and the D𝑖 and 𝚽𝑖 are derived in Methods and formulas of [TS] irf create.

The joint distribution of y𝑡 is determined by the distributions of x𝑡 and u𝑡 and the parameters v, B𝑖,

and A𝑖. Estimating the parameters in a VAR model requires that the variables in y𝑡 and x𝑡 be covariance

stationary, meaning that their first two moments exist and are time invariant. If the y𝑡 are not covariance

stationary, but their first differences are, a vector error-correction model can be used. See [TS] vec intro

and [TS] vec for more information about those models.

If the u𝑡 form a zero mean, i.i.d. vector process, and y𝑡 and x𝑡 are covariance stationary and are

not correlated with the u𝑡, consistent and efficient estimates of the B𝑖, the A𝑖, and v are obtained via

seemingly unrelated regression, yielding estimators that are asymptotically normally distributed. When

the equations for the variables y𝑡 have the same set of regressors, equation-by-equation OLS estimates

are the conditional maximum likelihood estimates.

Much of the interest in VAR models is focused on the forecasts, IRFs, dynamic-multiplier functions,

and the FEVDs, all of which are functions of the estimated parameters. Estimating these functions is

straightforward, but their asymptotic standard errors are usually obtained by assuming that u𝑡 forms a

zero mean, i.i.d. Gaussian (normal) vector process. Also, some of the specification tests for VAR models

have been derived using the likelihood-ratio principle and the stronger Gaussian assumption.

In the absence of contemporaneous exogenous variables, the disturbance variance–covariance matrix

contains all the information about contemporaneous correlations among the variables. VAR models are

sometimes classified into three types by how they account for this contemporaneous correlation. (See

Stock and Watson [2001] for one derivation of this taxonomy.) A reduced-form VAR model, aside from

estimating the variance–covariance matrix of the disturbance, does not try to account for contempora-

neous correlations. In a recursive VAR model, the 𝐾 variables are assumed to form a recursive dynamic

structural equation model in which the first variable is a function of lagged variables, the second is a

function of contemporaneous values of the first variable and lagged values, and so on. In a structural

VARmodel, the theory you are working with places restrictions on the contemporaneous correlations that

are not necessarily recursive.

Stata has two commands for fitting reduced-form VAR models: var and varbasic. var allows for

constraints to be imposed on the coefficients. varbasic allows you to fit a simple VAR model quickly

without constraints and graph the IRFs.

https://www.stata.com/manuals/tsvarintro.pdf#tsvarintroRemarksandexampleseq1
https://www.stata.com/manuals/tsvarstable.pdf#tsvarstable
https://www.stata.com/manuals/tsvarintro.pdf#tsvarintroRemarksandexampleseq4
https://www.stata.com/manuals/tsvarintro.pdf#tsvarintroRemarksandexampleseq4
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreateMethodsandformulas
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreate
https://www.stata.com/manuals/tsvecintro.pdf#tsvecintro
https://www.stata.com/manuals/tsvec.pdf#tsvec
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Because fitting a VAR model of the correct order can be important, varsoc offers several methods

for choosing the lag order 𝑝 of the VAR model to fit. After fitting a VAR model, and before proceeding

with inference, interpretation, or forecasting, checking that the VAR model fits the data is important.

varlmar can be used to check for autocorrelation in the disturbances. varwle performs Wald tests to

determine whether certain lags can be excluded. varnorm tests the null hypothesis that the disturbances

are normally distributed. varstable checks the eigenvalue condition for stability, which is needed to

interpret the IRFs and IRFs.

Introduction to SVAR models
As discussed in [TS] irf create, a problem with VAR analysis is that, because 𝚺 is not restricted to be a

diagonal matrix, an increase in an innovation to one variable provides information about the innovations

to other variables. This implies that no causal interpretation of the simple IRFs is possible: there is no

way to determine whether the shock to the first variable caused the shock in the second variable or vice

versa.

However, suppose that we had a matrix P such that 𝚺 = PP′. We can then show that the variables in

P−1u𝑡 have zero mean and that 𝐸{P−1u𝑡(P−1u𝑡)′} = I𝐾. We could rewrite (4) as

y𝑡 = µ +
∞

∑
𝑠=0

𝚽𝑠PP
−1u𝑡−𝑠

= µ +
∞

∑
𝑠=0

𝚯𝑠P
−1u𝑡−𝑠

= µ +
∞

∑
𝑠=0

𝚯𝑠w𝑡−𝑠

(5)

where 𝚯𝑠 = 𝚽𝑠P and w𝑡 = P−1u𝑡. If we had such a P, the w𝑘 would be mutually orthogonal, and the

𝚯𝑠 would allow the causal interpretation that we seek.

SVAR models provide a framework for estimation of and inference about a broad class of P matrices.

As described in [TS] irf create, the estimated Pmatrices can then be used to estimate structural IRFs and

structural FEVDs. There are two types of SVAR models. Short-run SVAR models identify a P matrix by

placing restrictions on the contemporaneous correlations between the variables. Long-run SVARmodels,

on the other hand, do so by placing restrictions on the long-term accumulated effects of the innovations.

Short-run SVAR models
A short-run SVAR model without exogenous variables can be written as

A(I𝐾 − A1𝐿 − A2𝐿2 − · · · − A𝑝𝐿𝑝)y𝑡 = Aε𝑡 = Be𝑡 (6)

where𝐿 is the lag operator;A,B, andA1, . . . ,A𝑝 are𝐾×𝐾matrices of parameters; ε𝑡 is a𝐾×1 vector of

innovations with ε𝑡 ∼ 𝑁(0, 𝚺) and𝐸[ε𝑡ε
′
𝑠] = 0𝐾 for all 𝑠 ≠ 𝑡; and e𝑡 is a𝐾×1 vector of orthogonalized

disturbances; that is, e𝑡 ∼ 𝑁(0, I𝐾) and 𝐸[e𝑡e
′
𝑠] = 0𝐾 for all 𝑠 ≠ 𝑡. These transformations of the

innovations allow us to analyze the dynamics of the system in terms of a change to an element of e𝑡. In

a short-run SVAR model, we obtain identification by placing restrictions on A and B, which are assumed

to be nonsingular.

Equation (6) implies that Psr = A−1B, where Psr is the P matrix identified by a particular short-run

SVAR model. The latter equality in (6) implies that

Aε𝑡ε
′
𝑡A

′ = Be𝑡e
′
𝑡B

′

https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreate
https://www.stata.com/manuals/tsvarintro.pdf#tsvarintroRemarksandexampleseq4
https://www.stata.com/manuals/tsirfcreate.pdf#tsirfcreate
https://www.stata.com/manuals/tsvarintro.pdf#tsvarintroRemarksandexampleseq6
https://www.stata.com/manuals/tsvarintro.pdf#tsvarintroRemarksandexampleseq6
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Taking the expectation of both sides yields

𝚺 = PsrP
′
sr

Assuming that the underlying VAR model is stable (see [TS] varstable for a discussion of stability),

we can invert the autoregressive representation of the model in (6) to an infinite-order, moving-average

representation of the form

y𝑡 = µ +
∞

∑
𝑠=0

𝚯sr
𝑠 e𝑡−𝑠 (7)

whereby y𝑡 is expressed in terms of the mutually orthogonal, unit-variance structural innovations e𝑡. The

𝚯sr
𝑠 contain the structural IRFs at horizon 𝑠.
In a short-run SVAR model, the A and B matrices model all the information about contemporaneous

correlations. The Bmatrix also scales the innovations u𝑡 to have unit variance. This allows the structural

IRFs constructed from (7) to be interpreted as the effect on variable 𝑖 of a one-time unit increase in the

structural innovation to variable 𝑗 after 𝑠 periods.

Psr identifies the structural IRFs by defining a transformation of 𝚺, and Psr is identified by the re-

strictions placed on the parameters in A and B. Because there are only 𝐾(𝐾 + 1)/2 free parameters in

𝚺, only 𝐾(𝐾 + 1)/2 parameters may be estimated in an identified Psr. Because there are 2𝐾2 total

parameters in A and B, the order condition for identification requires that at least 2𝐾2 − 𝐾(𝐾 + 1)/2
restrictions be placed on those parameters. Just as in the simultaneous-equations framework, this order

condition is necessary but not sufficient. Amisano and Giannini (1997) derive a method to check that an

SVAR model is locally identified near some specified values for A and B.

Before moving on to models with long-run constraints, consider these limitations. We cannot place

constraints on the elements of A in terms of the elements of B, or vice versa. This limitation is imposed

by the form of the check for identification derived by Amisano and Giannini (1997). As noted inMethods

and formulas of [TS] var svar, this test requires separate constraint matrices for the parameters in A and

B. Also, we cannot mix short-run and long-run constraints.

Long-run restrictions
A general short-run SVAR model has the form

A(I𝐾 − A1𝐿 − A2𝐿2 − · · · − A𝑝𝐿𝑝)y𝑡 = Be𝑡

To simplify the notation, let A = (I𝐾 −A1𝐿 −A2𝐿2 − · · · −A𝑝𝐿𝑝). The model is assumed to be stable

(see [TS] varstable), so A
−1
, the matrix of estimated long-run effects of the reduced-form VAR shocks,

is well defined. Constraining A to be an identity matrix allows us to rewrite this equation as

y𝑡 = A
−1
Be𝑡

which implies that 𝚺 = BB′. Thus C = A
−1
B is the matrix of long-run responses to the orthogonalized

shocks, and

y𝑡 = Ce𝑡

In long-runmodels, the constraints are placed on the elements ofC, and the free parameters are estimated.

These constraints are often exclusion restrictions. For instance, constraining C[1, 2] to be zero can be

interpreted as setting the long-run response of variable 1 to the structural shocks driving variable 2 to be

zero.

https://www.stata.com/manuals/tsvarstable.pdf#tsvarstable
https://www.stata.com/manuals/tsvarintro.pdf#tsvarintroRemarksandexampleseq6
https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvarMethodsandformulas
https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvarMethodsandformulas
https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvar
https://www.stata.com/manuals/tsvarstable.pdf#tsvarstable
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Stata’s svar command estimates the parameters of SVAR models. See [TS] var svar for more infor-

mation and examples.

Instrumental-variables SVAR models
A short-run SVAR model with the normalization A = I𝑘 can be written as

y𝑡 = A1y𝑡−1 + · · · + A𝑝y𝑡−𝑝 + u𝑡

u𝑡 = Be𝑡

Columns of B describe the impact effect of each shock. A short-run SVAR model places restrictions

on some elements of B based on theory and estimates other elements. An instrumental-variables SVAR

model uses instruments to reduce the number of restrictions needed onB. An instrument 𝑧𝑡 is an auxiliary

variable, not included in the SVARmodel, which is correlated with one of the SVAR shocks and is unrelated

to the remaining shocks. Thus, it can be written as

𝑧𝑡 = 𝑝𝑧𝑒1,𝑡 + 𝜔𝑡

The instrument has three properties: it is correlated with the shock of interest, 𝑒1,𝑡 (called the target

shock); it is uncorrelated with all other shocks; and it is potentially contaminated by measurement noise

𝑤𝑡, which is unrelated to the SVAR shocks.

Instead of a single instrument, there may be a vector of instruments. In this case, the mapping between

instruments and target shocks is

z𝑡 = Pze1,𝑡 + ω𝑡

where z𝑡 is an 𝑟 × 1 vector of instruments, e1,𝑡 is a 𝑔 × 1 vector of target shocks, Pz is an 𝑟 × 𝑔 matrix

of relationships between instruments and target shocks, and ω𝑡 is an 𝑟 × 1 vector of noise terms.

An instrumental-variables SVAR model combines the SVAR equations with the instrument equations.

The VAR residuals and instruments are related to the SVAR shocks and instrument noise via

u𝑡 = B1e1,𝑡 + B2e2,𝑡

z𝑡 = Pze1,𝑡 + ω𝑡

where e1,𝑡 are target shocks and e2,𝑡 are nontarget shocks. This model can fit multiple columns of B

without placing any restrictions on them, which is impossible in a short-run SVAR model.

The ivsvar gmm command estimates the parameters of instrumental-variables SVAR models for the

case 𝑔 = 1 (one target shock) and 𝑟 ≥ 1 (one or more instruments). It estimates one column of B, the

one corresponding to the target shock.

The ivsvar mdist command estimates the parameters of instrumental-variables SVARmodels for the

case 𝑟 = 𝑔 ≥ 1. There may be more than one target shock, and the number of instruments must equal

the number of target shocks. It estimates 𝑔 columns of B, the ones corresponding to the target shocks.

IRFs and FEVDs
IRFs describe how the 𝐾 endogenous variables react over time to a one-time shock to one of the 𝐾

disturbances. Because the disturbances may be contemporaneously correlated, these functions do not

explain how variable 𝑖 reacts to a one-time increase in the innovation to variable 𝑗 after 𝑠 periods, hold-

ing everything else constant. To explain this, we must start with orthogonalized innovations so that the

https://www.stata.com/manuals/tsvarsvar.pdf#tsvarsvar
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assumption to hold everything else constant is reasonable. RecursiveVARmodels use a Cholesky decom-

position to orthogonalize the disturbances and thereby obtain structurally interpretable IRFs. Structural

VAR models use theory to impose sufficient restrictions, which need not be recursive, to decompose the

contemporaneous correlations into orthogonal components.

FEVDs are another tool for interpreting how the orthogonalized innovations affect the𝐾 variables over

time. The FEVD from 𝑗 to 𝑖 gives the fraction of the 𝑠-step forecast-error variance of variable 𝑖 that can
be attributed to the 𝑗th orthogonalized innovation.

Dynamic–multiplier functions describe how the endogenous variables react over time to a unit change

in an exogenous variable. This is a different experiment from that in IRFs and FEVDs because dynamic-

multiplier functions consider a change in an exogenous variable instead of a shock to an endogenous

variable.

irf create estimates IRFs, Cholesky orthogonalized IRFs, dynamic-multiplier functions, and struc-

tural IRFs and their standard errors. It also estimates Cholesky and structural FEVDs. The irf graph,
irf cgraph, irf ograph, irf table, and irf ctable commands graph and tabulate these estimates.

Stata also has several other commands to manage IRF and FEVD results. See [TS] irf for a description of

these commands.

fcast compute computes dynamic forecasts and their standard errors from VAR models. fcast
graph graphs the forecasts that are generated using fcast compute.

VARmodels allow researchers to investigate whether one variable is useful in predicting another vari-

able. A variable 𝑥 is said to Granger-cause a variable 𝑦 if, given the past values of 𝑦, past values of 𝑥
are useful for predicting 𝑦. The Stata command vargranger performsWald tests to investigate Granger

causality between the variables in a VAR model.
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Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[TS] var — Vector autoregressive models

[TS] var ivsvar — Instrumental-variables structural vector autoregressive models

[TS] var svar — Structural vector autoregressive models

[TS] vec — Vector error-correction models

[TS] vec intro — Introduction to vector error-correction models
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