
tsfilter — Filter a time series for cyclical components
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Acknowledgments References Also see

Description
tsfilter separates a time series into trend and cyclical components. The trend component may

contain a deterministic or a stochastic trend. The stationary cyclical component is driven by stochastic

cycles at the specified periods.

Syntax
Filter one variable

tsfilter filter [ type ] newvar = varname [ if ] [ in ] [ , options ]

Filter multiple variables, unique names

tsfilter filter [ type ] newvarlist = varlist [ if ] [ in ] [ , options ]

Filter multiple variables, common name stub

tsfilter filter [ type ] stub* = varlist [ if ] [ in ] [ , options ]

filter Name See

bk Baxter–King [TS] tsfilter bk

bw Butterworth [TS] tsfilter bw

cf Christiano–Fitzgerald [TS] tsfilter cf

hp Hodrick–Prescott [TS] tsfilter hp

You must tsset or xtset your data before using tsfilter; see [TS] tsset and [XT] xtset.
varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

options differ across the filters and are documented in each filter’s manual entry.

Remarks and examples
The time-series filters implemented in tsfilter separate a time-series 𝑦𝑡 into trend and cyclical

components:

𝑦𝑡 = 𝜏𝑡 + 𝑐𝑡

where 𝜏𝑡 is the trend component and 𝑐𝑡 is the cyclical component. 𝜏𝑡 may be nonstationary; it may contain

a deterministic or a stochastic trend, as discussed below.

The primary objective of the methods implemented in tsfilter is to estimate 𝑐𝑡, a stationary cyclical

component that is driven by stochastic cycles within a specified range of periods. The trend component

𝜏𝑡 is calculated by the difference 𝜏𝑡 = 𝑦𝑡 − 𝑐𝑡.

Although the filters implemented in tsfilter have been widely applied by macroeconomists, they

are general time-series methods and may be of interest to other researchers.
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Remarks are presented under the following headings:

An example dataset
A baseline method: Symmetric moving-average (SMA) filters
An overview of filtering in the frequency domain
SMA revisited: The Baxter–King filter
Filtering a random walk: The Christiano–Fitzgerald filter
A one-parameter high-pass filter: The Hodrick–Prescott filter
A two-parameter high-pass filter: The Butterworth filter

An example dataset
Time series are frequently filtered to remove unwanted characteristics, such as trends and seasonal

components, or to estimate components driven by stochastic cycles from a specific range of periods.

Although the filters implemented in tsfilter can be used for both purposes, their primary purpose is

the latter, and we restrict our discussion to that use.

We explain the methods implemented in tsfilter by estimating the business-cycle component of a

macroeconomic variable, because they are frequently used for this purpose. We estimate the business-

cycle component of the natural log of an index of the industrial production of the United States, which

is plotted below.

Example 1: A trending time series
. use https://www.stata-press.com/data/r19/ipq
(Federal Reserve Economic Data, St. Louis Fed)
. tsline ip_ln
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The above graph shows that ip ln contains a trend component. Time series may contain determin-

istic trends or stochastic trends. A polynomial function of time is the most common deterministic time

trend. An integrated process is the most common stochastic trend. An integrated process is a random

variable that must be differenced one or more times to be stationary; see Hamilton (1994) for a discussion.

The different filters implemented in tsfilter allow for different orders of deterministic time trends or

integrated processes.
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We now illustrate the four methods implemented in tsfilter, each of which will remove the trend
and estimate the business-cycle component. Burns and Mitchell (1946) defined oscillations in business

data with recurring periods between 1.5 and 8 years to be business-cycle fluctuations; we use their com-

monly accepted definition.

A baseline method: Symmetric moving-average (SMA) filters
Symmetric moving-average (SMA) filters form a baseline method for estimating a cyclical component

because of their properties and simplicity. An SMA filter of a time series 𝑦𝑡, 𝑡 ∈ {1, . . . , 𝑇 }, is the data
transform defined by

𝑦∗
𝑡 =

𝑞

∑
𝑗=−𝑞

𝛼𝑗𝑦𝑡−𝑗

for each 𝑡 ∈ {𝑞 + 1, . . . , 𝑇 − 𝑞}, where 𝛼−𝑗 = 𝛼𝑗 for 𝑗 ∈ {−𝑞, . . . , 𝑞}. Although the original series has
𝑇 observations, the filtered series has only 𝑇 − 2𝑞, where 𝑞 is known as the order of the SMA filter.

SMA filters with weights that sum to zero remove deterministic and stochastic trends of order 2 or less,

as shown by Fuller (1996) and Baxter and King (1999).

Example 2: A trend-removing SMA filter
This trend-removal property of SMA filters with coefficients that sum to zero may surprise some read-

ers. For illustration purposes, we filter ip ln by the filter

−0.2ip ln𝑡−2 − 0.2ip ln𝑡−1 + 0.8ip ln𝑡 − 0.2ip ln𝑡+1 − 0.2ip ln𝑡+2

and plot the filtered series. We do not even need tsfilter to implement this second-order SMA filter;

we can use generate.
. generate ip_sma = -.2*L2.ip_ln-.2*L.ip_ln+.8*ip_ln-.2*F.ip_ln-.2*F2.ip_ln
(4 missing values generated)
. tsline ip_sma
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The filter has removed the trend.
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There is no good reason why we chose that particular SMA filter. Baxter and King (1999) derived a

class of SMA filters with coefficients that sum to zero and get as close as possible to keeping only the

specified cyclical component.

An overview of filtering in the frequency domain
We need some concepts from the frequency-domain approach to time-series analysis to motivate how

Baxter and King (1999) defined “as close as possible”. These concepts also motivate the other filters

in tsfilter. The intuitive explanation presented here glosses over many technical details discussed by
Priestley (1981), Hamilton (1994), Fuller (1996), and Wei (2006).

As with much time-series analysis, the basic results are for covariance-stationary processes with

additional results handling some nonstationary cases. We present some useful results for covariance-

stationary processes and discuss how to handle nonstationary series below.

The autocovariances 𝛾𝑗, 𝑗 ∈ {0, 1, . . . , ∞}, of a covariance-stationary process 𝑦𝑡 specify its variance

and dependence structure. In the frequency-domain approach to time-series analysis, 𝑦𝑡 and the autoco-

variances are specified in terms of independent stochastic cycles that occur at frequencies 𝜔 ∈ [−𝜋, 𝜋].
The spectral density function 𝑓𝑦(𝜔) specifies the contribution of stochastic cycles at each frequency 𝜔
relative to the variance of 𝑦𝑡, which is denoted by 𝜎2

𝑦. The variance and the autocovariances can be

expressed as an integral of the spectral density function. Formally,

𝛾𝑗 = ∫
𝜋

−𝜋
𝑒𝑖𝜔𝑗𝑓𝑦(𝜔)𝑑𝜔 (1)

where 𝑖 is the imaginary number 𝑖 =
√

−1.

Equation (1) can bemanipulated to showwhat fraction of the variance of 𝑦𝑡 is attributable to stochastic

cycles in a specified range of frequencies. Hamilton (1994, 156) discusses this point in more detail.

Equation (1) implies that if 𝑓𝑦(𝜔) = 0 for 𝜔 ∈ [𝜔1, 𝜔2], then stochastic cycles at these frequencies

contribute zero to the variance and autocovariances of 𝑦𝑡.

The goal of time-series filters is to transform the original series into a new series 𝑦∗
𝑡 for which the

spectral density function of the filtered series 𝑓𝑦∗(𝜔) is zero for unwanted frequencies and equal to 𝑓𝑦(𝜔)
for desired frequencies.

A linear filter of 𝑦𝑡 can be written as

𝑦∗
𝑡 =

∞
∑

𝑗=−∞
𝛼𝑗𝑦𝑡−𝑗 = 𝛼(𝐿)𝑦𝑡

where we let 𝑦𝑡 be an infinitely long series as required by some of the results below. To see the impact

of the filter on the components of 𝑦𝑡 at each frequency 𝜔, we need an expression for 𝑓𝑦∗(𝜔) in terms of
𝑓𝑦(𝜔) and the filter weights 𝛼𝑗. Wei (2006, 282) shows that for each 𝜔,

𝑓𝑦∗(𝜔) = |𝛼(𝑒𝑖𝜔)|2𝑓𝑦(𝜔) (2)
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where |𝛼(𝑒𝑖𝜔)| is known as the gain of the filter. Equation (2) makes explicit that the squared gain

function |𝑎(𝑒𝑖𝜔)|2 converts the spectral density of the original series, 𝑓𝑦(𝜔), into the spectral density of
the filtered series, 𝑓𝑦∗(𝜔). In particular, (2) says that for each frequency 𝜔, the spectral density of the

filtered series is the product of the square of the gain of the filter and the spectral density of the original

series.

As wewill see in the examples below, the gain function provides a crucial interpretation of what a filter

is doing. We want a filter for which 𝑓𝑦∗(𝜔) = 0 for unwanted frequencies and for which 𝑓𝑦∗(𝜔) = 𝑓𝑦(𝜔)
for desired frequencies. So we seek a filter for which the gain is 0 for unwanted frequencies and for

which the gain is 1 for desired frequencies.

In practice, we cannot find such an ideal filter exactly, because the constraints an ideal filter places

on filter coefficients cannot be satisfied for time series with only a finite number of observations. The

expansive literature on filters is a result of the tradeoffs involved in designing implementable filters that

approximate the ideal filter.

Ideally, filters pass or block the stochastic cycles at specified frequencies by having a gain of 1 or 0.

Band-pass filters, such as the Baxter–King (BK) and the Christiano–Fitzgerald (CF) filters, pass through

stochastic cycles in the specified range of frequencies and block all the other stochastic cycles. High-

pass filters, such as the Hodrick–Prescott (HP) and Butterworth filters, only allow the stochastic cycles

at or above a specified frequency to pass through and block the lower-frequency stochastic cycles. For

band-pass filters, let [𝜔0, 𝜔1] be the set of desired frequencies with all other frequencies being undesired.
For high-pass filters, let 𝜔0 be the cutoff frequency with only those frequencies 𝜔 ≥ 𝜔0 being desired.

SMA revisited: The Baxter–King filter
We now return to the class of SMA filters with coefficients that sum to zero and get as close as possible

to keeping only the specified cyclical component as derived by Baxter and King (1999).

For an infinitely long series, there is an ideal band-pass filter for which the gain function is 1 for

𝜔 ∈ [𝜔0, 𝜔1] and 0 for all other frequencies. It just so happens that this ideal band-pass filter is an SMA

filter with coefficients that sum to zero. Baxter and King (1999) derive the coefficients of this ideal

band-pass filter and then define the BK filter to be the SMA filter with 2𝑞 + 1 terms that are as close as

possible to those of the ideal filter. There is a tradeoff in choosing 𝑞: larger values of 𝑞 cause the gain

of the BK filter to be closer to the gain of the ideal filter, but larger values also increase the number of

missing observations in the filtered series.

Although the mathematics of the frequency-domain approach to time-series analysis is in terms of

stochastic cycles at frequencies 𝜔 ∈ [−𝜋, 𝜋], applied work is generally in terms of periods 𝑝, where
𝑝 = 2𝜋/𝜔. So the options for the tsfilter subcommands are in terms of periods.

Example 3: A BK estimate of the business-cycle component
Below we use tsfilter bk, which implements the BK filter, to estimate the business-cycle compo-

nent composed of stochastic cycles between 6 and 32 periods, and then we graph the estimated compo-

nent.

https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexampleseq2
https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexampleseq2
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. tsfilter bk ip_bk = ip_ln, minperiod(6) maxperiod(32)

. tsline ip_bk
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The above graph tells us what the estimated business-cycle component looks like, but it presents no

evidence as to how well we have estimated the component. A periodogram is better for this purpose.

A periodogram is an estimator of a transform of the spectral density function; see [TS] pergram for

details. Below we plot the periodogram for the BK estimate of the business-cycle component. pergram
displays the results in natural frequencies, which are the standard frequencies divided by 2𝜋. We use the

xline() option to draw vertical lines at the lower natural-frequency cutoff (1/32 = 0.03125) and the

upper natural-frequency cutoff (1/6 ≈ 0.16667).

. pergram ip_bk, xline(0.03125 0.16667)
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If the filter completely removed the stochastic cycles corresponding to the unwanted frequencies, the

periodogram would be a flat line at the minimum value of −6 outside the range identified by the vertical

lines. That the periodogram takes on values greater than −6 outside the specified range indicates the

inability of the BK filter to pass through only stochastic cycles at frequencies inside the specified band.

https://www.stata.com/manuals/tspergram.pdf#tspergram
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We can also evaluate the BK filter by plotting its gain function against the gain function of an ideal

filter. In the output below, we reestimate the business-cycle component to store the gain of the BK filter

for the specified parameters. (The coefficients and the gain of the BK filter are completely determined

by the specified minimum period, the maximum period, and the order of the SMA filter.) We label the

variable bkgain for the graph below.

. drop ip_bk

. tsfilter bk ip_bk = ip_ln, minperiod(6) maxperiod(32) gain(bkgain abk)

. label variable bkgain ”BK filter”

Below we generate ideal, the gain function of the ideal band-pass filter at the frequencies f. Then
we plot the gain of the ideal filter and the gain of the BK filter.

. generate f = _pi*(_n-1)/_N

. generate ideal = cond(f<_pi/16, 0, cond(f<_pi/3, 1,0))

. label variable ideal ”Ideal filter”

. twoway line ideal f || line bkgain abk

0
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Ideal filter
BK filter

The graph reveals that the gain of the BK filter deviates markedly from the square-wave gain of the

ideal filter. Increasing the symmetric moving average via the smaorder() option will cause the gain of

the BK filter to more closely approximate the gain of the ideal filter at the cost of lost observations in the

filtered series.

Filtering a random walk: The Christiano–Fitzgerald filter
Although Baxter and King (1999) minimized the error between the coefficients in their filter and the

ideal band-pass filter, Christiano and Fitzgerald (2003) minimized the mean squared error between the

estimated component and the true component, assuming that the raw series is a random-walk process.

Christiano and Fitzgerald (2003) give three important reasons for using their filter:

1. The true dependence structure of the data affects which filter is optimal.

2. Many economic time series are well approximated by random-walk processes.

3. Their filter does a good job passing through stochastic cycles of desired frequencies and blocking

stochastic cycles from unwanted frequencies on a range of processes that are close to being a random-

walk process.
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The CF filter obtains its optimality properties at the cost of an additional parameter that must be

estimated and a loss of robustness. The CF filter is optimal for a random-walk process. If the true process

is a random walk with drift, then the drift term must be estimated and removed; see [TS] tsfilter cf for

details. The CF filter is not symmetric, so it will not remove second-order deterministic or second-order

integrated processes. tsfilter cf also implements another filter that Christiano and Fitzgerald (2003)

derived that is an SMA filter with coefficients that sum to zero. This filter is designed to be as close as

possible to the random-walk optimal filter under the constraint that it be an SMA filter with constraints

that sum to zero; see [TS] tsfilter cf for details.

Technical note
A random-walk process is a first-order integrated process; it must be differenced once to produce a

stationary process. Formally, a random-walk process is given by 𝑦𝑡 = 𝑦𝑡−1 +𝜖𝑡, where 𝜖𝑡 is a zero-mean

stationary random variable. A random-walk-plus-drift process is given by ̃𝑦𝑡 = 𝜇 + ̃𝑦𝑡−1 + 𝜖𝑡, where 𝜖𝑡
is a zero-mean stationary random variable.

Example 4: A CF estimate of the business-cycle component
In this example, we use the CF filter to estimate the business-cycle component, and we plot the pe-

riodogram of the CF estimates. We specify the drift option because ip ln is well approximated by a

random-walk-plus-drift process.

. tsfilter cf ip_cf = ip_ln, minperiod(6) maxperiod(32) drift

. pergram ip_cf, xline(0.03125 0.16667)
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The periodogram of the CF estimates of the business-cycle component indicates that the CF filter did

a better job than the BK filter of passing through only the desired stochastic cycles. Given that ip ln is

well approximated by a random-walk-plus-drift process, the relative performance of the CF filter is not

surprising.

As with the BK filter, plotting the gain of the CF filter and the gain of the ideal filter gives an impression

of how well the filter isolates the specified components. In the output below, we reestimate the business-

cycle component, using the gain() option to store the gain of the CF filter, and we plot the gain functions.

https://www.stata.com/manuals/tstsfiltercf.pdf#tstsfiltercf
https://www.stata.com/manuals/tstsfiltercf.pdf#tstsfiltercf
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. drop ip_cf

. tsfilter cf ip_cf = ip_ln, minperiod(6) maxperiod(32) drift gain(cfgain acf)

. label variable cfgain ”CF filter”

. twoway line ideal f || line cfgain acf

0

.5

1

1.5

0 1 2 3

Ideal filter
CF filter

Comparing this graph with the graph of the BK gain function reveals that the CF filter is closer to the

gain of the ideal filter than is the BK filter. The graph also reveals that the gain of the CF filter oscillates

above and below 1 for desired frequencies.

The choice between the BK or the CF filter is one between robustness or efficiency. The BK filter

handles a broader class of stochastic processes, but the CF filter produces a better estimate of 𝑐𝑡 if 𝑦𝑡 is

close to a random-walk process or a random-walk-plus-drift process.

A one-parameter high-pass filter: The Hodrick–Prescott filter
Hodrick and Prescott (1997) motivated the Hodrick–Prescott (HP) filter as a trend-removal technique

that could be applied to data that came from a wide class of data-generating processes. In their view, the

technique specified a trend in the data, and the data were filtered by removing the trend. The smoothness

of the trend depends on a parameter 𝜆. The trend becomes smoother as 𝜆 → ∞. Hodrick and Prescott

(1997) recommended setting 𝜆 to 1,600 for quarterly data.

King and Rebelo (1993) showed that removing a trend estimated by the HP filter is equivalent to a

high-pass filter. They derived the gain function of this high-pass filter and showed that the filter would

make integrated processes of order 4 or less stationary, making the HP filter comparable with the band-

pass filters discussed above.
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Example 5: An HP estimate of the business-cycle component
We begin by applying the HP high-pass filter to ip ln and plotting the periodogram of the estimated

business-cycle component. We specify the gain() option because will use the gain of the filter in the

next example.

. tsfilter hp ip_hp = ip_ln, gain(hpg1600 ahp1600)

. label variable hpg1600 ”HP(1600) filter”

. pergram ip_hp, xline(0.03125)
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Because the HP filter is a high-pass filter, the high-frequency stochastic cycles corresponding to those

periods below 6 remain in the estimated component. Of more concern is the presence of the low-

frequency stochastic cycles that the filter should remove. We address this issue in the example below.

Example 6: Choosing the parameters for the HP filter
Hodrick and Prescott (1997) argued that the smoothing parameter 𝜆 should be 1,600 on the basis of

a heuristic argument that specified values for the variance of the cyclical component and the variance of

the second difference of the trend component, both recorded at quarterly frequencies. In this example,

we choose the smoothing parameter to be 677.13, which sets the gain of the filter to 0.5 at the frequency

corresponding to 32 periods, as explained in the technical note below. We then plot the periodogram of

the filtered series.

https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesex6
https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplestechnote
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. tsfilter hp ip_hp2 = ip_ln, smooth(677.13) gain(hpg677 ahp677)

. label variable hpg677 ”HP(677) filter”

. pergram ip_hp, xline(0.03125)
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Although the periodogram looks better than the periodogram with the default smoothing, the HP filter

still did not zero out the low-frequency stochastic cycles as well as the CF filter did. We take another look

at this issue by plotting the gain functions for these filters along with the gain function from the ideal

band-pass filter.

. twoway line ideal f || line hpg677 ahp677
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Comparing the gain graphs reveals that the gain of the CF filter is closest to the gain of the ideal filter.

Both the BK and the HP filters allow some low-frequency stochastic cycles to pass through. The plot

also illustrates that the HP filter is a high-pass filter because its gain is 1 for those stochastic cycles at

frequencies above 6 periods, whereas the other gain functions go to zero.
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Technical note
Conventionally, economists have used 𝜆 = 1600, which Hodrick and Prescott (1997) recommended

for quarterly data. Ravn and Uhlig (2002) derived values for 𝜆 at monthly and annual frequencies that

are rescalings of the conventional 𝜆 = 1600 for quarterly data. These heuristic values are the default

values; see [TS] tsfilter hp for details. In the filter literature, filter parameters are set as functions of the

cutoff frequency; see Pollock (2000, 324), for instance. This method finds the filter parameter that sets

the gain of the filter equal to 1/2 at the cutoff frequency. Applying this method to selecting 𝜆 at the cutoff

frequency of 32 periods requires solving

1/2 = 4𝜆 {1 − cos(2𝜋/32)}2

1 + 4𝜆 {1 − cos(2𝜋/32)}2

for 𝜆, which yields 𝜆 ≈ 677.13, which was used in the previous example.

The gain function of the HP filter is a function of the parameter 𝜆, and 𝜆 sets both the location of

the cutoff frequency and the slope of the gain function. The graph below illustrates this dependence by

plotting the gain function of the HP filter for 𝜆 set to 10, 677.13, and 1,600 along with the gain function

for the ideal band-pass filter with cutoff periods of 32 periods and 6 periods.
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A two-parameter high-pass filter: The Butterworth filter
Engineers have used Butterworth filters for a long time because they are “maximally flat”. The gain

functions of these filters are as close as possible to being a flat line at 0 for the unwanted periods and a

flat line at 1 for the desired periods; see Butterworth (1930) and Bianchi and Sorrentino (2007, 17–20).

Pollock (2000) showed that Butterworth filters can be derived from some axioms that specify prop-

erties we would like a filter to have. Although the Butterworth and BK filters share the properties of

symmetry and phase neutrality, the coefficients of Butterworth filters do not need to sum to zero. (Phase-

neutral filters do not shift the signal forward or backward in time; see Pollock [1999].) Although the BK

filter relies on the detrending properties of SMA filters with coefficients that sum to zero, Pollock (2000)

shows that Butterworth filters have detrending properties that depend on the filters’ parameters.

https://www.stata.com/manuals/tstsfilterhp.pdf#tstsfilterhp
https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesex6
https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesgr_tsfilter8
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tsfilter bw implements the high-pass Butterworth filter using the computational method that Pol-

lock (2000) derived. This filter has two parameters: the cutoff period and the order of the filter denoted

by 𝑚. The cutoff period sets the location where the gain function starts to filter out the high-period (low-

frequency) stochastic cycles, and 𝑚 sets the slope of the gain function for a given cutoff period. For a

given cutoff period, the slope of the gain function at the cutoff period increases with 𝑚. For a given 𝑚,

the slope of the gain function at the cutoff period increases with the cutoff period.

We cannot obtain a vertical slope at the cutoff frequency, which is the ideal, because the computation

becomes unstable; see Pollock (2000). The 𝑚 for which the computation becomes unstable depends on

the cutoff period.

Pollock (2000) and Gómez (1999) argue that the additional flexibility produced by the additional

parametermakes the high-pass Butterworth filter a better filter than theHP filter for estimating the cyclical

components.

Pollock (2000) shows that the high-pass Butterworth filter can estimate the desired components of the

𝑑th difference of a 𝑑th-order integrated process as long as 𝑚 ≥ 𝑑.

Example 7: A Butterworth filter that removes low-frequency components
Below we use tsfilter bw to estimate the components driven by stochastic cycles greater than 32

periods using Butterworth filters of order 2 and order 6. We also compute, label, and plot the gain

functions for each filter.

. tsfilter bw ip_bw1 = ip_ln, gain(bwgain1 abw1) maxperiod(32) order(2)

. label variable bwgain1 ”BW 2”

. tsfilter bw ip_bw6 = ip_ln, gain(bwgain6 abw6) maxperiod(32) order(6)

. label variable bwgain6 ”BW 6”

. twoway line ideal f || line bwgain1 abw1 || line bwgain6 abw6
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The graph illustrates that the slope of the gain function increases with the order of the filter.

The graph below provides another perspective by plotting the gain function from the ideal band-pass

filter on a graph with plots of the gain functions from the Butterworth filter of order 6, the CF filter, and

the HP(677) filter.
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. twoway line ideal f || line bwgain6 abw6 || line cfgain acf
> || line hpg677 ahp677
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Although the slope of the gain function from the CF filter is closer to being vertical at the cutoff

frequency, the gain function of the Butterworth filter does not oscillate above and below 1 after it first

reaches the value of 1. The flatness of the Butterworth filter below and above the cutoff frequency is not

an accident; it is one of the filter’s properties.

Example 8: A Butterworth filter that removes high-frequency components
In the previous example, we used the Butterworth filter of order 6 to remove low-frequency stochastic

cycles, and we saved the results in ip bw6. The Butterworth filter did not address the high-frequency

stochastic cycles below 6 periods because it is a high-pass filter. We remove those high-frequency

stochastic cycles in this example by keeping the trend produced by refiltering the previously filtered

series.

This example uses a common trick: keeping the trend produced by a high-pass filter turns that high-

pass filter into a low-pass filter. Because we want to remove the high-frequency stochastic cycles still

in the previously filtered series ip bw6, we need a low-pass filter. So we keep the trend produced by

refiltering the previously filtered series.

In the output below, we apply a Butterworth filter of order 20 to the previously filtered series ip bw6.
We explain why we used order 20 in the next example. We specify the trend() option to keep the low-

frequency components from these filters. Then we compute and graph the periodogram for the trend

variable.

https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesex7
https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesex9
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. tsfilter bw ip_bwu20 = ip_bw6, gain(bwg20 fbw20) maxperiod(6) order(20)
> trend(ip_bwb)
. label variable bwg20 ”BW upper filter 20”
. pergram ip_bwb, xline(0.03125 0.16667)
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The periodogram reveals that the two-pass process has passed the original series ip ln through a

band-pass filter. It also reveals that the two-pass process did a reasonable job of filtering out the stochastic

cycles corresponding to the unwanted frequencies.

Example 9: Choosing the order of a Butterworth filter
In the previous example, when the cutoff period was 6, we set the order of the Butterworth filter to

20. In contrast, in example 7, when the cutoff period was 32, we set the order of the Butterworth filter

to 6. We had to increase filter order because the slope of the gain function of the Butterworth filter is

increasing with the cutoff period. We needed a larger filter order to get an acceptable slope at the lower

cutoff period.

We illustrate this point in the output below. We apply Butterworth filters of orders 1 and 6 to the

previously filtered series ip bw6, we compute the gain functions, we label the gain variables, and then
we plot the gain functions from the ideal filter and the Butterworth filters.

https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesex8
https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesex7
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. tsfilter bw ip_bwu1 = ip_bw6, gain(bwg1 fbw1) maxperiod(6) order(2)

. label variable bwg1 ”BW upper filter 2”

. tsfilter bw ip_bwu6 = ip_bw6, gain(bwg6 fbw6) maxperiod(6) order(6)

. label variable bwg6 ”BW upper filter 6”

. twoway line ideal f || line bwg1 fbw1 || line bwg6 fbw6 || line bwg20 fbw20
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Because the cutoff period is 6, the gain functions for 𝑚 = 2 and 𝑚 = 6 are much flatter than the

gain functions for 𝑚 = 2 and 𝑚 = 6 in example 7 when the cutoff period was 32. The gain function

for 𝑚 = 20 is reasonably close to vertical, so we used it in example 8. We mentioned above that for any

given cutoff period, the computation eventually becomes unstable for larger values of 𝑚. For instance,

when the cutoff period is 32, 𝑚 = 20 is not numerically feasible.

Example 10: Comparing the Butterworth and CF estimates
As a conclusion, we plot the business-cycle components estimated by the CF filter and by the two

passes of Butterworth filters. The shaded areas identify recessions. The two estimates are close but the

differences could be important. Which estimate is better depends on whether the oscillations around

1 in the graph of the CF gain function (the second graph of example 7) cause more problems than the

nonvertical slopes at the cutoff periods that occur in the BW6 gain function of that same graph and the

BW upper filter 20 gain function graphed above.

https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesex7
https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplesex8
https://www.stata.com/manuals/tstsfilter.pdf#tstsfilterRemarksandexamplescfgain
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There is a long tradition in economics of using models to estimate components. Instead of comparing

filters by their gain functions, some authors compare filters by finding underlying models for which

the filter parameters are the model parameters. For instance, Harvey and Jaeger (1993), Gómez (1999,

2001), Pollock (2000, 2006), and Harvey and Trimbur (2003) derive models that correspond to the HP

or the Butterworth filter. Some of these references also compare components estimated by filters with

components estimated by making predictions from estimated models. In effect, these references point

out that arima, dfactor, sspace, and ucm (see [TS] arima, [TS] dfactor, [TS] sspace, and [TS] ucm)

implement alternative methods to component estimation.

Methods and formulas
All filters work with both time-series data and panel data when there are many observations on each

panel. When used with panel data, the calculations are performed separately within each panel.

For these filters, the default minimum and maximum periods of oscillation correspond to the bound-

aries used by economists (Burns and Mitchell 1946) for business cycles. Burns and Mitchell defined

business cycles as oscillations in business data with recurring periods between 1.5 and 8 years. Their

definition continues to be cited by economists investigating correlations between business cycles.

If 𝑦𝑡 is a time series, then the cyclical component is

𝑐𝑡 = 𝐵(𝐿)𝑦𝑡 =
∞

∑
𝑗=−∞

𝑏𝑗𝑦𝑡−𝑗

where 𝑏𝑗 are the coefficients of the impulse–response sequence of some ideal filter. The im-

pulse–response sequence is the inverse Fourier transform of either a square wave or step function de-

pending upon whether the filter is a band-pass or high-pass filter, respectively.

https://www.stata.com/manuals/tsarima.pdf#tsarima
https://www.stata.com/manuals/tsdfactor.pdf#tsdfactor
https://www.stata.com/manuals/tssspace.pdf#tssspace
https://www.stata.com/manuals/tsucm.pdf#tsucm
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In finite sequences, it is necessary to approximate this calculation with a finite impulse–response

sequence �̂�𝑗:

̂𝑐𝑡 = �̂�𝑡(𝐿)𝑦𝑡 =
𝑛2

∑
𝑗=−𝑛1

̂𝑏𝑗𝑦𝑡−𝑗

The infinite-order impulse–response sequence for the filters implemented in tsfilter are symmetric

and time-invariant.

In the frequency domain, the relationships between the true cyclical component and its finite estimates

respectively are

𝑐(𝜔) = 𝐵(𝜔)𝑦(𝜔)

and

̂𝑐(𝜔) = �̂�(𝜔)𝑦(𝜔)

where 𝐵(𝜔) and �̂�(𝜔) are the frequency transfer functions of the filters 𝐵 and �̂�.

The frequency transfer function for 𝐵(𝜔) can be expressed in polar form as

𝐵(𝜔) = |𝐵(𝜔)|exp{𝑖𝜃(𝜔)}

where |𝐵(𝜔)| is the filter’s gain function and 𝜃(𝜔) is the filter’s phase function. The gain function deter-
mines whether the amplitude of the stochastic cycle is increased or decreased at a particular frequency.

The phase function determines how a cycle at a particular frequency is shifted forward or backward in

time.

In this form, it can be shown that the spectrum of the cyclical component, 𝑓𝑐(𝜔), is related to the

spectrum of 𝑦𝑡 series by the squared gain:

𝑓𝑐(𝜔) = |𝐵(𝜔)|2𝑓𝑦(𝜔)

Each of the four filters in tsfilter has an option for returning an estimate of the gain function

together with its associated scaled frequency 𝑎 = 𝜔/𝜋, where 0 ≤ 𝜔 ≤ 𝜋. These are consistent estimates
of |𝐵(𝜔)|, the gain from the ideal linear filter.

The band-pass filters implemented in tsfilter, the BK and CF filters, use a square wave as the ideal

transfer function:

𝐵(𝜔) =
⎧{
⎨{⎩

1 if |𝜔| ∈ [𝜔𝑙, 𝜔ℎ]

0 if |𝜔| ∉ [𝜔𝑙, 𝜔ℎ]

The high-pass filters, the Hodrick–Prescott and Butterworth filters, use a step function as the ideal

transfer function:

𝐵(𝜔) =
⎧{
⎨{⎩

1 if |𝜔| ≥ 𝜔ℎ

0 if |𝜔| < 𝜔ℎ
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Also see
[TS] tsset — Declare data to be time-series data

[TS] tssmooth — Smooth and forecast univariate time-series data

[XT] xtset — Declare data to be panel data
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