tsappend — Add observations to a time-series dataset

Description

tsappend appends observations to a time-series dataset or to a panel dataset. *tsappend* uses and updates the information set by *tsset* or *xtset*. Any gaps in the dataset are removed.

Quick start

Add 10 time periods to *tsset* data

```
  tsappend, add(10)
```

Incorporate additional months to data up to the third month of 1999

```
  tsappend, last(1999m3) tsfmt(tm)
```

Add 2 time periods to the panel identified by *pvar = 333* after *xtset pvar tvar*

```
  tsappend, add(2) panel(333)
```

Menu

Statistics > Time series > Setup and utilities > Add observations to time-series dataset
tsappend — Add observations to a time-series dataset

Syntax

```
. tsappend, { add(#) | last(date | clock) tsfmt(string) } [ options ]
```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*add(#)</td>
<td>add # observations</td>
</tr>
<tr>
<td>*last(date</td>
<td>clock)</td>
</tr>
<tr>
<td>*tsfmt(string)</td>
<td>use time-series function string with last(date</td>
</tr>
<tr>
<td>panel(panel_id)</td>
<td>add observations to panel panel_id</td>
</tr>
</tbody>
</table>

* Either add(#) is required, or last(date | clock) and tsfmt(string) are required.
You must tsset or xtset your data before using tsappend; see [TS] tsset and [XT] xtset.

Options

add(#) specifies the number of observations to add.

last(date | clock) and tsfmt(string) must be specified together and are an alternative to add().

last(date | clock) specifies the date or the date and time of the last observation to add.

last(date | clock) specifies the date or the date and time of the last observation to add.

For clock times, the last time added (if any) will be earlier than the time requested in last(date | clock) if last() is not a multiple of delta units from the last time in the data.

For instance, you might specify last(17may2007) tsfmt(td), last(2001m1) tsfmt(tm), or last(17may2007 15:30:00) tsfmt(tc).

panel(panel_id) specifies that observations be added only to panels with the ID specified in panel().

Remarks and examples

Remarks are presented under the following headings:

Introduction

Using tsappend with time-series data

Using tsappend with panel data

Introduction

tsappend adds observations to a time-series dataset or to a panel dataset. You must tsset or xtset your data before using tsappend. tsappend simultaneously removes any gaps from the dataset.

There are two ways to use tsappend: you can specify the add(#) option to request that # observations be added, or you can specify the last(date | clock) option to request that observations be appended until the date specified is reached. If you specify last(), you must also specify tsfmt(). tsfmt() specifies the Stata time-series date function that converts the date held in last() to an integer.

tsappend works with time series of panel data. With panel data, tsappend adds the requested observations to all the panels, unless the panel() option is also specified.
Using tsappend with time-series data

tappend can be useful for appending observations when dynamically predicting a time series. Consider an example in which tsappend adds the extra observations before dynamically predicting from an AR(1) regression:

```
. use http://www.stata-press.com/data/r15/tsappend1
. regress y l.y
```

```
Source | SS       df       MS
---------+-------------------
Model    | 115.349555  1  115.349555 F(1, 477) = 119.29
Residual| 461.241577 477  .966963473 Prob > F = 0.0000
         | 576.591132 478 1.2062576 R-squared = 0.2001
         |         478  .98334 Adj R-squared = 0.1984
---------+-------------------
          | Number of obs = 479
          | Root MSE = .98334

y | Coef.  Std. Err.      t    P>|t|     [95% Conf. Interval]
---|-----------------------------------------------------------------
y  |        
L1. | .4493507  .0411417  10.92    0.000   .3685093   .5301921
_cons | 11.11877  .8314581   13.37    0.000   9.484993   12.75254
```

```
. matrix b = e(b)
. matrix colnames b = L.xb one
. tsset
time variable:  t2, 1960m2 to 2000m1
delta: 1 month
. tsappend, add(12)
. tsset
time variable:  t2, 1960m2 to 2001m1
delta: 1 month
. predict xb if t2<=tm(2000m2), xb(option assumed; fitted values)
(12 missing values generated)
. generate one=1
. matrix score xb=b if t2>=tm(2000m2), replace
```

The calls to tsset before and after tsappend were made without a time variable; thus both commands display how the data are currently tsset. The results from the first tsset command show that we have monthly data and that our time variable, t2, starts at 1960m2 and ends at 2000m1.

tsappend with the add(12) option used these results to add 12 months to the dataset. The results of the second tsset command show that this new year of data has been added, as shown by the end year now being 2001m1. We could have skipped these calls to tsset, but they are shown here to illustrate how tsappend uses and updates time-series settings of the dataset.

We then used predict and matrix score to obtain the dynamic predictions, which allows us to produce the following graph:
In the call to \texttt{tsappend}, instead of saying that we wanted to add 12 observations, we could have specified that we wanted to fill in observations through the first month of 2001:

display image

We specified the \texttt{tm()} function in the \texttt{tsfmt()} option. [FN] Date and time functions contains a list of time-series functions for translating date literals to integers. Because we have monthly data, and since [FN] Date and time functions tells us that we want to use the \texttt{tm()} function, we specified the \texttt{tsfmt(tm)} option. The following table shows the most common types of time-series data, their formats, the appropriate translation functions, and the corresponding options for \texttt{tsappend}:

<table>
<thead>
<tr>
<th>Description</th>
<th>Format</th>
<th>Function</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>%tc</td>
<td>\tc()</td>
<td>\texttt{tsfmt(tc)}</td>
</tr>
<tr>
<td>time</td>
<td>%tC</td>
<td>\tC()</td>
<td>\texttt{tsfmt(tC)}</td>
</tr>
<tr>
<td>daily</td>
<td>%td</td>
<td>\td()</td>
<td>\texttt{tsfmt(td)}</td>
</tr>
<tr>
<td>weekly</td>
<td>%tw</td>
<td>\tw()</td>
<td>\texttt{tsfmt(tw)}</td>
</tr>
<tr>
<td>monthly</td>
<td>%tm</td>
<td>\tm()</td>
<td>\texttt{tsfmt(tm)}</td>
</tr>
<tr>
<td>quarterly</td>
<td>%tq</td>
<td>\tq()</td>
<td>\texttt{tsfmt(tq)}</td>
</tr>
<tr>
<td>half-yearly</td>
<td>%th</td>
<td>\th()</td>
<td>\texttt{tsfmt(th)}</td>
</tr>
<tr>
<td>yearly</td>
<td>%ty</td>
<td>\ty()</td>
<td>\texttt{tsfmt(ty)}</td>
</tr>
</tbody>
</table>
Using `tsappend` with panel data

`tsappend`'s actions on panel data are similar to its action on time-series data, except that `tsappend` performs those actions on each time series within the panels. To work within panels, a panel variable must have been specified with `tsset` or `xtset`. It does not matter which command you use; the two are equivalent.

If the end dates vary over panels, `last()` and `add()` will produce different results. `add(#)` always adds `#` observations to each panel. If the data end at different periods before `tsappend`, `add()` is used, the data will still end at different periods after `tsappend`, `add()`. In contrast, `tsappend`, `last()` `tsfmt()` will cause all the panels to end on the specified last date. If the beginning dates differ across panels, using `tsappend`, `last()` `tsfmt()` to provide a uniform ending date will not create balanced panels because the number of observations per panel will still differ.

Consider the panel data summarized in the output below:

```
. use http://www.stata-press.com/data/r15/tsappend3, clear
. xtdescribe
    id: 1, 2, ..., 3  n = 3
    t2: 1998m1, 1998m2, ..., 2000m1  T = 25
    Delta(t2) = 1 month
    Span(t2) = 25 periods
    (id*t2 uniquely identifies each observation)

    Distribution of T_i:  min  5%  25%  50%  75%  95%  max
       13   13   13    20    24    24    24

    Freq.  Percent    Cum.    Pattern
       1  33.33      33.33
       1  33.33      66.67
       1 100.00     100.00

. by id: summarize t2
-> id = 1
    Variable    Obs  Mean    Std. Dev.   Min   Max
       t2      13  474.0  3.894444   468   480

-> id = 2
    Variable    Obs  Mean    Std. Dev.   Min   Max
       t2      20  465.5  5.916082   456   475

-> id = 3
    Variable    Obs  Mean    Std. Dev.   Min   Max
       t2      24  468.333  7.322786   456   480
```

The output from `xtdescribe` and `summarize` on these data tells us that one panel starts later than the other, that another panel ends before the other two, and that the remaining panel has a gap in the time variable but otherwise spans the entire time frame.
Now consider the data after a call to `tsappend, add(6)`:

```
. tsappend, add(6)
. xtdescribe
    id: 1, 2, ..., 3         n = 3
    t2: 1998m1, 1998m2, ..., 2000m7       T = 31
    Delta(t2) = 1 month
    Span(t2) = 31 periods
    (id*t2 uniquely identifies each observation)

    Distribution of T_i: min  5%  25%  50%  75%  95%  max
       19   19   19   26   31   31   31

    Freq.  Percent  Cum.  Pattern
       1   33.33   33.33     ............1111111111111111111111111111111
       1   33.33   66.67     11111111111111111111111111111111....
       1   33.33  100.00     111111111111111111111111111111111111

    by id: summarize t2
```

This output from `xtdescribe` and `summarize` after the call to `tsappend` shows that the call to `tsappend, add(6)` added 6 observations to each panel and filled in the gap in the time variable in the second panel. `tsappend, add()` did not cause a uniform end date over the panels.

The following output illustrates the contrast between `tsappend, add()` and `tsappend, last() tsfmt()` with panel data that end at different dates. The output from `xtdescribe` and `summarize` shows that the call to `tsappend, last() tsfmt()` filled in the gap in `t2` and caused all the panels to end at the specified end date. The output also shows that the panels remain unbalanced because one panel has a later entry date than the other two.
. use http://www.stata-press.com/data/r15/tsappend2, clear
. tsappend, last(2000m7) tsfmt(tm)
. xtdescribe

id: 1, 2, ..., 3
n = 3
T2: 1998m1, 1998m2, ..., 2000m7
T = 31
Delta(t2) = 1 month
Span(t2) = 31 periods
(id*t2 uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
19 19 19 31 31 31 31

Freq. Percent Cum. Pattern
2 66.67 66.67 1111111111111111111111111111111
1 33.33 100.001111111111111111111111111111111
3 100.00 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

. by id: summarize t2

-> id = 1
Variable | Obs Mean Std. Dev. Min Max
---------|---------|---------------------|-----|-----
t2 | 19 477 5.627314 468 486

-> id = 2
Variable | Obs Mean Std. Dev. Min Max
---------|---------|---------------------|-----|-----
t2 | 31 471 9.092121 456 486

-> id = 3
Variable | Obs Mean Std. Dev. Min Max
---------|---------|---------------------|-----|-----
t2 | 31 471 9.092121 456 486

Stored results

tsappend stores the following in r():

Scalars
r(add) number of observations added

Also see

[TS] tsset — Declare data to be time-series data
[XT] xtset — Declare data to be panel data