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Description
sspace estimates the parameters of linear state-space models by maximum likelihood. Linear state-

space models are very flexible and many linear time-series models can be written as linear state-space

models.

sspace uses two forms of the Kalman filter to recursively obtain conditional means and variances of

both the unobserved states and the measured dependent variables that are used to compute the likelihood.

The covariance-form syntax and the error-form syntax of sspace reflect the two different forms in

which researchers specify state-space models. Choose the syntax that is easier for you; the two forms

are isomorphic.

Quick start
AR(1) model for y with unobserved state u modeled as lag of itself in the state equation, and requiring

the coefficient of u constrained to 1 in the observation equation

constraint 1 [y]u = 1
sspace (u L.u, state noconstant) (y u, noerror), constraints(1)

Dynamic-factor model of the first difference of y1, y2, and y3 as linear functions of an unobserved factor
that follows a first-order autoregressive process

constraint 1 [y1]u = 1
sspace (u L.u, state noconstant) (d.y1 u) (d.y2 u) (d.y3 u), nolog

Menu
Statistics > Multivariate time series > State-space models
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Syntax
Covariance-form syntax

sspace state ceq [ state ceq . . . state ceq ] obs ceq [ obs ceq . . . obs ceq ]
[ if ] [ in ] [ , options ]

where each state ceq is of the form

(statevar [ lagged statevars ] [ indepvars ], state [ noerror noconstant ])
and each obs ceq is of the form

(depvar [ statevars ] [ indepvars ] [ , noerror noconstant ])

Error-form syntax

sspace state efeq [ state efeq . . . state efeq ] obs efeq [ obs efeq . . . obs efeq ]
[ if ] [ in ] [ , options ]

where each state efeq is of the form

(statevar [ lagged statevars ] [ indepvars ] [ state errors ], state [ noconstant ])
and each obs efeq is of the form

(depvar [ statevars ] [ indepvars ] [ obs errors ] [ , noconstant ])

statevar is the name of an unobserved state, not a variable. If there happens to be a variable of the same

name, the variable is ignored and plays no role in the estimation.

lagged statevars is a list of lagged statevars. Only first lags are allowed.

state errors is a list of state-equation errors that enter a state equation. Each state error has the form

e.statevar, where statevar is the name of a state in the model.

obs errors is a list of observation-equation errors that enter an equation for an observed variable. Each

error has the form e.depvar, where depvar is an observed dependent variable in the model.

equation-level options Description

Model

state specifies that the equation is a state equation

noerror specifies that there is no error term in the equation

noconstant suppresses the constant term from the equation

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/tssspace.pdf#tssspaceSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/tssspace.pdf#tssspaceSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model

covstate(covform) specifies the covariance structure for the errors in the state variables

covobserved(covform) specifies the covariance structure for the errors in the observed
dependent variables

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, display of
omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

method(method) specify the method for calculating the log likelihood; seldom used

coeflegend display legend instead of statistics

covform Description

identity identity matrix; the default for error-form syntax

dscalar diagonal scalar matrix

diagonal diagonal matrix; the default for covariance-form syntax

unstructured symmetric, positive-definite matrix; not allowed with error-form
syntax

method Description

hybrid use the stationary Kalman filter and the De Jong diffuse Kalman
filter; the default

dejong use the stationary De Jong Kalman filter and the De Jong diffuse
Kalman filter

kdiffuse use the stationary Kalman filter and the nonstationary large-𝜅
diffuse Kalman filter; seldom used

You must tsset your data before using sspace; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

indepvars and depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/tssspace.pdf#tssspaceOptionsdisplay_options
https://www.stata.com/manuals/tssspace.pdf#tssspaceOptionsmaxopts
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options
Equation-level options

� � �
Model �

state specifies that the equation is a state equation.

noerror specifies that there is no error term in the equation. noerror may not be specified in the

error-form syntax.

noconstant suppresses the constant term from the equation.

Options

� � �
Model �

covstate(covform) specifies the covariance structure for the state errors.

covstate(identity) specifies a covariance matrix equal to an identity matrix, and it is the default

for the error-form syntax.

covstate(dscalar) specifies a covariance matrix equal to 𝜎2
state times an identity matrix.

covstate(diagonal) specifies a diagonal covariance matrix, and it is the default for the covariance-
form syntax.

covstate(unstructured) specifies a symmetric, positive-definite covariance matrix with parame-

ters for all variances and covariances. covstate(unstructured) may not be specified with the

error-form syntax.

covobserved(covform) specifies the covariance structure for the observation errors.

covobserved(identity) specifies a covariance matrix equal to an identity matrix, and it is the

default for the error-form syntax.

covobserved(dscalar) specifies a covariance matrix equal to 𝜎2
observed times an identity matrix.

covobserved(diagonal) specifies a diagonal covariance matrix, and it is the default for the

covariance-form syntax.

covobserved(unstructured) specifies a symmetric, positive-definite covariance matrix with pa-

rameters for all variances and covariances. covobserved(unstructured) may not be specified

with the error-form syntax.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, causes sspace to use the observed information matrix estimator.

vce(robust) causes sspace to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] Estimation options.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and from(matname); see [R] Maximize for all options except from(), and see

below for information on from(). These options are seldom used.

from(matname) specifies initial values for the maximization process. from(b0) causes sspace to

begin the maximization algorithm with the values in b0. b0 must be a row vector; the number of

columns must equal the number of parameters in the model; and the values in b0 must be in the

same order as the parameters in e(b).

� � �
Advanced �

method(method) specifies how to compute the log likelihood. This option is seldom used.

method(hybrid), the default, uses the Kalman filter with model-based initial values for the states

when the model is stationary and uses the De Jong (1988, 1991) diffuse Kalman filter when the

model is nonstationary.

method(dejong) uses the Kalman filter with the De Jong (1988) method for estimating the initial

values for the states when themodel is stationary and uses theDe Jong (1988, 1991) diffuse Kalman

filter when the model is nonstationary.

method(kdiffuse) is a seldom used method that uses the Kalman filter with model-based initial

values for the states when the model is stationary and uses the large-𝜅 diffuse Kalman filter when

the model is nonstationary.

The following option is available with sspace but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

An introduction to state-space models
Some stationary state-space models
Some nonstationary state-space models

An introduction to state-space models
Many linear time-series models can be written as linear state-space models, including vector autore-

gressive moving-average (VARMA) models, dynamic-factor (DF) models, and structural time-series (STS)

models. The solutions to some stochastic dynamic-programming problems can also be written in the

form of linear state-space models. We can estimate the parameters of a linear state-space model by

maximum likelihood (ML). The Kalman filter or a diffuse Kalman filter is used to write the likelihood

function in prediction-error form, assuming normally distributed errors. The quasimaximum likelihood

(QML) estimator, which drops the normality assumption, is consistent and asymptotically normal when

the model is stationary. Chang, Miller, and Park (2009) establish consistency and asymptotic normality

of the QML estimator for a class of nonstationary state-space models. The QML estimator differs from the

ML estimator only in the VCE; specify the vce(robust) option to obtain the QML estimator.

https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Hamilton (1994b, 1994a), Harvey (1989), and Brockwell and Davis (1991) provide good introduc-

tions to state-space models. Anderson and Moore’s (1979) text is a classic reference; they produced

many results used subsequently. Caines (1988) and Hannan and Deistler (1988) provide excellent, more

advanced, treatments.

sspace estimates linear state-space models with time-invariant coefficient matrices, which cover the

models listed above and many others. sspace can estimate parameters from state-space models of the

form

z𝑡 = Az𝑡−1 + Bx𝑡 + Cε𝑡

y𝑡 = Dz𝑡 + Fw𝑡 +Gν𝑡

where

z𝑡 is an 𝑚 × 1 vector of unobserved state variables;

x𝑡 is a 𝑘𝑥 × 1 vector of exogenous variables;

ε𝑡 is a 𝑞 × 1 vector of state-error terms, (𝑞 ≤ 𝑚);
y𝑡 is an 𝑛 × 1 vector of observed endogenous variables;

w𝑡 is a 𝑘𝑤 × 1 vector of exogenous variables;

ν𝑡 is an 𝑟 × 1 vector of observation-error terms, (𝑟 ≤ 𝑛); and
A, B, C, D, F, and G are parameter matrices.

The equations for z𝑡 are known as the state equations, and the equations for y𝑡 are known as the

observation equations.

The error terms are assumed to be zero mean, normally distributed, serially uncorrelated, and uncor-

related with each other;

ε𝑡 ∼ 𝑁(0,Q)
ν𝑡 ∼ 𝑁(0,R)

𝐸[ε𝑡ε
′
𝑠] = 0 for all 𝑠 ≠ 𝑡

𝐸[ε𝑡ν
′
𝑠] = 0 for all 𝑠 and 𝑡

The state-space form is used to derive the log likelihood of the observed endogenous variables con-

ditional on their own past and any exogenous variables. When the model is stationary, a method for re-

cursively predicting the current values of the states and the endogenous variables, known as the Kalman

filter, is used to obtain the prediction error form of the log-likelihood function. When the model is non-

stationary, a diffuse Kalman filter is used. How the Kalman filter and the diffuse Kalman filter initialize

their recursive computations depends on the method() option; see Methods and formulas.

The linear state-space models with time-invariant coefficient matrices defined above can be specified

in the covariance-form syntax and the error-form syntax. The covariance-form syntax requires that C

and G be selection matrices, but places no restrictions on Q or R. In contrast, the error-form syntax

places no restrictions C or G, but requires that Q and R be either diagonal, diagonal-scalar, or identity

matrices. Some models are more easily specified in the covariance-form syntax, while others are more

easily specified in the error-form syntax. Choose the syntax that is easiest for your application.

https://www.stata.com/manuals/tssspace.pdf#tssspaceMethodsandformulas
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Some stationary state-space models

Example 1: An AR(1) model
Following Hamilton (1994a, 373–374), we can write the first-order autoregressive (AR(1)) model

𝑦𝑡 − 𝜇 = 𝛼(𝑦𝑡−1 − 𝜇) + 𝜖𝑡

as a state-space model with the observation equation

𝑦𝑡 = 𝜇 + 𝑢𝑡

and the state equation

𝑢𝑡 = 𝛼𝑢𝑡−1 + 𝜖𝑡

where the unobserved state is 𝑢𝑡 = 𝑦𝑡 − 𝜇.
Here we fit this model to data on the capacity utilization rate. The variable lncaputil contains data

on the natural log of the capacity utilization rate for the manufacturing sector of the US economy. We treat

the series as first-difference stationary and fit its first difference to an AR(1) process. Here we estimate

the parameters of the above state-space form of the AR(1) model:

. use https://www.stata-press.com/data/r19/manufac
(St. Louis Fed (FRED) manufacturing data)
. constraint 1 [D.lncaputil]u = 1
. sspace (u L.u, state noconstant) (D.lncaputil u, noerror), constraints(1)
searching for initial values ...........

(setting technique to bhhh)
Iteration 0: Log likelihood = 1515.8693
Iteration 1: Log likelihood = 1516.4187
(iteration log omitted)

Refining estimates:
Iteration 0: Log likelihood = 1516.44
Iteration 1: Log likelihood = 1516.44
State-space model
Sample: 1972m2 thru 2008m12 Number of obs = 443

Wald chi2(1) = 61.73
Log likelihood = 1516.44 Prob > chi2 = 0.0000
( 1) [D.lncaputil]u = 1

lncaputil Coefficient Std. err. z P>|z| [95% conf. interval]

u
u

L1. .3523983 .0448539 7.86 0.000 .2644862 .4403104

D.lncaputil
u 1 (constrained)

_cons -.0003558 .0005781 -0.62 0.538 -.001489 .0007773

/state
var(u) .0000622 4.18e-06 14.88 0.000 .000054 .0000704

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.



sspace — State-space models 8

The iteration log has three parts: the dots from the search for initial values, the log from finding the

maximum, and the log from a refining step. Here is a description of the logic behind each part:

1. The quality of the initial values affect the speed and robustness of the optimization algorithm.

sspace takes a few iterations in a nonlinear least-squares (NLS) algorithm to find good initial

values and reports a dot for each (NLS) iteration.

2. This iteration log is the standard method by which Stata reports the search for the maximum

likelihood estimates of the parameters in a nonlinear model.

3. Some of the parameters are transformed in the maximization process that sspace reports in

part 2. After a maximum candidate is found in part 2, sspace looks for a maximum in the

unconstrained space, checks that the Hessian of the log-likelihood function is of full rank, and

reports these iterations as the refining step.

The header in the output describes the estimation sample, reports the log-likelihood function at the

maximum, and gives the results of a Wald test against the null hypothesis that the coefficients on all

the independent variables, state variables, and lagged state variables are zero. In this example, the null

hypothesis that the coefficient on L1.u is zero is rejected at all conventional levels.

The estimation table reports results for the state equations, the observation equations, and the vari-

ance–covariance parameters. The estimated autoregressive coefficient of 0.3524 indicates that there is

persistence in the first differences of the log of the manufacturing rate. The estimated mean of the dif-

ferenced series is −0.0004, which is smaller in magnitude than its standard error, indicating that there is

no deterministic linear trend in the series.

Typing

. arima D.lncaputil, ar(1) technique(nr)
(output omitted )

produces nearly identical parameter estimates and standard errors for the mean and the autoregressive

parameter. Because sspace estimates the variance of the state error while arima estimates the standard

deviation, calculations are required to obtain the same results. The different parameterization of the

variance parameter can cause small numerical differences.

Technical note
In some situations, the second part of the iteration log terminates but the refining step never converges.

Only when the refining step converges does the maximization algorithm find interpretable estimates. If

the refining step iterates without convergence, the parameters of the specified model are not identified by

the data. (See Rothenberg [1971], Drukker and Wiggins [2004], and Davidson and MacKinnon [1993,

sec. 5.2] for discussions of identification.)

Example 2: An ARMA(1,1) model
Following Harvey (1993, 95–96), we can write a zero-mean, first-order, autoregressive moving-

average (ARMA(1,1)) model

𝑦𝑡 = 𝛼𝑦𝑡−1 + 𝜃𝜖𝑡−1 + 𝜖𝑡 (1)
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as a state-space model with state equations

( 𝑦𝑡
𝜃𝜖𝑡

) = (𝛼 1
0 0) ( 𝑦𝑡−1

𝜃𝜖𝑡−1
) + (1

𝜃) 𝜖𝑡 (2)

and observation equation

𝑦𝑡 = (1 0) ( 𝑦𝑡
𝜃𝜖𝑡

) (3)

The unobserved states in this model are 𝑢1𝑡 = 𝑦𝑡 and 𝑢2𝑡 = 𝜃𝜖𝑡. We set the process mean to zero

because economic theory and the previous example suggest that we should do so. Below we estimate

the parameters in the state-space model by using the error-form syntax:

. constraint 2 [u1]L.u2 = 1

. constraint 3 [u1]e.u1 = 1

. constraint 4 [D.lncaputil]u1 = 1

. sspace (u1 L.u1 L.u2 e.u1, state noconstant) (u2 e.u1, state noconstant)
> (D.lncaputil u1, noconstant), constraints(2/4) covstate(diagonal)
searching for initial values ..........

(setting technique to bhhh)
Iteration 0: Log likelihood = 1478.5361
Iteration 1: Log likelihood = 1490.5202
(iteration log omitted)

Refining estimates:
Iteration 0: Log likelihood = 1531.255
Iteration 1: Log likelihood = 1531.255
State-space model
Sample: 1972m2 thru 2008m12 Number of obs = 443

Wald chi2(2) = 333.84
Log likelihood = 1531.255 Prob > chi2 = 0.0000
( 1) [u1]L.u2 = 1
( 2) [u1]e.u1 = 1
( 3) [D.lncaputil]u1 = 1

lncaputil Coefficient Std. err. z P>|z| [95% conf. interval]

u1
u1

L1. .8056815 .0522661 15.41 0.000 .7032418 .9081212

u2
L1. 1 (constrained)

e.u1 1 (constrained)

u2
e.u1 -.5188453 .0701985 -7.39 0.000 -.6564317 -.3812588

D.lncaputil
u1 1 (constrained)

/state
var(u1) .0000582 3.91e-06 14.88 0.000 .0000505 .0000659

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexamplessspace_exar1
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The command in the above output specifies two state equations, one observation equation, and two

options. The first state equation defines 𝑢1𝑡 and the second defines 𝑢2𝑡 according to (2) above. The

observation equation defines the process for D.lncaputil according to the one specified in (3) above.

Several coefficients in (2) and (3) are set to 1, and constraints 2–4 place these restrictions on the model.

The estimated coefficient on L.u1 in equation u1, 0.806, is the estimate of 𝛼 in (2), which is the

autoregressive coefficient in the ARMAmodel in (1). The estimated coefficient on e.u1 in equation u2,
−0.519, is the estimate of 𝜃, which is the moving-average term in the ARMAmodel in (1).

This example highlights a difference between the error-form syntax and the covariance-form syntax.

The error-form syntax used in this example includes only explicitly included errors. In contrast, the

covariance-form syntax includes an error term in each equation, unless the noerror option is specified.

The default for covstate() also differs between the error-form syntax and the covariance-form syn-

tax. Because the coefficients on the errors in the error-form syntax are frequently used to estimate the

standard deviation of the errors, covstate(identity) is the default for the error-form syntax. In con-

trast, unit variances are less common in the covariance-form syntax, for which covstate(diagonal)
is the default. In this example, we specified covstate(diagonal) to estimate a nonunitary variance

for the state.

Typing

. arima D.lncaputil, noconstant ar(1) ma(1) technique(nr)
(output omitted )

produces nearly identical results. As in the AR(1) example above, arima estimates the standard deviation

of the error term, while sspace estimates the variance. Although they are theoretically equivalent, the

different parameterizations give rise to small numerical differences in the other parameters.

Example 3: A VAR(1) model
The variable lnhours contains data on the log of manufacturing hours, which we treat as first-

difference stationary. We have a theory in which the process driving the changes in the log utilization

rate affects the changes in the log of hours, but changes in the log hours do not affect changes in the

log utilization rate. In line with this theory, we estimate the parameters of a lower triangular, first-order

vector autoregressive (VAR(1)) process

(Δlncaputil𝑡
Δlnhours𝑡

) = (𝛼1 0
𝛼2 𝛼3

) (Δlncaputil𝑡−1
Δlnhours𝑡−1

) + (𝜖1𝑡
𝜖2𝑡

) (4)

where Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, ε𝑡 = (𝜖1𝑡, 𝜖2𝑡)′ and Var(ε) = 𝚺. We can write this VAR(1) process as a

state-space model with state equations

(𝑢1𝑡
𝑢2𝑡

) = (𝛼1 0
𝛼2 𝛼3

) (𝑢1(𝑡−1)
𝑢2(𝑡−1)

) + (𝜖1𝑡
𝜖2𝑡

) (5)

with Var(ε) = 𝚺 and observation equations

(Δlncaputil
Δlnhours ) = (𝑢1𝑡

𝑢2𝑡
)

https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq2
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq3
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq2
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq3
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq2
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq1
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq1
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexamplessspace_exar1
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Below we estimate the parameters of the state-space model:

. constraint 5 [D.lncaputil]u1 = 1

. constraint 6 [D.lnhours]u2 = 1

. sspace (u1 L.u1, state noconstant) (u2 L.u1 L.u2, state noconstant)
> (D.lncaputil u1, noconstant noerror) (D.lnhours u2, noconstant noerror),
> constraints(5/6) covstate(unstructured)
searching for initial values ..........

(setting technique to bhhh)
Iteration 0: Log likelihood = 2789.6095
Iteration 1: Log likelihood = 2957.8299
(iteration log omitted)

Refining estimates:
Iteration 0: Log likelihood = 3211.7532
Iteration 1: Log likelihood = 3211.7532
State-space model
Sample: 1972m2 thru 2008m12 Number of obs = 443

Wald chi2(3) = 166.87
Log likelihood = 3211.7532 Prob > chi2 = 0.0000
( 1) [D.lncaputil]u1 = 1
( 2) [D.lnhours]u2 = 1

Coefficient Std. err. z P>|z| [95% conf. interval]

u1
u1

L1. .353257 .0448456 7.88 0.000 .2653612 .4411528

u2
u1

L1. .1286218 .0394742 3.26 0.001 .0512537 .2059899

u2
L1. -.3707083 .0434255 -8.54 0.000 -.4558208 -.2855959

D.lncaputil
u1 1 (constrained)

D.lnhours
u2 1 (constrained)

/state
var(u1) .0000623 4.19e-06 14.88 0.000 .0000541 .0000705

cov(u1,u2) .000026 2.67e-06 9.75 0.000 .0000208 .0000312
var(u2) .0000386 2.61e-06 14.76 0.000 .0000335 .0000437

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

Specifying covstate(unstructured) caused sspace to estimate the off-diagonal element of 𝚺.

The output indicates that this parameter, /state:cov(u1,u2), is small but statistically significant.

The estimated coefficient on L.u1 in equation u1, 0.353, is the estimate of 𝛼1 in (5). The estimated

coefficient on L.u1 in equation u2, 0.129, is the estimate of 𝛼2 in (5). The estimated coefficient on L.u1
in equation u2, −0.371, is the estimate of 𝛼3 in (5).

For the VAR(1) model in (4), the estimated autoregressive coefficient for D.lncaputil is similar to

the corresponding estimate in the univariate results in example 1. The estimated effect of LD.lncaputil
on D.lnhours is 0.129, the estimated autoregressive coefficient of D.lnhours is −0.371, and both are

statistically significant.

https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq5
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq5
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq5
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexampleseq4
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexamplessspace_exar1
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These estimates can be compared with those produced by typing

. constraint 101 [D_lncaputil]LD.lnhours = 0

. var D.lncaputil D.lnhours, lags(1) noconstant constraints(101)
(output omitted )

. matrix list e(Sigma)
(output omitted )

The var estimates are not the same as the sspace estimates because the generalized least-squares esti-

mator implemented in var is only asymptotically equivalent to theML estimator implemented in sspace,
but the point estimates are similar. The comparison is useful for pedagogical purposes because the var
estimator is relatively simple.

Some problems require constraining a covariance term to zero. If we wanted to constrain

[/state]cov(u1,u2) to zero, we could type

. constraint 7 [/state]cov(u1,u2) = 0

. sspace (u1 L.u1, state noconstant)
> (u2 L.u1 L.u2, state noconstant)
> (D.lncaputil u1, noconstant noerror)
> (D.lnhours u2, noconstant noerror),
> constraints(5/7) covstate(unstructured)
(output omitted )

Example 4: A VARMA(1,1) model
We now extend the previous example by modeling D.lncaputil and D.lnhours as a first-order

vector autoregressive moving-average (VARMA(1,1)) process. Building on the previous examples, we

allow the lag of D.lncaputil to affect D.lnhours but we do not allow the lag of D.lnhours to affect

the lag of D.lncaputil. Previous univariate analysis revealed that D.lnhours is better modeled as an

autoregressive process than as an ARMA(1,1) process. As a result, we estimate the parameters of

(Δlncaputil𝑡
Δlnhours𝑡

) = (𝛼1 0
𝛼2 𝛼3

) (Δlncaputil𝑡−1
Δlnhours𝑡−1

) + (𝜃1 0
0 0) (𝜖1(𝑡−1)

𝜖2(𝑡−1)
) + (𝜖1𝑡

𝜖2𝑡
)

We can write this VARMA(1,1) process as a state-space model with state equations

⎛⎜
⎝

𝑠1𝑡
𝑠2𝑡
𝑠3𝑡

⎞⎟
⎠

= ⎛⎜
⎝

𝛼1 1 0
0 0 0

𝛼2 0 𝛼3

⎞⎟
⎠

⎛⎜
⎝

𝑠1(𝑡−1)
𝑠2(𝑡−1)
𝑠3(𝑡−1)

⎞⎟
⎠

+ ⎛⎜
⎝

1 0
𝜃1 0
0 1

⎞⎟
⎠

(𝜖1𝑡
𝜖2𝑡

)

where the states are

⎛⎜
⎝

𝑠1𝑡
𝑠2𝑡
𝑠3𝑡

⎞⎟
⎠

= ⎛⎜
⎝

Δlncaputil𝑡
𝜃1𝜖1𝑡

Δlnhours𝑡

⎞⎟
⎠

and we simplify the problem by assuming that

Var(𝜖1𝑡
𝜖2𝑡

) = (𝜎2
1 0

0 𝜎2
2
)

https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexamplesex3
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Below we estimate the parameters of this model by using sspace:

. constraint 7 [u1]L.u2 = 1

. constraint 8 [u1]e.u1 = 1

. constraint 9 [u3]e.u3 = 1

. constraint 10 [D.lncaputil]u1 = 1

. constraint 11 [D.lnhours]u3 = 1

. sspace (u1 L.u1 L.u2 e.u1, state noconstant) (u2 e.u1, state noconstant)
> (u3 L.u1 L.u3 e.u3, state noconstant)
> (D.lncaputil u1, noconstant) (D.lnhours u3, noconstant),
> constraints(7/11) technique(nr) covstate(diagonal)
searching for initial values ..........

(iteration log omitted)
Refining estimates:
Iteration 0: Log likelihood = 3156.0564
Iteration 1: Log likelihood = 3156.0564
State-space model
Sample: 1972m2 thru 2008m12 Number of obs = 443

Wald chi2(4) = 427.55
Log likelihood = 3156.0564 Prob > chi2 = 0.0000
( 1) [u1]L.u2 = 1
( 2) [u1]e.u1 = 1
( 3) [u3]e.u3 = 1
( 4) [D.lncaputil]u1 = 1
( 5) [D.lnhours]u3 = 1

Coefficient Std. err. z P>|z| [95% conf. interval]

u1
u1

L1. .8058031 .0522493 15.42 0.000 .7033964 .9082098

u2
L1. 1 (constrained)

e.u1 1 (constrained)

u2
e.u1 -.518907 .0701848 -7.39 0.000 -.6564667 -.3813474

u3
u1

L1. .1734868 .0405156 4.28 0.000 .0940776 .252896

u3
L1. -.4809376 .0498574 -9.65 0.000 -.5786563 -.3832188

e.u3 1 (constrained)

D.lncaputil
u1 1 (constrained)

D.lnhours
u3 1 (constrained)

/state
var(u1) .0000582 3.91e-06 14.88 0.000 .0000505 .0000659
var(u3) .0000382 2.56e-06 14.88 0.000 .0000331 .0000432

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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The estimates of the parameters in the model for D.lncaputil are similar to those in the univariate

model fit in example 2. The estimates of the parameters in the model for D.lnhours indicate that the

lag of D.lncaputil has a positive effect on D.lnhours.

Technical note
The technique(nr) option facilitates convergence in example 4. Fitting state-space models is no-

toriously difficult. Convergence problems are common. Four methods for overcoming convergence

problems are 1) selecting an alternate optimization algorithm by using the technique() option, 2) us-

ing alternative starting values by specifying the from() option, 3) using starting values obtained by

estimating the parameters of a restricted version of the model of interest, or 4) putting the variables on

the same scale.

Example 5: A dynamic-factor model
Stock and Watson (1989, 1991) wrote a simple macroeconomic model as a dynamic-factor model,

estimated the parameters by ML, and extracted an economic indicator. In this example, we estimate

the parameters of a dynamic-factor model. In [TS] sspace postestimation, we extend this example and

extract an economic indicator for the differenced series.

We have data on an industrial-production index, ipman; an aggregate weekly hours index, hours;
and aggregate unemployment, unemp. income is real disposable income divided by 100. We rescaled

real disposable income to avoid convergence problems.

We postulate a latent factor that follows an AR(2) process. Each measured variable is then related to

the current value of that latent variable by a parameter. The state-space form of our model is

( 𝑓𝑡
𝑓𝑡−1

) = (𝜃1 𝜃2
1 0 ) (𝑓𝑡−1

𝑓𝑡−2
) + (𝜈𝑡

0 )

⎛⎜⎜⎜⎜
⎝

Δipman𝑡
Δincome𝑡
Δhours𝑡
Δunemp𝑡

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝛾1
𝛾2
𝛾3
𝛾4

⎞⎟⎟⎟
⎠

𝑓𝑡 +
⎛⎜⎜⎜
⎝

𝜖1𝑡
𝜖2𝑡
𝜖3𝑡
𝜖4𝑡

⎞⎟⎟⎟
⎠

where

Var
⎛⎜⎜⎜
⎝

𝜖1𝑡
𝜖2𝑡
𝜖3𝑡
𝜖4𝑡

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝜎2
1 0 0 0

0 𝜎2
2 0 0

0 0 𝜎2
3 0

0 0 0 𝜎2
4

⎞⎟⎟⎟
⎠

https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexamplessspace_ex2
https://www.stata.com/manuals/tssspace.pdf#tssspaceRemarksandexamplessspace_ex4
https://www.stata.com/manuals/tssspacepostestimation.pdf#tssspacepostestimation
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The parameter estimates are

. use https://www.stata-press.com/data/r19/dfex
(St. Louis Fed (FRED) macro data)
. constraint 12 [lf]L.f = 1
. sspace (f L.f L.lf, state noconstant)
> (lf L.f, state noconstant noerror)
> (D.ipman f, noconstant)
> (D.income f, noconstant)
> (D.hours f, noconstant)
> (D.unemp f, noconstant),
> covstate(identity) constraints(12)
searching for initial values .................

(setting technique to bhhh)
Iteration 0: Log likelihood = -674.18493
Iteration 1: Log likelihood = -667.2391
(iteration log omitted)

Refining estimates:
Iteration 0: Log likelihood = -662.09507
Iteration 1: Log likelihood = -662.09507
State-space model
Sample: 1972m2 thru 2008m11 Number of obs = 442

Wald chi2(6) = 751.95
Log likelihood = -662.09507 Prob > chi2 = 0.0000
( 1) [lf]L.f = 1

Coefficient Std. err. z P>|z| [95% conf. interval]

f
f

L1. .2651932 .0568663 4.66 0.000 .1537372 .3766491

lf
L1. .4820398 .0624635 7.72 0.000 .3596136 .604466

lf
f

L1. 1 (constrained)

D.ipman
f .3502249 .0287389 12.19 0.000 .2938976 .4065522

D.income
f .0746338 .0217319 3.43 0.001 .0320401 .1172276

D.hours
f .2177469 .0186769 11.66 0.000 .1811407 .254353

D.unemp
f -.0676016 .0071022 -9.52 0.000 -.0815217 -.0536816

/observable
var(D.ipman) .1383158 .0167086 8.28 0.000 .1055675 .1710641

var(D.income) .2773808 .0188302 14.73 0.000 .2404743 .3142873
var(D.hours) .0911446 .0080847 11.27 0.000 .0752988 .1069903
var(D.unemp) .0237232 .0017932 13.23 0.000 .0202086 .0272378

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.



sspace — State-space models 16

The output indicates that the unobserved factor is quite persistent and that it is a significant predictor

for each of the observed variables.

These models are frequently used to forecast the dependent variables and to estimate the unobserved

factors. We present some illustrative examples in [TS] sspace postestimation. The dfactor command

estimates the parameters of dynamic-factor models; see [TS] dfactor.

Some nonstationary state-space models

Example 6: A local-level model
Harvey (1989) advocates the use of STS models. These models parameterize the trends and seasonal

components of a set of time series. The simplest STS model is the local-level model, which is given by

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡

where

𝜇𝑡 = 𝜇𝑡−1 + 𝜈𝑡

The model is called a local-level model because the level of the series is modeled as a random walk

plus an idiosyncratic noise term. (The model is also known as the random-walk-plus-noise model.) The

local-level model is nonstationary because of the random-walk component. When the variance of the

idiosyncratic-disturbance 𝜖𝑡 is zero and the variance of the level-disturbance 𝜈𝑡 is not zero, the local-

level model reduces to a random walk. When the variance of the level-disturbance 𝜈𝑡 is zero and the

variance of the idiosyncratic-disturbance 𝜖𝑡 is not zero,

𝜇𝑡 = 𝜇𝑡−1 = 𝜇

and the local-level model reduces to

𝑦𝑡 = 𝜇 + 𝜖𝑡

which is a simple regression with a time-invariant mean. The parameter 𝜇 is not estimated in the state-

space formulation below.

In this example, we fit weekly levels of the Standard and Poor’s 500 Index to a local-level model.

Because this model is already in state-space form, we fit close by typing

https://www.stata.com/manuals/tssspacepostestimation.pdf#tssspacepostestimation
https://www.stata.com/manuals/tsdfactor.pdf#tsdfactor
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. use https://www.stata-press.com/data/r19/sp500w

. constraint 13 [z]L.z = 1

. constraint 14 [close]z = 1

. sspace (z L.z, state noconstant) (close z, noconstant), constraints(13 14)
searching for initial values ..........

(setting technique to bhhh)
Iteration 0: Log likelihood = -12582.89
Iteration 1: Log likelihood = -12577.146
(iteration log omitted)

State-space model
Sample: 1 thru 3093 Number of obs = 3,093
Log likelihood = -12576.99
( 1) [z]L.z = 1
( 2) [close]z = 1

close Coefficient Std. err. z P>|z| [95% conf. interval]

z
z

L1. 1 (constrained)

close
z 1 (constrained)

/state
var(z) 170.3456 7.584909 22.46 0.000 155.4794 185.2117

/observable
var(close) 15.24858 3.392457 4.49 0.000 8.599486 21.89767

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The results indicate that both components have nonzero variances. The output footer informs us that

the model is nonstationary at the estimated parameter values.

Technical note
In the previous example, we estimated the parameters of a nonstationary state-space model. The

model is nonstationary because one of the eigenvalues of the A matrix has unit modulus. That all the

coefficients in the A matrix are fixed is also important. See Lütkepohl (2005, 636–637) for why the ML

estimator for the parameters of a nonstationary state-model that is nonstationary because of eigenvalues

with unit moduli from a fixed A matrix is still consistent and asymptotically normal.

Example 7: A local linear-trend model
In another basic STS model, known as the local linear-trend model, both the level and the slope of a

linear time trend are random walks. Here are the state equations and the observation equation for a local

linear-trend model for the level of industrial production contained in variable ipman:

(𝜇𝑡
𝛽𝑡

) = (1 1
0 1) (𝜇𝑡−1

𝛽𝑡−1
) + (𝜈1𝑡

𝜈2𝑡
)

ipman𝑡 = 𝜇𝑡 + 𝜖𝑡
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The estimated parameters are

. use https://www.stata-press.com/data/r19/dfex
(St. Louis Fed (FRED) macro data)
. constraint 15 [f1]L.f1 = 1
. constraint 16 [f1]L.f2 = 1
. constraint 17 [f2]L.f2 = 1
. constraint 18 [ipman]f1 = 1
. sspace (f1 L.f1 L.f2, state noconstant) (f2 L.f2, state noconstant)
> (ipman f1, noconstant), constraints(15/18)
searching for initial values ..........

(setting technique to bhhh)
Iteration 0: Log likelihood = -362.93861
Iteration 1: Log likelihood = -362.12048
(iteration log omitted)

State-space model
Sample: 1972m1 thru 2008m11 Number of obs = 443
Log likelihood = -359.1266
( 1) [f1]L.f1 = 1
( 2) [f1]L.f2 = 1
( 3) [f2]L.f2 = 1
( 4) [ipman]f1 = 1

ipman Coefficient Std. err. z P>|z| [95% conf. interval]

f1
f1

L1. 1 (constrained)

f2
L1. 1 (constrained)

f2
f2

L1. 1 (constrained)

ipman
f1 1 (constrained)

/state
var(f1) .1473071 .0407156 3.62 0.000 .067506 .2271082
var(f2) .0178752 .0065743 2.72 0.003 .0049898 .0307606

/observable
var(ipman) .0354429 .0148186 2.39 0.008 .0063989 .0644868

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

There is little evidence that either of the variance parameters are zero. The fit obtained indicates that

we could now proceed with specification testing and checks to see how well this model forecasts these

data.
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Stored results
sspace stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k dv) number of dependent variables

e(k obser) number of observation equations

e(k state) number of state equations

e(k obser err) number of observation-error terms

e(k state err) number of state-error terms

e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(tmin) minimum time in sample

e(tmax) maximum time in sample

e(stationary) 1 if the estimated parameters indicate a stationary model, 0 otherwise

e(rank) rank of VCE

e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) sspace
e(cmdline) command as typed

e(depvar) unoperated names of dependent variables in observation equations

e(obser deps) names of dependent variables in observation equations

e(state deps) names of dependent variables in state equations

e(covariates) list of covariates

e(tvar) variable denoting time within groups

e(eqnames) names of equations

e(title) title in estimation output

e(tmins) formatted minimum time

e(tmaxs) formatted maximum time

e(R structure) structure of observed-variable-error covariance matrix

e(Q structure) structure of state-error covariance matrix

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(method) likelihood method

e(initial values) type of initial values

e(technique) maximization technique

e(tech steps) iterations taken in maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) parameter vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(gamma) mapping from parameter vector to state-space matrices

e(A) estimated A matrix

e(B) estimated B matrix

e(C) estimated C matrix

e(D) estimated D matrix

e(F) estimated F matrix

e(G) estimated G matrix

e(chol R) Cholesky factor of estimated R matrix

e(chol Q) Cholesky factor of estimated Q matrix

e(chol Sz0) Cholesky factor of initial state covariance matrix

e(z0) initial state vector augmented with a matrix identifying nonstationary components

e(d) additional term in diffuse initial state vector, if nonstationary model

e(T) inner part of quadratic form for initial state covariance in a partially nonstationary model

e(M) outer part of quadratic form for initial state covariance in a partially nonstationary model

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Recall that our notation for linear state-space models with time-invariant coefficient matrices is

z𝑡 = Az𝑡−1 + Bx𝑡 + Cε𝑡

y𝑡 = Dz𝑡 + Fw𝑡 +Gν𝑡

where

z𝑡 is an 𝑚 × 1 vector of unobserved state variables;

x𝑡 is a 𝑘𝑥 × 1 vector of exogenous variables;

ε𝑡 is a 𝑞 × 1 vector of state-error terms, (𝑞 ≤ 𝑚);
y𝑡 is an 𝑛 × 1 vector of observed endogenous variables;

w𝑡 is a 𝑘𝑤 × 1 vector of exogenous variables;

ν𝑡 is an 𝑟 × 1 vector of observation-error terms, (𝑟 ≤ 𝑛); and
A, B, C, D, F, and G are parameter matrices.

The equations for z𝑡 are known as the state equations, and the equations for y𝑡 are known as the

observation equations.
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The error terms are assumed to be zero mean, normally distributed, serially uncorrelated, and uncor-

related with each other;

ε𝑡 ∼ 𝑁(0,Q)
ν𝑡 ∼ 𝑁(0,R)

𝐸[ε𝑡ε
′
𝑠] = 0 for all 𝑠 ≠ 𝑡

𝐸[ε𝑡ν
′
𝑠] = 0 for all 𝑠 and 𝑡

sspace estimates the parameters of linear state-space models by maximum likelihood. The Kalman

filter is a method for recursively obtaining linear, least-squares forecasts of y𝑡 conditional on past infor-

mation. These forecasts are used to construct the log likelihood, assuming normality and stationarity.

When the model is nonstationary, a diffuse Kalman filter is used.

Hamilton (1994b; 1994a, 389) shows that the QML estimator, obtained when the normality assump-

tion is dropped, is consistent and asymptotically normal, although the variance–covariance matrix of

the estimator (VCE) must be estimated by the Huber/White/sandwich estimator. Hamilton’s discussion

applies to stationary models, and specifying vce(robust) produces a consistent estimator of the VCE

when the errors are not normal.

Methods for computing the log likelihood differ in how they calculate initial values for the Kalman

filter when the model is stationary, how they compute a diffuse Kalman filter when the model is non-

stationary, and whether terms for initial states are included. sspace offers the method(hybrid),
method(dejong), and method(kdiffuse) options for computing the log likelihood. All three methods
handle both stationary and nonstationary models.

method(hybrid), the default, uses the initial values for the states implied by stationarity to initialize
the Kalman filter when the model is stationary. Hamilton (1994a, 378) discusses this method of comput-

ing initial values for the states and derives a log-likelihood function that does not include terms for the

initial states. When the model is nonstationary, method(hybrid) uses the De Jong (1988, 1991) diffuse

Kalman filter and log-likelihood function, which includes terms for the initial states.

method(dejong) uses the stationary De Jong (1988) method when the model is stationary and the

De Jong (1988, 1991) diffuse Kalman filter when the model is nonstationary. The stationary De Jong

(1988) method estimates initial values for the Kalman filter as part of the log-likelihood computation, as

in De Jong (1988).

method(kdiffuse) implements the seldom-used large-𝜅 diffuse approximation to the diffuse

Kalman filter when the model is nonstationary and uses initial values for the states implied by stationar-

ity when the model is stationary. The log likelihood does not include terms for the initial states in either

case. We recommend that you do not use method(kdiffuse) except to replicate older results computed

using this method.

De Jong (1988, 1991) and De Jong and Chu-Chun-Lin (1994) derive the log likelihood and a dif-

fuse Kalman filter for handling nonstationary data. De Jong (1988) replaces the stationarity assumption

with a time-immemorial assumption, which he uses to derive the log-likelihood function, an initial state

vector, and a covariance of the initial state vector when the model is nonstationary. By default, and

when method(hybrid) or method(dejong) is specified, sspace uses the diffuse Kalman filter given

in definition 5 of De Jong and Chu-Chun-Lin (1994). This method uses theorem 3 of De Jong and Chu-

Chun-Lin (1994) to compute the covariance of the initial states. When using this method, sspace saves

the matrices from their theorem 3 in e(), although the names are changed. e(Z) is their U1, e(T) is

their U2, e(A) is their T, and e(M) is theirM.
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See De Jong (1988, 1991) and De Jong and Chu-Chun-Lin (1994) for the details of the De Jong diffuse

Kalman filter.

Practical estimation and inference require that the maximum likelihood estimator be consistent and

normally distributed in large samples. These statistical properties of the maximum likelihood estimator

are well established when the model is stationary; see Caines (1988, chap. 5 and 7), Hamilton (1994a,

388–389), and Hannan and Deistler (1988, chap. 4). When the model is nonstationary, additional as-

sumptions must hold for the maximum likelihood estimator to be consistent and asymptotically normal;

see Harvey (1989, sec. 3.4), Lütkepohl (2005, 636–637), and Schneider (1988). Chang, Miller, and Park

(2009) show that the ML and the QML estimators are consistent and asymptotically normal for a class of

nonstationary state-space models.

We now give an intuitive version of the Kalman filter. sspace uses theoretically equivalent, but

numerically more stable, methods. For each time 𝑡, the Kalman filter produces the conditional expected
state vector z𝑡|𝑡 and the conditional covariance matrix 𝛀𝑡|𝑡; both are conditional on information up to

and including time 𝑡. Using the model and previous period results, for each 𝑡 we begin with

z𝑡|𝑡−1 = Az𝑡−1|𝑡−1 + Bx𝑡

𝛀𝑡|𝑡−1 = A𝛀𝑡−1|𝑡−1A
′ + CQC′

y𝑡|𝑡−1 = Dz𝑡|𝑡−1 + Fw𝑡

(6)

The residuals and the mean squared error (MSE) matrix of the forecast error are

ν̃𝑡|𝑡 = y𝑡 − y𝑡|𝑡−1

𝚺𝑡|𝑡 = D𝛀𝑡|𝑡−1D
′ +GRG′ (7)

In the last steps, we update the conditional expected state vector and the conditional covariance with

the time 𝑡 information:

z𝑡|𝑡 = z𝑡|𝑡−1 + 𝛀𝑡|𝑡−1D𝚺−1
𝑡|𝑡 ν̃𝑡|𝑡

𝛀𝑡|𝑡 = 𝛀𝑡|𝑡−1 − 𝛀𝑡|𝑡−1D𝚺−1
𝑡|𝑡D

′𝛀𝑡|𝑡−1
(8)

Equations (6)–(8) are the Kalman filter. The equations denoted by (6) are the one-step predictions.

The one-step predictions do not use contemporaneous values of y𝑡; only past values of y𝑡, past values

of the exogenous x𝑡, and contemporaneous values of x𝑡 are used. Equations (7) and (8) form the update

step of the Kalman filter; they incorporate the contemporaneous dependent variable information into the

predicted states.

The Kalman filter requires initial values for the states and a covariance matrix for the initial states

to start off the recursive process. Hamilton (1994a) discusses how to compute initial values for the

Kalman filter assuming stationarity. This method is used by default when the model is stationary. De

Jong (1988) discusses how to estimate initial values by maximum likelihood; this method is used when

method(dejong) is specified.

Letting δ be the vector of parameters in the model, Lütkepohl (2005) and Harvey (1989) show that

the log-likelihood function for the parameters of a stationary model is given by

ln𝐿(δ) = −0.5 {𝑛𝑇 ln(2𝜋) +
𝑇

∑
𝑡=1

ln(|𝚺𝑡|𝑡−1|) +
𝑇

∑
𝑡=1

e𝑡
′𝚺−1

𝑡|𝑡−1e𝑡}

where e𝑡 = (y𝑡 − y𝑡|𝑡−1) depends on δ and 𝚺 also depends on δ.



sspace — State-space models 23

The variance–covariance matrix of the estimator (VCE) is estimated by the observed information ma-

trix (OIM) estimator by default. Specifying vce(robust) causes sspace to use the Huber/White/sand-

wich estimator. Both estimators of the VCE are standard and documented in Hamilton (1994a).

Hamilton (1994a), Hannan and Deistler (1988), and Caines (1988) show that the ML estimator is

consistent and asymptotically normal when the model is stationary. Schneider (1988) establishes consis-

tency and asymptotic normality when the model is nonstationary because A has some eigenvalues with

modulus 1 and there are no unknown parameters in A.

Not all state-space models are identified, as discussed in Hamilton (1994a) and Lütkepohl (2005).

sspace checks for local identification at the optimum. sspace will not declare convergence unless the

Hessian is full rank. This check for local identifiability is due to Rothenberg (1971).

Specifying method(dejong) causes sspace to maximize the log-likelihood function given in section
2 (vii) of De Jong (1988). This log-likelihood function includes the initial states as parameters to be

estimated. We use some of the methods in Casals, Sotoca, and Jerez (1999) for computing the De Jong

(1988) log-likelihood function.
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