
rolling — Rolling-window and recursive estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgment
References Also see

Description
rolling executes a command on each of a series of windows of observations and stores the results.

rolling can perform what are commonly called rolling regressions, recursive regressions, and reverse

recursive regressions. However, rolling is not limited to just linear regression analysis: any command

that stores results in e() or r() can be used with rolling.

Quick start
Fit an AR(1) model for y with a 20-period rolling window using tsset data

rolling, window(20): arima y, ar(1)

Recursive rolling window estimation with a fixed starting period

rolling, window(20) recursive: arima y, ar(1)

Same as above, but specify that estimation start in 1990 and end in 2011

rolling, window(20) recursive start(1990) end(2011): arima y, ar(1)

Reverse recursive rolling window estimation with the last period fixed

rolling, window(20) rrecursive start(1990) end(2011): arima y, ar(1)

Save results from a 20-period rolling window estimation to new dataset mydata.dta
rolling, window(20) saving(mydata): arima y, ar(1)

Note: Any command that accepts the rolling prefix may be substituted for arima above.

Menu
Statistics > Time series > Rolling-window and recursive estimation

1

https://www.stata.com/manuals/tstsset.pdf#tstsset

rolling — Rolling-window and recursive estimation 2

Syntax
rolling [exp list] [if] [in] window(#) [options]: command

options Description

Main
∗ window(#) number of consecutive data points in each sample

recursive use recursive samples

rrecursive use reverse recursive samples

Options

clear replace data in memory with results

saving(filename, . . .) save results to filename; save statistics in double precision;
save results to filename every # replications

stepsize(#) number of periods to advance window

start(time constant) period at which rolling is to start

end(time constant) period at which rolling is to end

keep(varname[, start]) save varname with results; optionally, use value at left edge of window

Reporting

nodots suppress replication dots

dots(#) display dots every # replications

noisily display any output from command

trace trace command’s execution

Advanced

reject(exp) identify invalid results

∗ window(#) is required.

You must tsset your data before using rolling; see [TS] tsset.
command is any command that follows standard Stata syntax and allows the if qualifier. The by prefix

cannot be part of command.

aweights are allowed in command if command accepts aweights; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist

eexp

elist contains newvar = (exp)
(exp)

eexp is specname

[eqno]specname

specname is b
b[]
se
se[]

eqno is # #

name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [], which are to be typed, and [], which indicate optional arguments.

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions

rolling — Rolling-window and recursive estimation 3

Options

� � �
Main �

window(#) defines the window size used each time command is executed. The window size refers to

calendar periods, not the number of observations. If there are missing data (for example, because

of weekends), the actual number of observations used by command may be less than window(#).
window(#) is required.

recursive specifies that a recursive analysis be done. The starting period is held fixed, the ending

period advances, and the window size grows.

rrecursive specifies that a reverse recursive analysis be done. Here the ending period is held fixed,

the starting period advances, and the window size shrinks.

� � �
Options �

clear specifies that Stata replace the data in memory with the collected statistics even though the current
data in memory have not been saved to disk.

saving(filename[, suboptions]) creates a Stata data file (.dta file) consisting of (for each statistic in

exp list) a variable containing the replicates.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals. By
default, they are saved as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified

in conjunction with saving() only when command takes a long time for each replication. This

will allow recovery of partial results should your computer crash. See [P] postfile.

stepsize(#) specifies the number of periods the window is to be advanced each time command is

executed.

start(time constant) specifies the date on which rolling is to start. start() may be specified as an

integer or as a date literal.

end(time constant) specifies the date on which rolling is to end. end()may be specified as an integer
or as a date literal.

keep(varname[, start]) specifies a variable to be posted along with the results. The value posted is

the value that corresponds to the right edge of the window. Specifying the start() option requests

that the value corresponding to the left edge of the window be posted instead. This option is often

used to record calendar dates.

� � �
Reporting �

nodots and dots(#) specify whether to display replication dots. By default, one dot character is dis-

played for each window. An “x” is displayed if command returns an error or if any value in exp list

is missing. You can also control whether dots are printed using set dots; see [R] set.

nodots suppresses display of the replication dot for each window on which command is executed.

dots(#) displays dots every # replications. dots(0) is a synonym for nodots.

noisily causes the output of command to be displayed for each window on which command is executed.

This option implies the nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily and

nodots options.

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/ppostfile.pdf#ppostfile
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rset.pdf#rset

rolling — Rolling-window and recursive estimation 4

� � �
Advanced �

reject(exp) identifies an expression that indicates when results should be rejected. When exp is true,

the saved statistics are set to missing values.

Remarks and examples
rolling is a moving sampler that collects statistics from command after executing command on

subsets of the data in memory. Typing

. rolling exp_list, window(50) clear: command

executes command on sample windows of span 50. That is, rolling will first execute command by

using periods 1–50 of the dataset, and then using periods 2–51, 3–52, and so on.

command defines the statistical command to be executed. Most Stata commands and user-written

programs can be used with rolling, as long as they follow standard Stata syntax and allow the if
qualifier; see [U] 11 Language syntax. The by prefix cannot be part of command.

exp list specifies the statistics to be collected from the execution of command. If no expressions are

given, exp list assumes a default of b if command stores results in e() and of all the scalars if command

stores results in r() and not in e(). Otherwise, not specifying an expression in exp list is an error.

Suppose that you have data collected at 100 consecutive points in time, numbered 1–100, and you

wish to perform a rolling regression with a window size of 20 periods. Typing

. rolling _b, window(20) clear: regress depvar indepvar

causes Stata to regress depvar on indepvar using periods 1–20, store the regression coefficients (b),
run the regression using periods 2–21, and so on, finishing with a regression using periods 81–100 (the

last 20 periods).

The stepsize() option specifies how far ahead the window is moved each time. For example, if

you specify step(2), then command is executed on periods 1–20, and then 3–22, 5–24, etc. By default,

rolling replaces the dataset in memory with the computed statistics unless the saving() option is

specified, in which case the computed statistics are saved in the filename specified. If the dataset in

memory has been changed since it was last saved and you do not specify saving(), you must use clear.

rolling can also perform recursive and reverse recursive analyses. In a recursive analysis, the start-

ing date is held fixed, and the window size grows as the ending date is advanced. In a reverse recursive

analysis, the ending date is held fixed, and the window size shrinks as the starting date is advanced.

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11Languagesyntax

rolling — Rolling-window and recursive estimation 5

Example 1
We have data on the daily returns to IBM stock (ibm), the S&P 500 (spx), and short-term interest rates

(irx), and we want to create a series containing the beta of IBM by using the previous 200 trading days

at each date. We will also record the standard errors, so that we can obtain 95% confidence intervals for

the betas. See, for example, Stock andWatson (2019, 112) for more information on estimating betas. We

type

. use https://www.stata-press.com/data/r19/ibm
(Source: Yahoo! Finance)
. tsset t
Time variable: t, 1 to 494

Delta: 1 unit
. generate ibmadj = ibm - irx
(1 missing value generated)
. generate spxadj = spx - irx
(1 missing value generated)
. rolling _b _se, window(200) saving(betas, replace) keep(date):
> regress ibmadj spxadj
(running regress on estimation sample)
(file betas.dta not found)
Rolling replications (295):10.........20.........30.........40.......
> ..50.........60.........70.........80.........90.........100.........110.....
>120.........130.........140.........150.........160.........170.........1
> 80.........190.........200.........210.........220.........230.........240...
>250.........260.........270.........280.........290..... done
file betas.dta saved

Our dataset has both a time variable t that runs consecutively and a date variable date that measures

the calendar date and therefore has gaps at weekends and holidays. Had we used the date variable as our

time variable, rolling would have used windows consisting of 200 calendar days instead of 200 trading

days, and each window would not have exactly 200 observations. We used the keep(date) option so

that we could refer to the date variable when working with the results dataset.

We can list a portion of the dataset created by rolling to see what it contains:

. use betas, clear
(rolling: regress)
. sort date
. list in 1/3, abbreviate(10) table

start end date _b_spxadj _b_cons _se_spxadj _se_cons

1. 1 200 16oct2003 1.043422 -.0181504 .0658531 .0748295
2. 2 201 17oct2003 1.039024 -.0126876 .0656893 .074609
3. 3 202 20oct2003 1.038371 -.0235616 .0654591 .0743851

The variables start and end indicate the first and last observations used each time that rolling called

regress, and the date variable contains the calendar date corresponding the period represented by end.
The remaining variables are the estimated coefficients and standard errors from the regression. In our

example , b spxadj contains the estimated betas, and b cons contains the estimated alphas. The

variables se spxadj and se cons have the corresponding standard errors.

rolling — Rolling-window and recursive estimation 6

Finally, we compute the confidence intervals for the betas and examine how they have changed over

time:

. generate lower = _b_spxadj - 1.96*_se_spxadj

. generate upper = _b_spxadj + 1.96*_se_spxadj

. twoway (line _b_spxadj date) (rline lower upper date)
> if date>=td(1oct2003), ytitle(”Beta”) xtitle(”Date”)

.6

.8

1

1.2

B
et

a

01oct2003 01jan2004 01apr2004 01jul2004 01oct2004 01jan2005
Date

_b[spxadj]
lower/upper

As 2004 progressed, IBM’s stock returns were less influenced by returns in the broader market. Beginning

in June of 2004, IBM’s beta became significantly different from unity at the 95% confidence level, as

indicated by the fact that the confidence interval does not contain one from then onward.

In addition to rolling-window analyses, rolling can also perform recursive ones. Suppose again that

you have data collected at 100 consecutive points in time, and now you type

. rolling _b, window(20) recursive clear: regress depvar indepvar

Stata will first regress depvar on indepvar by using observations 1–20, store the coefficients, run the

regression using observations 1–21, observations 1–22, and so on, finishing with a regression using all

100 observations. Unlike a rolling regression, in which case the number of observations is held constant

and the starting and ending points are shifted, a recursive regression holds the starting point fixed and

increases the number of observations. Recursive analyses are often used in forecasting situations. As

time goes by, more information becomes available that can be used in making forecasts. See Kmenta

(1997, 423–424).

Example 2
Using the same dataset, we type

. use https://www.stata-press.com/data/r19/ibm, clear
(Source: Yahoo! Finance)
. tsset t
Time variable: t, 1 to 494

Delta: 1 unit
. generate ibmadj = ibm - irx
(1 missing value generated)

rolling — Rolling-window and recursive estimation 7

. generate spxadj = spx - irx
(1 missing value generated)
. rolling _b _se, recursive window(200) clear: regress ibmadj spxadj
(output omitted)

. list in 1/3, abbrev(10)

start end _b_spxadj _b_cons _se_spxadj _se_cons

1. 1 200 1.043422 -.0181504 .0658531 .0748295
2. 1 201 1.039024 -.0126876 .0656893 .074609
3. 1 202 1.037687 -.016475 .0655896 .0743481

Here the starting period remains fixed and the window grows larger.

In a reverse recursive analysis, the ending date is held fixed, and the window size becomes smaller as

the starting date is advanced. For example, with a dataset that has observations numbered 1–100, typing

. rolling _b, window(20) reverse recursive clear: regress depvar indepvar

creates a dataset in which the first observation has the results based on periods 1–100, the second ob-

servation has the results based on 2–100, the third having 3–100, and so on, up to the last observation

having results based on periods 81–100 (the last 20 observations).

Example 3
Using the data on stock returns, we want to build a model in which we predict today’s IBM stock return

on the basis of yesterday’s returns on IBM and the S&P 500. That is, letting 𝑖𝑡 and 𝑠𝑡 denote the returns

to IBM and the S&P 500 on date 𝑡, we want to fit the regression model

𝑖𝑡 = 𝛽0 + 𝛽1𝑖𝑡−1 + 𝛽2𝑠𝑡−1 + 𝜖𝑡

where 𝜖𝑡 is a regression error term, and then compute

𝑖𝑡+1 = 𝛽0 + 𝛽1𝑖𝑡 + 𝛽2𝑠𝑡

We will use recursive regression because we suspect that the more data we have to fit the regression

model, the better the model will predict returns. We will use at least 20 periods in fitting the regression.

. use https://www.stata-press.com/data/r19/ibm, clear
(Source: Yahoo! Finance)
. tsset t

time variable: t, 1 to 494
delta: 1 unit

One alternative would be to use rolling with the recursive option to fit the regressions, collect

the coefficients, and then compute the predicted values afterward. However, we will instead write a

short program that computes the forecasts automatically and then use rolling, recursive on that

program. The program must accept an if expression so that rolling can indicate to the program which

observations are to be used. Our program is

rolling — Rolling-window and recursive estimation 8

program myforecast, rclass
syntax [if]
regress ibm L.ibm L.spx ‘if’
// Find last time period of estimation sample and
// make forecast for period just after that
summ t if e(sample)
local last = r(max)
local fcast = _b[_cons] + _b[L.ibm]*ibm[‘last’] + ///

_b[L.spx]*spx[‘last’]
return scalar forecast = ‘fcast’
// Next period’s actual return
// Will return missing value for final period
return scalar actual = ibm[‘last’+1]

end

Now we call rolling:

. rolling actual=r(actual) forecast=r(forecast), recursive window(20): myforecast
(output omitted)

. corr actual forecast
(obs=474)

actual forecast

actual 1.0000
forecast -0.0957 1.0000

Our model does not work too well—the correlation between actual returns and our forecasts is negative.

Stored results
rolling sets no r- or e-class macros. The results from the command used with rolling, depending

on the last window of data used, are available after rolling has finished.

Acknowledgment
We thank Christopher F. Baum of the Department of Economics at Boston College and author of the

Stata Press books An Introduction to Modern Econometrics Using Stata and An Introduction to Stata

Programming and coauthor of the Stata Press book Environmental Econometrics Using Stata for an

earlier rolling regression command.

References
Kmenta, J. 1997. Elements of Econometrics. 2nd ed. Ann Arbor: University of Michigan Press. https://doi.org/10.3998/

mpub.15701.

Rajbhandari, A. 2016. Tests of forecast accuracy and forecast encompassing. The Stata Blog: Not Elsewhere Classified.

https://blog.stata.com/2016/06/01/tests-of-forecast-accuracy-and-forecast-encompassing/.

Stock, J. H., and M. W. Watson. 2019. Introduction to Econometrics. 4th ed. New York: Pearson.

https://www.stata-press.com/books/imeus.html
https://www.stata-press.com/books/isp.html
https://www.stata-press.com/books/isp.html
https://www.stata-press.com/books/environmental-econometrics-using-stata/
https://doi.org/10.3998/mpub.15701
https://doi.org/10.3998/mpub.15701
https://blog.stata.com/2016/06/01/tests-of-forecast-accuracy-and-forecast-encompassing/
https://www.stata.com/bookstore/introduction-econometrics/

rolling — Rolling-window and recursive estimation 9

Also see
[D] statsby — Collect statistics for a command across a by list

[R] Stored results — Stored results

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/dstatsby.pdf#dstatsby
https://www.stata.com/manuals/rstoredresults.pdf#rStoredresults
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

