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Description
prais uses the generalized least-squares method to estimate the parameters in a linear regression

model in which the errors are serially correlated. Specifically, the errors are assumed to follow a first-

order autoregressive process.

Quick start
Prais–Winsten regression of y on x estimating the autocorrelation parameter by a single-lag OLS regres-

sion of residuals using tsset data

prais y x

Same as above, but estimate the autocorrelation parameter using a single-lead OLS of residuals

prais y x, rhotype(freg)

Same as above, but estimate the autocorrelation parameter using autocorrelation of residuals

prais y x, rhotype(tscorr)

Cochrane–Orcutt regression of y on x with first-order serial correlation

prais y x, corc

Menu
Statistics > Time series > Prais–Winsten regression
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Syntax
prais depvar [ indepvars ] [ if ] [ in ] [ , options ]

options Description

Model

rhotype(regress) base 𝜌 on single-lag OLS of residuals; the default

rhotype(freg) base 𝜌 on single-lead OLS of residuals

rhotype(tscorr) base 𝜌 on autocorrelation of residuals

rhotype(dw) base 𝜌 on autocorrelation based on Durbin–Watson

rhotype(theil) base 𝜌 on adjusted autocorrelation

rhotype(nagar) base 𝜌 on adjusted Durbin–Watson

corc use Cochrane–Orcutt transformation

ssesearch search for 𝜌 that minimizes SSE

twostep stop after the first iteration

noconstant suppress constant term

hascons has user-defined constant

savespace conserve memory during estimation

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvar, hc2, or hc3

Reporting

level(#) set confidence level; default is level(95)
nodw do not report the Durbin–Watson statistic

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimize options control the optimization process; seldom used

coeflegend display legend instead of statistics

You must tsset your data before using prais; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/tsprais.pdf#tspraisOptionsvcetype
https://www.stata.com/manuals/tsprais.pdf#tspraisOptionsdisplay_options
https://www.stata.com/manuals/tsprais.pdf#tspraisOptionsoptopts
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

rhotype(rhomethod) selects a specific computation for the autocorrelation parameter 𝜌, where rhome-

thod can be

regress 𝜌reg = 𝛽 from the residual regression 𝜖𝑡 = 𝛽𝜖𝑡−1
freg 𝜌freg = 𝛽 from the residual regression 𝜖𝑡 = 𝛽𝜖𝑡+1
tscorr 𝜌tscorr = ε′ε𝑡−1/ε′ε, where ε is the vector of residuals

dw 𝜌dw = 1 − dw/2, where dw is the Durbin–Watson 𝑑 statistic

theil 𝜌theil = 𝜌tscorr(𝑁 − 𝑘)/𝑁
nagar 𝜌nagar = (𝜌dw ∗ 𝑁2 + 𝑘2)/(𝑁2 − 𝑘2)

The prais estimator can use any consistent estimate of 𝜌 to transform the equation, and each of these

estimates meets that requirement. The default is regress, which produces the minimum sum-of-

squares solution (ssesearch option) for the Cochrane–Orcutt transformation—none of these com-

putations will produce the minimum sum-of-squares solution for the full Prais–Winsten transforma-

tion. See Judge et al. (1985) for a discussion of each estimate of 𝜌.
corc specifies that the Cochrane–Orcutt transformation be used to estimate the equation. With this

option, the Prais–Winsten transformation of the first observation is not performed, and the first ob-

servation is dropped when estimating the transformed equation; see Methods and formulas below.

ssesearch specifies that a search be performed for the value of 𝜌 that minimizes the sum-of-squared

errors of the transformed equation (Cochrane–Orcutt or Prais–Winsten transformation). The search

method is a combination of quadratic and modified bisection searches using golden sections.

twostep specifies that prais stop on the first iteration after the equation is transformed by 𝜌—the two-

step efficient estimator. Although iterating these estimators to convergence is customary, they are

efficient at each step.

noconstant; see [R] Estimation options.

hascons indicates that a user-defined constant, or a set of variables that in linear combination forms a

constant, has been included in the regression. For some computational concerns, see the discussion

in [R] regress.

savespace specifies that prais attempt to save as much space as possible by retaining only those vari-

ables required for estimation. The original data are restored after estimation. This option is rarely

used and should be used only if there is insufficient space to fit a model without the option.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator; see

[R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

vce(robust) specifies to use the Huber/White/sandwich estimator.

vce(cluster clustvar) specifies to use the intragroup correlation estimator.

vce(hc2) and vce(hc3) specify an alternative bias correction for the vce(robust) variance calcu-

lation; for more information, see [R] regress. You may specify only one of vce(hc2), vce(hc3),
or vce(robust).

https://www.stata.com/manuals/tsprais.pdf#tspraisMethodsandformulas
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rregress.pdf#rregress
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All estimates from prais are conditional on the estimated value of 𝜌. Robust variance estimates here
are robust only to heteroskedasticity and are not generally robust to misspecification of the functional

form or omitted variables. The estimation of the functional form is intertwined with the estimation

of 𝜌, and all estimates are conditional on 𝜌. Thus estimates cannot be robust to misspecification of

functional form. For these reasons, it is probably best to interpret vce(robust) in the spirit ofWhite’s

(1980) original paper on estimation of heteroskedastic-consistent covariance matrices.

� � �
Reporting �

level(#); see [R] Estimation options.

nodw suppresses reporting of the Durbin–Watson statistic.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimize options: iterate(#), [no]log, tolerance(#). iterate() specifies the maximum number

of iterations. log/nolog specifies whether to show the iteration log (see set iterlog in [R] set iter).

tolerance() specifies the tolerance for the coefficient vector; tolerance(1e-6) is the default.

These options are seldom used.

The following option is available with prais but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
prais fits a linear regression of depvar on indepvars that is corrected for first-order serially correlated

residuals by using the Prais–Winsten (1954) transformed regression estimator, the Cochrane–Orcutt

(1949) transformed regression estimator, or a version of the search method suggested by Hildreth and

Lu (1960). Davidson and MacKinnon (1993) provide theoretical details on the three methods (see pages

333–335 for the latter two and pages 343–351 for Prais–Winsten). See Becketti (2020) formore examples

showing how to use prais.

The most common autocorrelated error process is the first-order autoregressive process. Under this

assumption, the linear regression model can be written as

𝑦𝑡 = x𝑡β + 𝑢𝑡

where the errors satisfy

𝑢𝑡 = 𝜌 𝑢𝑡−1 + 𝑒𝑡

and the 𝑒𝑡 are independent and identically distributed as 𝑁(0, 𝜎2). The covariance matrix 𝚿 of the error

term 𝑢 can then be written as

𝚿 = 1
1 − 𝜌2

⎡
⎢
⎢
⎢
⎣

1 𝜌 𝜌2 · · · 𝜌𝑇 −1

𝜌 1 𝜌 · · · 𝜌𝑇 −2

𝜌2 𝜌 1 · · · 𝜌𝑇 −3

⋮ ⋮ ⋮ ⋱ ⋮
𝜌𝑇 −1 𝜌𝑇 −2 𝜌𝑇 −3 · · · 1

⎤
⎥
⎥
⎥
⎦

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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The Prais–Winsten estimator is a generalized least-squares (GLS) estimator. The Prais–Winsten

method (as described in Judge et al. 1985 ) is derived from the AR(1) model for the error term described

above. Whereas the Cochrane–Orcutt method uses a lag definition and loses the first observation in the

iterative method, the Prais–Winsten method preserves that first observation. In small samples, this can

be a significant advantage.

Technical note
To fit a model with autocorrelated errors, you must specify your data as time series and have (or

create) a variable denoting the time at which an observation was collected. The data for the regression

should be equally spaced in time.

Example 1
Say that we wish to fit a time-series model of usr on idle but are concerned that the residuals may

be serially correlated. We will declare the variable t to represent time by typing

. use https://www.stata-press.com/data/r19/idle

. tsset t
Time variable: t, 1 to 30

Delta: 1 unit

We can obtain Cochrane–Orcutt estimates by specifying the corc option:

. prais usr idle, corc
Iteration 0: rho = 0.0000
Iteration 1: rho = 0.3518
(iteration log omitted)

Iteration 13: rho = 0.5708
Cochrane--Orcutt AR(1) regression with iterated estimates

Source SS df MS Number of obs = 29
F(1, 27) = 6.49

Model 40.1309584 1 40.1309584 Prob > F = 0.0168
Residual 166.898474 27 6.18142498 R-squared = 0.1938

Adj R-squared = 0.1640
Total 207.029433 28 7.39390831 Root MSE = 2.4862

usr Coefficient Std. err. t P>|t| [95% conf. interval]

idle -.1254511 .0492356 -2.55 0.017 -.2264742 -.024428
_cons 14.54641 4.272299 3.40 0.002 5.78038 23.31245

rho .5707918

Durbin--Watson statistic (original) = 1.295766
Durbin--Watson statistic (transformed) = 1.466222

The fitted model is

usr𝑡 = −0.1255 idle𝑡 + 14.55 + 𝑢𝑡 and 𝑢𝑡 = 0.5708𝑢𝑡−1 + 𝑒𝑡
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We can also fit the model with the Prais–Winsten method,

. prais usr idle
Iteration 0: rho = 0.0000
Iteration 1: rho = 0.3518
(iteration log omitted)

Iteration 14: rho = 0.5535
Prais--Winsten AR(1) regression with iterated estimates

Source SS df MS Number of obs = 30
F(1, 28) = 7.12

Model 43.0076941 1 43.0076941 Prob > F = 0.0125
Residual 169.165739 28 6.04163354 R-squared = 0.2027

Adj R-squared = 0.1742
Total 212.173433 29 7.31632528 Root MSE = 2.458

usr Coefficient Std. err. t P>|t| [95% conf. interval]

idle -.1356522 .0472195 -2.87 0.008 -.2323769 -.0389275
_cons 15.20415 4.160391 3.65 0.001 6.681978 23.72633

rho .5535476

Durbin--Watson statistic (original) = 1.295766
Durbin--Watson statistic (transformed) = 1.476004

where the Prais–Winsten fitted model is

usr𝑡 = −.1357 idle𝑡 + 15.20 + 𝑢𝑡 and 𝑢𝑡 = .5535𝑢𝑡−1 + 𝑒𝑡

As the results indicate, for these data there is little difference between the Cochrane–Orcutt and

Prais–Winsten estimators, whereas the OLS estimate of the slope parameter is substantially different.

Example 2
We have data on quarterly sales, in millions of dollars, for 5 years, and we would like to use this infor-

mation to model sales for company X. First, we fit a linear model by OLS and obtain the Durbin–Watson

statistic by using estat dwatson; see [R] regress postestimation time series.

. use https://www.stata-press.com/data/r19/qsales

. regress csales isales
Source SS df MS Number of obs = 20

F(1, 18) = 14888.15
Model 110.256901 1 110.256901 Prob > F = 0.0000

Residual .133302302 18 .007405683 R-squared = 0.9988
Adj R-squared = 0.9987

Total 110.390204 19 5.81001072 Root MSE = .08606

csales Coefficient Std. err. t P>|t| [95% conf. interval]

isales .1762828 .0014447 122.02 0.000 .1732475 .1793181
_cons -1.454753 .2141461 -6.79 0.000 -1.904657 -1.004849

. estat dwatson
Durbin--Watson d-statistic( 2, 20) = .7347276

https://www.stata.com/manuals/rregresspostestimationtimeseries.pdf#rregresspostestimationtimeseries
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Because the Durbin–Watson statistic is far from 2 (the expected value under the null hypothesis of no

serial correlation) and well below the 5% lower limit of 1.2, we conclude that the disturbances are serially

correlated. (Upper and lower bounds for the 𝑑 statistic can be found in most econometrics texts; for

example, Harvey [1990]. The bounds have been derived for only a limited combination of regressors

and observations.) To reinforce this conclusion, we use two other tests to test for serial correlation in the

error distribution.

. estat bgodfrey, lags(1)
Breusch--Godfrey LM test for autocorrelation

lags(p) chi2 df Prob > chi2

1 7.998 1 0.0047

H0: no serial correlation
. estat durbinalt
Durbin’s alternative test for autocorrelation

lags(p) chi2 df Prob > chi2

1 11.329 1 0.0008

H0: no serial correlation

estat bgodfrey reports the Breusch–Godfrey Lagrange multiplier test statistic, and estat durbinalt
reports the Durbin’s alternative test statistic. Both tests give a small 𝑝-value and thus reject the null

hypothesis of no serial correlation. These two tests are asymptotically equivalent when testing forAR(1)

process. See [R] regress postestimation time series if you are not familiar with these two tests.

We correct for autocorrelation with the ssesearch option of prais to search for the value of

𝜌 that minimizes the sum-of-squared residuals of the Cochrane–Orcutt transformed equation. Nor-

mally, the default Prais–Winsten transformations is used with such a small dataset, but the less-efficient

Cochrane–Orcutt transformation allows us to demonstrate an aspect of the estimator’s convergence.

. prais csales isales, corc ssesearch
Iteration 1: rho = 0.8944, criterion = -.07298558
Iteration 2: rho = 0.8944, criterion = -.07298558
(iteration log omitted)

Iteration 15: rho = 0.9588, criterion = -.07167037
Cochrane--Orcutt AR(1) regression with SSE search estimates

Source SS df MS Number of obs = 19
F(1, 17) = 553.14

Model 2.33199178 1 2.33199178 Prob > F = 0.0000
Residual .071670369 17 .004215904 R-squared = 0.9702

Adj R-squared = 0.9684
Total 2.40366215 18 .133536786 Root MSE = .06493

csales Coefficient Std. err. t P>|t| [95% conf. interval]

isales .1605233 .0068253 23.52 0.000 .1461233 .1749234
_cons 1.738946 1.432674 1.21 0.241 -1.283732 4.761624

rho .9588209

Durbin--Watson statistic (original) = 0.734728
Durbin--Watson statistic (transformed) = 1.724419

https://www.stata.com/manuals/rregresspostestimationtimeseries.pdf#rregresspostestimationtimeseries
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Wenoted in Options that, with the default computation of 𝜌, the Cochrane–Orcutt method produces an
estimate of 𝜌 that minimizes the sum-of-squared residuals—the same criterion as the ssesearch option.
Given that the two methods produce the same results, why would the search method ever be preferred? It

turns out that the back-and-forth iterations used by Cochrane–Orcutt may have difficulty converging if

the value of 𝜌 is large. Using the same data, the Cochrane–Orcutt iterative procedure requires more than

350 iterations to converge, and a higher tolerance must be specified to prevent premature convergence:

. prais csales isales, corc tol(1e-9) iterate(500)
Iteration 0: rho = 0.0000
Iteration 1: rho = 0.6312
Iteration 2: rho = 0.6866
(iteration log omitted)

Iteration 377: rho = 0.9588
Iteration 378: rho = 0.9588
Iteration 379: rho = 0.9588
Cochrane--Orcutt AR(1) regression with iterated estimates

Source SS df MS Number of obs = 19
F(1, 17) = 553.14

Model 2.33199171 1 2.33199171 Prob > F = 0.0000
Residual .071670369 17 .004215904 R-squared = 0.9702

Adj R-squared = 0.9684
Total 2.40366208 18 .133536782 Root MSE = .06493

csales Coefficient Std. err. t P>|t| [95% conf. interval]

isales .1605233 .0068253 23.52 0.000 .1461233 .1749234
_cons 1.738946 1.432674 1.21 0.241 -1.283732 4.761625

rho .9588209

Durbin--Watson statistic (original) = 0.734728
Durbin--Watson statistic (transformed) = 1.724419

Once convergence is achieved, the two methods produce identical results.

https://www.stata.com/manuals/tsprais.pdf#tspraisOptions
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Stored results
prais stores the following in e():

Scalars

e(N) number of observations

e(N gaps) number of gaps

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(ll) log likelihood

e(N clust) number of clusters

e(rho) autocorrelation parameter 𝜌
e(dw) Durbin–Watson 𝑑 statistic for transformed regression

e(dw 0) Durbin–Watson 𝑑 statistic of untransformed regression

e(rank) rank of e(V)
e(tol) target tolerance

e(max ic) maximum number of iterations

e(ic) number of iterations

Macros

e(cmd) prais
e(cmdline) command as typed

e(depvar) name of dependent variable

e(title) title in estimation output

e(clustvar) name of cluster variable

e(cons) noconstant or not reported

e(method) twostep, iterated, or SSE search
e(tranmeth) corc or prais
e(rhotype) method specified in rhotype() option

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Consider the command ‘prais 𝑦 𝑥 𝑧’. The 0th iteration is obtained by estimating 𝑎, 𝑏, and 𝑐 from the

standard linear regression:

𝑦𝑡 = 𝑎𝑥𝑡 + 𝑏𝑧𝑡 + 𝑐 + 𝑢𝑡

An estimate of the correlation in the residuals is then obtained. By default, prais uses the auxiliary

regression:

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝑒𝑡

This can be changed to any computation noted in the rhotype() option.

Next we apply a Cochrane–Orcutt transformation (1) for observations 𝑡 = 2, . . . , 𝑛

𝑦𝑡 − 𝜌𝑦𝑡−1 = 𝑎(𝑥𝑡 − 𝜌𝑥𝑡−1) + 𝑏(𝑧𝑡 − 𝜌𝑧𝑡−1) + 𝑐(1 − 𝜌) + 𝑣𝑡 (1)

and the transformation (1′) for 𝑡 = 1

√1 − 𝜌2𝑦1 = 𝑎(√1 − 𝜌2𝑥1) + 𝑏(√1 − 𝜌2𝑧1) + 𝑐√1 − 𝜌2 + √1 − 𝜌2𝑣1 (1′)

Thus the differences between the Cochrane–Orcutt and the Prais–Winsten methods are that the latter

uses (1′) in addition to (1), whereas the former uses only (1), necessarily decreasing the sample size by

one.

Equations (1) and (1′) are used to transform the data and obtain new estimates of 𝑎, 𝑏, and 𝑐.
When the twostep option is specified, the estimation process stops at this point and reports these

estimates. Under the default behavior of iterating to convergence, this process is repeated until the change

in the estimate of 𝜌 is within a specified tolerance.

The new estimates are used to produce fitted values

̂𝑦𝑡 = ̂𝑎𝑥𝑡 + ̂𝑏𝑧𝑡 + ̂𝑐

and then 𝜌 is reestimated using, by default, the regression defined by

𝑦𝑡 − ̂𝑦𝑡 = 𝜌(𝑦𝑡−1 − ̂𝑦𝑡−1) + 𝑢𝑡 (2)

We then reestimate (1) by using the new estimate of 𝜌 and continue to iterate between (1) and (2) until

the estimate of 𝜌 converges.

Convergence is declared after iterate() iterations or when the absolute difference in the estimated

correlation between two iterations is less than tol(); see [R]Maximize. Sargan (1964) has shown that

this process will always converge.

Under the ssesearch option, a combined quadratic and bisection search using golden sections

searches for the value of 𝜌 that minimizes the sum-of-squared residuals from the transformed equation.

The transformation may be either the Cochrane–Orcutt (1 only) or the Prais–Winsten (1 and 1′).

All reported statistics are based on the 𝜌-transformed variables, and 𝜌 is assumed to be estimated

without error. See Judge et al. (1985) for details.

The Durbin–Watson 𝑑 statistic reported by prais and estat dwatson is

𝑑 =

𝑛−1
∑
𝑗=1

(𝑢𝑗+1 − 𝑢𝑗)2

𝑛
∑
𝑗=1

𝑢2
𝑗

where 𝑢𝑗 represents the residual of the 𝑗th observation.

https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Introduc-

tion and Methods and formulas.

All estimates from prais are conditional on the estimated value of 𝜌. Robust variance estimates here
are robust only to heteroskedasticity and are not generally robust to misspecification of the functional

form or omitted variables. The estimation of the functional form is intertwined with the estimation of 𝜌,
and all estimates are conditional on 𝜌. Thus estimates cannot be robust to misspecification of functional
form. For these reasons, it is probably best to interpret vce(robust) in the spirit of White’s original

paper on estimation of heteroskedastic-consistent covariance matrices.
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