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Description
mswitch fits dynamic regression models that exhibit different dynamics across unobserved states

using state-dependent parameters to accommodate structural breaks or other multiple-state phenomena.

These models are known as Markov-switching models because the transitions between the unobserved

states follow a Markov chain.

Two models are available: Markov-switching dynamic regression (MSDR) models that allow a quick

adjustment after the process changes state and Markov-switching autoregression (MSAR) models that

allow a more gradual adjustment.

Quick start
MSDR model for the dependent variable y with two state-dependent intercepts using tsset data

mswitch dr y

Same as above

mswitch dr y, states(2)

Same as above, but with three states and switching coefficients on x
mswitch dr y, switch(x) states(3)

MSDR model with two state-dependent intercepts and variance parameters

mswitch dr y, varswitch

MSAR model with two state-dependent intercepts and an autoregression (AR) term

mswitch ar y, ar(1)

Same as above, but with switching AR coefficients

mswitch ar y, ar(1) arswitch

Menu
Statistics > Time series > Markov-switching models
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Syntax
Markov-switching dynamic regression

mswitch dr depvar [ nonswitch varlist ] [ if ] [ in ] [ , options ]

Markov-switching AR

mswitch ar depvar [ nonswitch varlist ] , ar(numlist) [msar options options ]

nonswitch varlist is a list of variables with state-invariant coefficients.

options Description

Main

states(#) specify number of states; default is states(2)
switch([ varlist ][ , noconstant ]) specify variables with switching coefficients; by default, the

constant term is state dependent unless
switch(, noconstant) is specified

constant allow a state-invariant constant term; may be specified only
with switch(, noconstant)

varswitch specify state-dependent variance parameters; by default, the
variance parameter is constant across all states

p0(type) specify initial unconditional probabilities where type is one
of transition, fixed, or smoothed; the default is
p0(transition)

constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) specify the number of expectation-maximization (EM)
iterations; default is emiterate(10)

emlog show EM iteration log

emdots show EM iterations as dots

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchSyntaxmsar_options
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchOptionsdisplay_options
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchOptionsmaxopts
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msar options Description

Model
∗ ar(numlist) specify the number of AR terms

arswitch specify state-dependent AR coefficients

∗ar(numlist) is required.

You must tsset your data before using mswitch; see [TS] tsset.
varlist and nonswitch varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, nonswitch varlist, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ar(numlist) specifies the number of AR terms. This option may be specified only with command

mswitch ar. ar() is required to fit AR models.

arswitch specifies that the AR coefficients vary over the states. arswitch may be specified only with

the ar() option.

� � �
Main �

states(#) specifies the number of states. The default is states(2).

switch([ varlist ][ , noconstant ]) specifies variables whose coefficients vary over the states. By de-

fault, the constant term is state dependent and is included in the regression model. You may suppress

the constant term by specifying switch(, noconstant).

constant specifies that a state-invariant constant term be included in the model. This option may be

specified only with switch(, noconstant).

varswitch specifies that the variance parameters are state dependent. The default is constant variance

across all states.

p0(type) is rarely used. This option specifies the method for obtaining values for the uncondi-

tional transition probabilities. type is one of transition, fixed, or smoothed. The default is

p0(transition), which specifies that the values be computed using the matrix of conditional tran-
sition probabilities. Type fixed specifies that each unconditional probability is 1/𝑘, where 𝑘 is the

number of states. Type smoothed specifies that the unconditional probabilities be estimated as extra

parameters of the model.

constraints(numlist) specifies the linear constraints to be applied to the parameter estimates.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived

from asymptotic theory (oim) and that are robust to some kinds of misspecification (robust); see
[R] vce option.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
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� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

emiterate(#), emlog, and emdots control the EM iterations that take place before estimation switches

to a quasi-Newton method. EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations; the default is emiterate(10).

emlog specifies that the EM iteration log be shown. The default is to not display the EM iteration log.

emdots specifies that the EM iterations be shown as dots. The default is to not display the dots.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] Maximize for all options except

from(), and see below for information on from().

from(matname) specifies initial values for the maximization process. If from() is specified, the ini-

tial values are used in the EM step to improve the likelihood unless emiterate(0) is also specified.
The coefficients obtained at the end of the EM iterations serve as initial values for the quasi-Newton

method.

matname must be a row vector. The number of columns must equal the number of parameters in

the model, and the values must be in the same order as the parameters in e(b).

The following option is available with mswitch but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
mswitch fits Markov-switching models in which the parameters vary over states. The states are

unobserved and follow a Markov process.

mswitch dr fitsMSDRmodels that allow a quick adjustment after a state change and are often used to

model monthly and higher-frequency data. mswitch ar fits MSAR models that allow a more gradual ad-

justment after a state change and are often used to model quarterly and lower-frequency data. Estimation

is by maximum likelihood. You must tsset your data before using mswitch; see [TS] tsset.

Remarks are presented under the following headings:

Introduction
Markov-switching dynamic regression
Markov-switching AR
Video example

If you are new to Markov-switching models, we recommend that you begin with Introduction. A more

technical discussion and examples are presented in the model-specific sections.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchRemarksandexamplesIntroduction
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Introduction
Markov-switching models are widely applied in the social sciences. For example, in economics, the

growth rate of Gross Domestic Product is modeled as a switching process to capture the asymmetrical

behavior observed over expansions and recessions (Hamilton 1989). Other economic examples include

modeling interest rates (Garcia and Perron 1996) and exchange rates (Engel and Hamilton 1990). In

finance, Kim, Nelson, and Startz (1998) model monthly stock returns, while Guidolin (2011b, 2011a)

provide many applications of these models to returns, portfolio choice, and asset pricing. In political

science, Jones, Kim, and Startz (2010) model Democratic and Republican partisan states in the United

States Congress.

These models are also used in health sciences. For example, in psychology, Markov-switchingmodels

have been applied to daily data on manic and depressive states for individuals with rapid-cycling bipolar

disorder (Hamaker, Grasman, and Kamphuis 2010). In epidemiology, Lu, Zeng, and Chen (2010) and

Martínez-Beneito et al. (2008) model the incidence rate of infectious disease in epidemic and nonepi-

demic states.

The Markov-switching regression model was initially developed in Quandt (1972) and Goldfeld and

Quandt (1973). In a seminal paper, Hamilton (1989) extended Markov-switching regressions for AR

processes and provided a nonlinear filter for estimation. Hamilton (1993) and Hamilton (1994, chap. 22)

provide excellent introductions to Markov-switching regression models.

Markov-switching models are used for series that are believed to transition over a finite set of unob-

served states, allowing the process to evolve differently in each state. The transitions occur according to

a Markov process. The time of transition from one state to another and the duration between changes in

state is random. For example, these models can be used to understand the process that governs the time

at which economic growth transitions between expansion and recession and the duration of each period.

Consider the evolution of a series 𝑦𝑡, where 𝑡 = 1, 2, . . . , 𝑇, is characterized by two states, as in the
models below

State 1 ∶ 𝑦𝑡 = 𝜇1 + 𝜀𝑡

State 2 ∶ 𝑦𝑡 = 𝜇2 + 𝜀𝑡

where 𝜇1 and 𝜇2 are the intercept terms in state 1 and state 2, respectively. 𝜀𝑡 is a white noise error with

variance 𝜎2. The two states model shifts in the intercept term. If the timing of switches is known, the

above model can be expressed as

𝑦𝑡 = 𝑠𝑡𝜇1 + (1 − 𝑠𝑡)𝜇2 + 𝜀𝑡

where 𝑠𝑡 is 1 if the process is in state 1 and 0 otherwise. The above model is a regression with dummy

variables and could be estimated with ordinary least squares using, for example, regress.

However, in the case of interest, we never know in which state the process is; that is to say, 𝑠𝑡 is not

observed. Markov-switching regression models allow the parameters to vary over the unobserved states.

In the simplest case, we can express this model as a MSDR model with a state-dependent intercept term

𝑦𝑡 = 𝜇𝑠𝑡
+ 𝜀𝑡

where 𝜇𝑠𝑡
is the parameter of interest; 𝜇𝑠𝑡

= 𝜇1 when 𝑠𝑡 = 1, and 𝜇𝑠𝑡
= 𝜇2 when 𝑠𝑡 = 2.

Although one never knows with certainty in which state the process lies, the probabilities of being in

each state can be estimated. For aMarkov process, the transition probabilities are of greater interest. One-

step transition probabilities are given by 𝑝𝑠𝑡,𝑠𝑡+1
, so for a two-state process, 𝑝11 denotes the probability

https://www.stata.com/manuals/rregress.pdf#rregress
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of staying in state 1 in the next period given that the process is in state 1 in the current period. Likewise,

𝑝22 denotes the probability of staying in state 2. Values closer to 1 indicate a more persistent process, or

in other words, that it is expected to stay in a given state for a long time.

Estimation of Markov-switching models proceeds by predicting the probabilities of the unobserved

state and updating the likelihood at each period, akin to the Kalman filter. However, while the Kalman

filter is concerned with making linear updates on continuous latent variables, the filter developed in

Hamilton (1989) is a nonlinear algorithm that estimates the probabilities that a discrete, latent variable

is in one of several states. Also see Hamilton (1990) for estimation of the model parameters by an EM

algorithm, which is also a robust method to find reasonable starting values.

Markov-switching dynamic regression
In this section, we use a series of examples to describe MSDR models and the mswitch dr command.

MSDRmodels allow a quick adjustment after the process changes state. These models are often used to

model monthly and higher-frequency data. When the process is in state 𝑠 at time 𝑡, a general specification
of the MSDR model is written as

𝑦𝑡 = 𝜇𝑠𝑡
+ x𝑡α + z𝑡β𝑠𝑡

+ 𝜀𝑠

where 𝑦𝑡 is the dependent variable, 𝜇𝑠 is the state-dependent intercept, x𝑡 is a vector of exogenous vari-

ables with state-invariant coefficients α, z𝑡 is a vector of exogenous variables with state-dependent co-

efficients β𝑠, and 𝜀𝑠 is an independent and identically distributed (i.i.d.) normal error with mean 0 and

state-dependent variance 𝜎2
𝑠 . x𝑡 and z𝑡 may contain lags of 𝑦𝑡. MSDR models allow states to switch

according to a Markov process as described in Markov-switching regression models under Methods and

formulas.

In the default model fit by mswitch dr, 𝑠 = 2 and a constant 𝜎2 is assumed (𝜎2
1 = 𝜎2

2 = 𝜎2), so three

parameters, 𝜇1, 𝜇2, and 𝜎2, are estimated. There is no x𝑡 or z𝑡. The number of states may be increased

with the states() option. To include x𝑡, you specify a varlist after the command name, and to include

z𝑡, you specify the switch() option. The assumption of constant variances over states may be relaxed

with the varswitch option.

A more complete discussion of the MSDR model is provided in Specification of Markov-switching

models under Methods and formulas.

Example 1: MSDR model with switching intercepts
Suppose we wish to model the federal funds rate. One potential model is a constant-only model

𝑟𝑡 = 𝜇𝑠𝑡
+ 𝜀𝑡

where 𝑟𝑡 is the federal funds rate, 𝑠𝑡 is the state, and 𝜇𝑠𝑡
is the mean in each state. In usmacro.dta,

we have data for the series from the third quarter of 1954 to the fourth quarter of 2010 from the Federal

Reserve Economic Database, a macroeconomic database provided by the Federal Reserve Bank of Saint

Louis. The data are plotted below.

https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchMethodsandformulasMarkov-switchingregressionmodels
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchMethodsandformulasSpecificationofMarkov-switchingmodels
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchMethodsandformulasSpecificationofMarkov-switchingmodels
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We note that the decades of 1970s and 1980s were characterized by periods of high interest rates while

the rest of the sample displays moderate levels.

Thus, a two-state model seems reasonable. 𝑠𝑡 ∈ (1, 2) is the state; 𝜇1 is the mean in the moderate-rate

state; and 𝜇2 is the mean in high-rate state. We can use mswitch dr with dependent variable fedfunds
to estimate the parameters of the model.

. use https://www.stata-press.com/data/r19/usmacro
(Federal Reserve Economic Data - St. Louis Fed)
. mswitch dr fedfunds
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -508.66031
Iteration 1: Log likelihood = -508.6382
Iteration 2: Log likelihood = -508.63592
Iteration 3: Log likelihood = -508.63592
Markov-switching dynamic regression
Sample: 1954q3 thru 2010q4 Number of obs = 226
Number of states = 2 AIC = 4.5455
Unconditional probabilities: transition HQIC = 4.5760

SBIC = 4.6211
Log likelihood = -508.63592

fedfunds Coefficient Std. err. z P>|z| [95% conf. interval]

State1
_cons 3.70877 .1767083 20.99 0.000 3.362428 4.055112

State2
_cons 9.556793 .2999889 31.86 0.000 8.968826 10.14476

sigma 2.107562 .1008692 1.918851 2.314831

p11 .9820939 .0104002 .9450805 .9943119

p21 .0503587 .0268434 .0173432 .1374344
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The header reports the sample size, fit statistics, the number of states, and the method used for com-

puting the unconditional state probabilities. The EM algorithm was used to find the starting values for the

quasi-Newton optimizer, and we see that it took three iterations for the model to converge. Finally, the

header reports that the transition method was used to compute the unconditional state probabilities as

a function of the transition probabilities; see Methods and formulas.

The estimation table reports results for each state-dependent mean and the constant error variance.

Below that, the table displays the elements of the first 𝑘 − 1 rows of the transition matrix, where 𝑘 is the

number of states.

State 1 is the moderate-rate state and has a mean interest rate of 3.71%. State 2 is the high-rate state

and has a mean interest rate of 9.56%. p11 is the estimated probability of staying in state 1 in the next

period given that the process is in state 1 in the current period. The estimate of 0.98 implies that state 1 is

highly persistent. Similarly, p21 is the probability of transitioning to state 1 from state 2. The probability

of staying in state 2 is therefore 1 − 0.05 = 0.95, which implies that state 2 is also highly persistent.

Note that it is arbitrary which state is called 1 or 2. Changing the initial values for the iterations, for

example, can change the state labels for a given model-data combination. The transition probabilities

will get swapped in accordance with the change in labels.

Technical note
As mentioned in Introduction, a model with one state is equivalent to linear regression. To estimate a

one-state constant-only model for the data in example 1, you type

. mswitch dr fedfunds, states(1)

This is equivalent to typing

. arima fedfunds, technique(nr)

or

. regress fedfunds

The commands produce nearly identical parameter estimates for the coefficients.

Example 2: MSDR model with switching intercepts and coefficients
Continuing example 1, we specify a more complex model that includes the lagged value of the interest

rate and allows its coefficient to switch as well. The respecified model is

𝑟𝑡 = 𝜇𝑠𝑡
+ 𝜙𝑠𝑡

𝑟𝑡−1 + 𝜀𝑡

https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchMethodsandformulas
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchRemarksandexamplesIntroduction
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchRemarksandexamplesex1
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchRemarksandexamplesex1
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We estimate the switching coefficient by including the switch() option.

. mswitch dr fedfunds, switch(L.fedfunds)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -265.37725
Iteration 1: Log likelihood = -264.74265
Iteration 2: Log likelihood = -264.71073
Iteration 3: Log likelihood = -264.71069
Iteration 4: Log likelihood = -264.71069
Markov-switching dynamic regression
Sample: 1954q4 thru 2010q4 Number of obs = 225
Number of states = 2 AIC = 2.4152
Unconditional probabilities: transition HQIC = 2.4581

SBIC = 2.5215
Log likelihood = -264.71069

fedfunds Coefficient Std. err. z P>|z| [95% conf. interval]

State1
fedfunds

L1. .7631424 .0337234 22.63 0.000 .6970457 .8292392

_cons .724457 .2886657 2.51 0.012 .1586826 1.290231

State2
fedfunds

L1. 1.061174 .0185031 57.35 0.000 1.024908 1.097439

_cons -.0988764 .1183837 -0.84 0.404 -.3309043 .1331515

sigma .6915759 .0358644 .6247373 .7655653

p11 .6378175 .1202616 .3883032 .830089

p21 .1306295 .0495924 .0600137 .2612432

The output indicates that the coefficients on the lagged dependent variable in the two states are significant.

Also, we favor this model over the constant-only model because the Schwarz’s Bayesian information

criterion (SBIC) for this model, 2.52, is lower than the SBIC for the constant-only model, 4.62.

Example 3: Changing the number of states for an MSDR model
Continuing example 2, we now specify a Taylor-rule model with two and three states and select the

preferred number of states.

Taylor-rule models specify that the interest rate depends on its own lag, the current value of inflation,

and the output gap. In our dataset, ogap is the output gap and inflation is inflation.

https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchRemarksandexamplesex2
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First, we fit a two-state MSDR Taylor-rule model with fedfunds as the interest rate.

. mswitch dr fedfunds, switch(L.fedfunds ogap inflation)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -229.43752
Iteration 1: Log likelihood = -229.25718
Iteration 2: Log likelihood = -229.25614
Iteration 3: Log likelihood = -229.25614
Markov-switching dynamic regression
Sample: 1955q3 thru 2010q4 Number of obs = 222
Number of states = 2 AIC = 2.1645
Unconditional probabilities: transition HQIC = 2.2325

SBIC = 2.3331
Log likelihood = -229.25614

fedfunds Coefficient Std. err. z P>|z| [95% conf. interval]

State1
fedfunds

L1. .8314458 .0333236 24.95 0.000 .7661328 .8967587

ogap .1355425 .0294113 4.61 0.000 .0778975 .1931875
inflation -.0273928 .0408057 -0.67 0.502 -.1073704 .0525849

_cons .6554954 .1373889 4.77 0.000 .386218 .9247727

State2
fedfunds

L1. .9292574 .0270852 34.31 0.000 .8761713 .9823435

ogap .0343072 .0240138 1.43 0.153 -.0127589 .0813733
inflation .2125275 .0297351 7.15 0.000 .1542477 .2708072

_cons -.0944924 .1279231 -0.74 0.460 -.3452171 .1562324

sigma .5764495 .0302562 .5200968 .638908

p11 .7279288 .0929915 .5159594 .8703909

p21 .2114578 .0641179 .1120643 .3629704

The results indicate that inflation does not significantly affect fedfunds in state 1 but that it does in

state 2.
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Would a model with three states be better than the above two-state model?

. mswitch dr fedfunds, switch(L.fedfunds ogap inflation) states(3)
(iteration log omitted)

Markov-switching dynamic regression
Sample: 1955q3 thru 2010q4 Number of obs = 222
Number of states = 3 AIC = 1.8819
Unconditional probabilities: transition HQIC = 1.9995

SBIC = 2.1732
Log likelihood = -189.89493

fedfunds Coefficient Std. err. z P>|z| [95% conf. interval]

State1
fedfunds

L1. .8464553 .0333542 25.38 0.000 .7810822 .9118283

ogap .1201952 .0232717 5.16 0.000 .0745835 .1658068
inflation -.0425605 .035428 -1.20 0.230 -.1119981 .0268771

_cons .5261303 .1266912 4.15 0.000 .2778201 .7744406

State2
fedfunds

L1. .9690098 .0264819 36.59 0.000 .9171061 1.020913

ogap .0464136 .0200198 2.32 0.020 .0071756 .0856517
inflation .1298904 .0246792 5.26 0.000 .08152 .1782607

_cons -.0034138 .1073027 -0.03 0.975 -.2137233 .2068957

State3
fedfunds

L1. .4178793 .0809347 5.16 0.000 .2592503 .5765083

ogap .1075288 .1131631 0.95 0.342 -.1142667 .3293243
inflation .9099158 .0732952 12.41 0.000 .7662598 1.053572

_cons .6017142 .8893229 0.68 0.499 -1.141327 2.344755

sigma .4383745 .0247953 .3923735 .4897685

p11 .7253692 .0807813 .5440025 .8539645
p12 .256405 .0784302 .1334277 .4357347

p21 .1641252 .0548584 .0822928 .3006711
p22 .7994179 .0578709 .6626882 .8899297

p31 .6178375 .3481579 .0824399 .9667668
p32 .3821625 .348158 .0332332 .9175601

We favor the three-state model over the two-state model because it has the lower SBIC. The three states,

in this case, can be thought of as representing low, moderate, and high-interest rate states.

The results for the three-state model indicate that inflation does not affect the interest rate in state 1,

but it does affect the interest rate in states 2 and 3. The results also indicate that when the coefficient on

inflation is large and significant in state 3, the output gap coefficient is not significant.
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Technical note
In some situations, the quasi-Newton optimization will not converge, which implies that the parame-

ters of the specified model are not identified by the data. These convergence problems most frequently

arise when attempting to fit a model with too many states.

Example 4: Switching variances
All examples thus far have assumed a constant variance across states. In some cases, we may wish to

relax this assumption. For example, in the snp500 dataset we have weekly data on the absolute returns of
the S&P 500 index from the period 2004w17 to 2014w18, which we present below. The graph indicates
that there were high-volatility periods in 2008 to 2009 and in late 2011. It would be unreasonable to

assume that the variance in this high-volatility state is equal to the variance in the low-volatility state.
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Below we fit areturns, the absolute returns, with an MSDR model in which the coefficients on the

lagged dependent variable and the variances differ by state.

. use https://www.stata-press.com/data/r19/snp500
(Federal Reserve Economic Data - St. Louis Fed)
. mswitch dr areturns, switch(L.areturns) varswitch
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -753.27687
Iteration 1: Log likelihood = -746.54052
Iteration 2: Log likelihood = -745.80828
Iteration 3: Log likelihood = -745.7977
Iteration 4: Log likelihood = -745.7977
Markov-switching dynamic regression
Sample: 2004w19 thru 2014w18 Number of obs = 520
Number of states = 2 AIC = 2.8992
Unconditional probabilities: transition HQIC = 2.9249

SBIC = 2.9647
Log likelihood = -745.7977

areturns Coefficient Std. err. z P>|z| [95% conf. interval]

State1
areturns

L1. .0790744 .0301862 2.62 0.009 .0199105 .1382384

_cons .7641424 .0782852 9.76 0.000 .6107062 .9175785

State2
areturns

L1. .527953 .0857841 6.15 0.000 .3598193 .6960867

_cons 1.972771 .2784204 7.09 0.000 1.427077 2.518465

sigma1 .5895792 .0517753 .4963544 .7003135

sigma2 1.605333 .1262679 1.375985 1.872908

p11 .7530865 .0634387 .6097999 .856167

p21 .6825357 .0662574 .5414358 .7965346

The estimated standard deviations, reported in sigma1 and sigma2, indicate that state 1 corresponds to
the low-volatility periods and that state 2 corresponds to the high-volatility periods.
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Example 5: An MSDR model of population health
We can apply these same methods to noneconomic data that exhibit similar periods of high and low

volatility. For example, in public health and epidemiology, the process that determines the incidence of

disease over time may evolve with changes in health practices.

In mumpspc.dta, we have monthly data on the number of new mumps cases and the interpolated

population in New York City between January 1928 to December 1972. The mumpspc variable rep-

resents the number of new mumps cases per 10,000 residents. We apply seasonal differencing to the

population-adjusted mumpspc variable using time-series operators, and we plot the resulting series; see

[U] 11.4.4 Time-series varlists.
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The data clearly show periods of high and low volatility. We fit a two-stateMSDRmodel to the season-

ally differenced dependent variable with state-dependent variances and state-dependent coefficients on

the lagged dependent variable. This model does not have a constant term, so we specify the noconstant
suboption in switch() after the variable with a switching coefficient.

https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
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. use https://www.stata-press.com/data/r19/mumpspc
(Hipel and Mcleod (1994) with interpolated population)
. mswitch dr S12.mumpspc, varswitch switch(LS12.mumpspc, noconstant)
(iteration log omitted)

Markov-switching dynamic regression
Sample: 1929m2 thru 1972m6 Number of obs = 521
Number of states = 2 AIC = -0.4826
Unconditional probabilities: transition HQIC = -0.4634

SBIC = -0.4336
Log likelihood = 131.7225

S12.mumpspc Coefficient Std. err. z P>|z| [95% conf. interval]

State1
mumpspc

LS12. .420275 .0167461 25.10 0.000 .3874533 .4530968

State2
mumpspc

LS12. .9847369 .0258383 38.11 0.000 .9340947 1.035379

sigma1 .0562405 .0050954 .0470901 .067169

sigma2 .2611362 .0111191 .2402278 .2838644

p11 .762733 .0362619 .6846007 .8264175

p21 .1473767 .0257599 .1036675 .2052939

The output indicates that there are two distinct states; state 1 is the low-volatility state and state 2 is the

high-volatility state. While the lagged seasonally differenced number of mumps cases is a significant

predictor of current seasonally differenced cases, the estimates differ between states. Both states are

persistent.

Markov-switching AR
In this section, we use a series of examples to describe MSAR models and the mswitch ar command.

MSARmodels allow a gradual adjustment after the process changes state. These models are often used

to model quarterly and lower-frequency data. AnMSARmodel with two state-dependentAR terms for the

dependent variable that is in state 𝑠 at time 𝑡 is

𝑦𝑡 = 𝜇𝑠𝑡
+ x𝑡α + z𝑡β𝑠𝑡

+ 𝜙1,𝑠𝑡
(𝑦𝑡−1 − 𝜇𝑠𝑡−1

− x𝑡−1α − z𝑡−1β𝑠𝑡−1
)

+ 𝜙2,𝑠𝑡
(𝑦𝑡−2 − 𝜇𝑠𝑡−2

− x𝑡−2α − z𝑡−2β𝑠𝑡−2
)

+ 𝜀𝑠𝑡

where 𝑦𝑡 is the dependent variable at time 𝑡; 𝜇𝑠𝑡
is the state-dependent intercept; x𝑡 are covariates whose

coefficients α are state invariant; z𝑡 are covariates whose coefficients β𝑠𝑡
are state-dependent; 𝜙1,𝑠𝑡

is

the first AR term in state 𝑠𝑡; 𝜙2,𝑠𝑡
is the second AR term in state 𝑠𝑡; and 𝜀𝑠𝑡

is the i.i.d. normal error with

mean 0 and state-dependent variance. As in MSDR models, x𝑡 and z𝑡 may contain lags of 𝑦𝑡.
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Note that 𝜇𝑠𝑡−1
is the intercept corresponding to the state that the process was in the previous period

and that 𝜇𝑠𝑡−2
is the intercept corresponding to the state that the process was in at 𝑡 − 2. Similarly, β𝑠𝑡−1

is the coefficient vector on z𝑡−1 corresponding to the state that the process was in the previous period,

and β𝑠𝑡−2
is the coefficient vector on z𝑡−2 corresponding to the state that the process was in at 𝑡 − 2.

In the default model fit by mswitch ar, 𝑠 = 2 and a constant 𝜎2 is assumed (𝜎2
1 = 𝜎2

2 = 𝜎2). In

the simplest form, a single AR term is specified and the coefficient is common to both states, so four

parameters, 𝜇1, 𝜇2, 𝜙, and 𝜎2, are estimated. There is no x𝑡 or z𝑡.

The number of AR terms may be increased by specifying a numlist in ar(). To allow the estimated

parameters for theAR terms to vary across states, you specify the arswitch option. The number of states
may be increased with the states() option. To include x𝑡, you specify a varlist after the command name,

and to include z𝑡, you specify the switch() option. The assumption of constant variances over states

may be relaxed with the varswitch option.

MSAR models allow states to switch according to a Markov process, as described in Methods and

formulas under Markov-switching regression models. A more complete discussion of the MSAR model

is provided in Specification of Markov-switching models under Methods and formulas.

https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchMethodsandformulasMarkov-switchingregressionmodels
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchMethodsandformulasSpecificationofMarkov-switchingmodels
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Example 6: MSAR model with switching intercepts
Hamilton (1989) and Hamilton (1994, chap. 22) fit an MSAR to the growth of quarterly US real gross

national product using data from 1952q1 to 1984q4. We replicate those results here using rgnp.dta.

. use https://www.stata-press.com/data/r19/rgnp
(Data from Hamilton (1989))
. mswitch ar rgnp, ar(1/4)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -182.54411 (not concave)
Iteration 1: Log likelihood = -182.12714 (not concave)
Iteration 2: Log likelihood = -181.68659
Iteration 3: Log likelihood = -181.42062
Iteration 4: Log likelihood = -181.26492
Iteration 5: Log likelihood = -181.26339
Iteration 6: Log likelihood = -181.26339
Markov-switching autoregression
Sample: 1952q2 thru 1984q4 Number of obs = 131
Number of states = 2 AIC = 2.9048
Unconditional probabilities: transition HQIC = 2.9851

SBIC = 3.1023
Log likelihood = -181.26339

rgnp Coefficient Std. err. z P>|z| [95% conf. interval]

rgnp
ar

L1. .0134871 .1199942 0.11 0.911 -.2216972 .2486713
L2. -.0575211 .137663 -0.42 0.676 -.3273358 .2122935
L3. -.2469833 .1069103 -2.31 0.021 -.4565235 -.037443
L4. -.2129214 .1105311 -1.93 0.054 -.4295583 .0037156

State1
_cons -.3588127 .2645397 -1.36 0.175 -.877301 .1596756

State2
_cons 1.163517 .0745187 15.61 0.000 1.017463 1.309571

sigma .7690048 .0667396 .6487178 .9115957

p11 .754671 .0965189 .5254555 .8952432

p21 .0959153 .0377362 .0432569 .1993222

The output indicates that the average growth rate of US real gross national product during expansions is

1.16% and during recessions is −0.36%, with each state being persistent.

Example 7: Switching AR coefficients
Continuing example 6, we now fit an MSAR with state-dependent AR coefficients to the same dataset.

We include only two AR terms in each state to better estimate the parameters.

https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchRemarksandexamplesex6
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. mswitch ar rgnp, ar(1/2) arswitch
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -179.68471
Iteration 1: Log likelihood = -179.56238
Iteration 2: Log likelihood = -179.32917
Iteration 3: Log likelihood = -179.32356
Iteration 4: Log likelihood = -179.32354
Iteration 5: Log likelihood = -179.32354
Markov-switching autoregression
Sample: 1951q4 thru 1984q4 Number of obs = 133
Number of states = 2 AIC = 2.8319
Unconditional probabilities: transition HQIC = 2.9114

SBIC = 3.0275
Log likelihood = -179.32354

rgnp Coefficient Std. err. z P>|z| [95% conf. interval]

State1
ar

L1. .3710719 .1754383 2.12 0.034 .0272191 .7149246
L2. .7002937 .187409 3.74 0.000 .3329787 1.067609

_cons -.0055216 .2057086 -0.03 0.979 -.408703 .3976599

State2
ar

L1. .4621503 .1652473 2.80 0.005 .1382715 .7860291
L2. -.3206652 .1295937 -2.47 0.013 -.5746642 -.0666662

_cons 1.195482 .1225987 9.75 0.000 .9551925 1.435771

sigma .6677098 .0719638 .5405648 .8247604

p11 .3812383 .1424841 .1586724 .6680876

p21 .3564492 .0994742 .1914324 .5644178

The results indicate that state 1 has negative average growth that is different than the positive average

growth in state 2. The AR coefficients for state 1 indicate that shocks will die out very slowly, while the

AR coefficients for state 2 indicate that shocks will die out moderately quickly. In other words, shocks

in a recession last a long time, while shocks in an expansion die out moderately quickly.

Example 8: Markov-switching regression model with constraints
mswitch can fit models subject to constraints. To facilitate the optimization, mswitch estimates a

logit transform of the transition probabilities (see Methods and formulas) and a log transformation of the

variance parameter. Therefore, all constraints must be specified to the transformed parameter.

In example 6, the estimated transition probability of staying in state 1 was about 0.75. In this exam-

ple, we constrain that probability to be 0.75 and estimate the remaining parameters. For this case, the

transformed value is 𝑞 = −ln(0.75/0.25) = −1.0986123. We use the constraint command to define

this constraint; see [R] constraint.

https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchMethodsandformulas
https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchRemarksandexamplesex6
https://www.stata.com/manuals/rconstraint.pdf#rconstraint
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. constraint 1 [p11]_cons = -1.0986123

. mswitch ar rgnp, ar(1/4) constraints(1)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -182.86708
Iteration 1: Log likelihood = -182.05084 (not concave)
Iteration 2: Log likelihood = -181.79985
Iteration 3: Log likelihood = -181.293
Iteration 4: Log likelihood = -181.26463
Iteration 5: Log likelihood = -181.26456
Iteration 6: Log likelihood = -181.26456
Markov-switching autoregression
Sample: 1952q2 thru 1984q4 Number of obs = 131
Number of states = 2 AIC = 2.8895
Unconditional probabilities: transition HQIC = 2.9609

SBIC = 3.0651
Log likelihood = -181.26456
( 1) [p11]_cons = -1.098612

rgnp Coefficient Std. err. z P>|z| [95% conf. interval]

rgnp
ar

L1. .0133924 .1196067 0.11 0.911 -.2210324 .2478172
L2. -.0591073 .133834 -0.44 0.659 -.3214172 .2032025
L3. -.247326 .1067244 -2.32 0.020 -.456502 -.0381499
L4. -.2130605 .1106088 -1.93 0.054 -.4298498 .0037288

State1
_cons -.3648129 .23039 -1.58 0.113 -.8163689 .0867432

State2
_cons 1.163125 .0738402 15.75 0.000 1.018401 1.307849

sigma .7682327 .0644585 .6517376 .9055508

p11 .75 (constrained)

p21 .0962226 .037246 .0439668 .1977399

The point estimates are similar to those reported in example 6 while the standard errors reported here are

slightly smaller.

Note that an MSAR model with no AR terms is equivalent to estimating an MSDR model, so typing

. mswitch ar rgnp, ar(0)

is the same as typing

. mswitch dr rgnp

Technical note
Achieving convergence in Markov-switching models can be difficult due to the existence of multiple

local minimums. Furthermore, a model with switching variance is able to generate a likelihood func-

tion that is unbounded when 𝜇 = 𝑦𝑖 and 𝜎2 → 0 (Frühwirth-Schnatter 2006, chap. 6). Four methods

https://www.stata.com/manuals/tsmswitch.pdf#tsmswitchRemarksandexamplesex6
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for overcoming convergence problems are 1) selecting an alternate optimization algorithm by using the

technique() option; 2) using alternative starting values by specifying the from() option; 3) using im-

proved starting values, which can be obtained by increasing the number of EM iterations specified in the

emiterate() option; and 4) transforming the variables to be on the same scale.

Video example
Markov-switching models in Stata

Stored results
mswitch stores the following in e():

Scalars

e(N) number of observations

e(N gaps) number of gaps

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters

e(states) number of states

e(ll) log likelihood

e(rank) rank of e(V)
e(aic) Akaike information criterion

e(hqic) Hannan–Quinn information criterion

e(sbic) Schwarz’s Bayesian information criterion

e(tmin) minimum time

e(tmax) maximum time

e(emiter) number of EM iterations

Macros

e(cmd) mswitch
e(cmdline) command as typed

e(eqnames) names of equations

e(depvar) name of dependent variable

e(switchvars) list of switching variables

e(nonswitchvars) list of nonswitching variables

e(model) dr or ar
e(title) title in estimation output

e(tsfmt) format for the current time variable

e(timevar) time variable specified in tsset
e(tmins) formatted minimum time

e(tmaxs) formatted maximum time

e(vce) vcetype specified in vce()
e(vcetype) title use to label Std. err.

e(technique) maximization technique

e(p0) unconditional probabilities

e(varswitch) varswitch, if specified
e(arswitch) arswitch, if specified
e(ar) list ofAR lags, if ar() is specified

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

https://www.youtube.com/watch?v=Vex5VEtVcsw
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

e(initvals) matrix of initial values

e(uncprob) matrix of unconditional probabilities

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Markov-switching regression models
Markov chains
Specification of Markov-switching models

Markov-switching dynamic regression
Markov-switching AR

Likelihood function with latent states
Smoothed probabilities
Unconditional probabilities

Markov-switching regression models
Consider the evolution of 𝑦𝑡, where 𝑡 = 1, 2, . . . , 𝑇, that is characterized by two states or regimes as

in the models below

State 1 ∶ 𝑦𝑡 = 𝜇1 + 𝜙𝑦𝑡−1 + 𝜀𝑡

State 2 ∶ 𝑦𝑡 = 𝜇2 + 𝜙𝑦𝑡−1 + 𝜀𝑡

where 𝜇1 and 𝜇2 are the intercept terms in state 1 and state 2, respectively; 𝜙 is theAR parameter; and 𝜀𝑡
is a white noise error with variance 𝜎2. The two states model abrupt shifts in the intercept term. If the

timing of switches is known, the above model can be expressed as

𝑦𝑡 = 𝑠𝑡𝜇1 + (1 − 𝑠𝑡)𝜇2 + 𝜙𝑦𝑡−1 + 𝜀𝑡

where 𝑠𝑡 is 1 if the process is in state 1 and 0 otherwise. Estimation in this case can be performed using

standard procedures.

In the case of interest, we never know in which state the process is; that is to say, 𝑠𝑡 is not observed.

Markov-switching regression models specify that the unobserved 𝑠𝑡 follows a Markov chain. In the

simplest case, we can express this model as a state-dependent intercept term for 𝑘 states

𝑦𝑡 = 𝜇𝑠𝑡
+ 𝜙𝑦𝑡−1 + 𝜀𝑡
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where 𝜇𝑠𝑡
= 𝜇1 when 𝑠𝑡 = 1, 𝜇𝑠𝑡

= 𝜇2 when 𝑠𝑡 = 2, . . . , and 𝜇𝑠𝑡
= 𝜇𝑘 when 𝑠𝑡 = 𝑘. The conditional

density of 𝑦𝑡 is assumed to be dependent only on the realization of the current state 𝑠𝑡 and is given by

𝑓(𝑦𝑡|𝑠𝑡 = 𝑖, 𝑦𝑡−1;θ), where θ is a vector of parameters. There are 𝑘 conditional densities for 𝑘 states,

and estimation of θ is performed by updating the conditional likelihood using a nonlinear filter.

Markov chains
𝑠𝑡 is an irreducible, aperiodic Markov chain starting from its ergodic distribution π = (𝜋1, . . . , 𝜋𝑘);

see Hamilton (1994, chap. 22). The probability that 𝑠𝑡 is equal to 𝑗 ∈ (1, . . . , 𝑘) depends only on the

most recent realization, 𝑠𝑡−1, and is given by

Pr(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖) = 𝑝𝑖𝑗

All possible transitions from one state to the other can be collected in a 𝑘 × 𝑘 transition matrix

P =
⎡
⎢⎢
⎣

𝑝11 . . . 𝑝𝑘1
𝑝12 . . . 𝑝𝑘2

⋮ ⋱ ⋮
𝑝1𝑘 . . . 𝑝𝑘𝑘

⎤
⎥⎥
⎦

which governs the evolution of the Markov chain. All elements of P are nonnegative and each column

sums to 1. For an excellent introduction on the properties of Markov chains, refer to Hamilton (1994,

chap. 22) and Frühwirth-Schnatter (2006, chap. 10). For a deeper treatment, see Karlin and Taylor (1975,

chap. 2 and 3).

The fact that ∑𝑘
𝑗=1 𝑝𝑖𝑗 = 1 causes some numerical complications. We handle these complications by

estimating functions of 𝑝𝑖𝑗 and by normalizing 𝑝𝑖𝑘. In particular, we estimate 𝑞𝑖𝑗 in

𝑝𝑖𝑗 =
exp(−𝑞𝑖𝑗)

1 + exp(−𝑞𝑖1) + exp(−𝑞𝑖2) + · · · + exp(−𝑞𝑖,𝑘−1)

for 𝑗 ∈ {1, 2, . . . , 𝑘 − 1}. We normalize 𝑝𝑖𝑘 by imposing

𝑝𝑖𝑘 = 1
1 + exp(−𝑞𝑖1) + exp(−𝑞𝑖2) + · · · + exp(−𝑞𝑖,𝑘−1)

The estimates of 𝑝𝑖𝑗 are displayed, but the estimates of 𝑞𝑖𝑗 are stored in e(b).

Specification of Markov-switching models
Consider an AR(1) model given by

𝑦𝑡 = 𝜇 + 𝜙𝑦𝑡−1 + 𝜀𝑡

This model can be rewritten in terms of an AR(1) error specification as

𝑦𝑡 = 𝜈 + 𝑒𝑡

𝑒𝑡 = 𝜌𝑒𝑡−1 + 𝜀𝑡

which can be written as the single equation

𝑦𝑡 = 𝜈 + 𝜌(𝑦𝑡−1 − 𝜈) + 𝜀𝑡

such that 𝜙 = 𝜌 and 𝜇 = 𝜈(1 − 𝜌).
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This result, however, does not hold in the case of Markov-switching regression models, as seen below

in a simple two-state case where the constant term is state dependent. Consider the following models:

Model I ∶ 𝑦𝑡 = 𝜇𝑠𝑡
+ 𝜙𝑦𝑡−1 + 𝜀𝑡

Model II ∶ 𝑦𝑡 = 𝜇𝑠𝑡
+ 𝜙(𝑦𝑡−1 − 𝜇𝑠𝑡−1

) + 𝜀𝑡

Model I is also referred to as a MSDR model or a Markov-switching intercept model (Krolzig 1997). It

may consist of other switching parameters, but for simplicity, we only consider the switching-intercept

case. The evolution of 𝑦𝑡 depends on the realization of the switching intercept at time 𝑡. The discrete
latent state 𝑠𝑡 that governs the value of the intercept at time 𝑡 has a transition matrix

P = [𝑝11 𝑝21
𝑝12 𝑝22

]

This specification allows for two possible intercepts at any given time 𝑡.
By contrast, the evolution of 𝑦𝑡 in model II depends on the value of the switching mean at its current

state and its lagged value. Model II is also referred to as MSAR or Markov-switching mean (Krolzig

1997). At any given time 𝑡, there are four possible values of the intercept given by

𝜇1 − 𝜌𝜇1

𝜇2 − 𝜌𝜇1

𝜇1 − 𝜌𝜇2

𝜇2 − 𝜌𝜇2

which implies that models I and II do not yield equivalent representations as compared with the AR(1)

model with no switching.

The MA(∞) representation shown below better illustrates the different dynamics of 𝑦𝑡 obtained as a

result of these specifications.

Model I ∶ 𝑦𝑡 =
∞

∑
𝑖=0

𝜙𝑖𝜇𝑠𝑡−𝑖
+

∞
∑
𝑖=0

𝜙𝑖𝜀𝑡

Model II ∶ 𝑦𝑡 = 𝜇𝑠𝑡
+

∞
∑
𝑖=0

𝜙𝑖𝜀𝑡

In model I, the effect of a one-time change in state accumulates over time similar to a permanent shift in

the error term 𝜀𝑡. In model II, the effect of a one-time change in state is the same for all time periods.

Also see Hamilton (1993).

Model II allows 𝑦𝑡 to depend on lagged values of the state 𝑠𝑡−1, which in turn leads to four conditional

densities. We define a new state variable 𝑠∗
𝑡 such that 𝑠∗

𝑡 is a four-state Markov chain and 𝑦𝑡 depends

only on the current state as

𝑠∗
𝑡 = 1 if 𝑠𝑡 = 1 and 𝑠𝑡−1 = 1

𝑠∗
𝑡 = 2 if 𝑠𝑡 = 2 and 𝑠𝑡−1 = 1

𝑠∗
𝑡 = 3 if 𝑠𝑡 = 1 and 𝑠𝑡−1 = 2

𝑠∗
𝑡 = 4 if 𝑠𝑡 = 2 and 𝑠𝑡−1 = 2
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The corresponding 4 × 4 transition matrix is

P =
⎡
⎢⎢
⎣

𝑝11 0 𝑝11 0
𝑝12 0 𝑝12 0
0 𝑝21 0 𝑝21
0 𝑝22 0 𝑝22

⎤
⎥⎥
⎦

The conditional density of 𝑦𝑡 is given by 𝑓(𝑦𝑡|𝑠∗
𝑡 = 𝑖, 𝑦𝑡−1;θ) for 𝑖 = 1, . . . , 4. Also see Hamilton (1994,

chap. 22). More generally, forMSARmodels, 𝑠∗
𝑡 is a 𝑘(𝑝+1)-state Markov chain, where 𝑝 is the number of

lagged states. BecauseMSARmodels require larger state vectors, they are often used with low-frequency

data and smallerAR lags. However, the state vector in MSDR models does not depend on theAR lags and

can thus be used to accommodate high-frequency data and higher AR lags.

Markov-switching dynamic regression

A general specification of the MSDR model is written as

𝑦𝑡 = 𝜇𝑠 + x𝑡α + z𝑡β𝑠 + 𝜀𝑠

where 𝑦𝑡 is the dependent variable, 𝜇𝑠 is the state-dependent intercept, x𝑡 is a vector of exogenous vari-

ables with state-invariant coefficients α, z𝑡 is a vector of exogenous variables with state-dependent co-

efficients β𝑠, and 𝜀𝑠 is an i.i.d. normal error with mean 0 and state-dependent variance 𝜎2
𝑠 . x𝑡 and z𝑡 may

contain lags of 𝑦𝑡.

Markov-switching AR

A general specification of the MSAR model is written as

𝑦𝑡 = 𝜇𝑠𝑡
+ x𝑡α + z𝑡β𝑠𝑡

+
𝑝

∑
𝑖=1

𝜙𝑖,𝑠𝑡
(𝑦𝑡−𝑖 − 𝜇𝑠𝑡−𝑖

− x𝑡−𝑖α − z𝑡−𝑖β𝑠𝑡−𝑖
) + 𝜀𝑠𝑡

where 𝑦𝑡 is the dependent variable at time 𝑡, 𝜇𝑠𝑡
is the state-dependent intercept, x𝑡 are covariates whose

coefficients α are state-invariant, and z𝑡 are covariates whose coefficients β𝑠𝑡
are state-dependent. As

in MSDR models, x𝑡 and z𝑡 may contain lags of 𝑦𝑡.

𝜙𝑖,𝑠𝑡
is the 𝑖th AR term in state 𝑠𝑡. Note that 𝜇𝑠𝑡−𝑖

is the intercept corresponding to the state that the

process was in at period 𝑡 − 𝑖. Similarly, β𝑠𝑡−𝑖
is the coefficient vector on z𝑡−𝑖 corresponding to the state

that the process was in at period 𝑡 − 𝑖.
𝜀𝑠𝑡

is the i.i.d. normal error with mean 0 and state-dependent variance.

This representation clarifies that the demeaned, lagged errors depend on the state previously occupied

by the process. This dependence is not present in the MSDR model.

Likelihood function with latent states
The conditional density of 𝑦𝑡 is given by 𝑓(𝑦𝑡|𝑠𝑡 = 𝑖, 𝑦𝑡−1;θ) for 𝑖 = 1, . . . , 𝑘. The marginal density

of 𝑦𝑡 is obtained by weighting the conditional densities by their respective probabilities. This is written

as follows:

𝑓(𝑦𝑡|θ) =
𝑘

∑
𝑖=1

𝑓(𝑦𝑡|𝑠𝑡 = 𝑖, 𝑦𝑡−1;θ) Pr(𝑠𝑡 = 𝑖;θ)
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Let η𝑡 denote a 𝑘 × 1 vector of conditional densities given by

η𝑡 =
⎡
⎢⎢
⎣

𝑓(𝑦𝑡|𝑠𝑡 = 1; 𝑦𝑡−1;θ)
𝑓(𝑦𝑡|𝑠𝑡 = 2; 𝑦𝑡−1;θ)

⋮
𝑓(𝑦𝑡|𝑠𝑡 = 𝑘; 𝑦𝑡−1;θ)

⎤
⎥⎥
⎦

Constructing the likelihood function requires estimating the probability that 𝑠𝑡 takes on a specific

value using the data through time 𝑡 and model parameters θ. Let Pr(𝑠𝑡 = 𝑖|𝑦𝑡;θ) denote the conditional
probability of observing 𝑠𝑡 = 𝑖 based on data until time 𝑡. Then

Pr(𝑠𝑡 = 𝑖|𝑦𝑡;θ) = 𝑓(𝑦𝑡|𝑠𝑡 = 𝑖, 𝑦𝑡−1;θ) Pr(𝑠𝑡 = 𝑖|𝑦𝑡−1;θ)
𝑓(𝑦𝑡|𝑦𝑡−1;θ)

where 𝑓(𝑦𝑡|𝑦𝑡−1;θ) is the likelihood of 𝑦𝑡 and Pr(𝑠𝑡 = 𝑖|𝑦𝑡−1;θ) is the forecasted probability of 𝑠𝑡 = 𝑖
given observation until time 𝑡 − 1. Then

Pr(𝑠𝑡 = 1|𝑦𝑡−1;θ) =
𝑘

∑
𝑗=1

Pr(𝑠𝑡 = 𝑖|𝑠𝑡−1 = 𝑗, 𝑦𝑡−1;θ) Pr(𝑠𝑡−1 = 𝑗|𝑦𝑡−1;θ)

Let ξ𝑡|𝑡 and ξ𝑡|𝑡−1 denote 𝑘 × 1 vectors of conditional probabilities Pr(𝑠𝑡 = 𝑖|𝑦𝑡;θ) and Pr(𝑠𝑡 =
𝑖|𝑦𝑡−1;θ). The likelihood is then obtained by iterating on the following equations [Hamilton (1994,

chap. 22)]:

ξ𝑡|𝑡 =
(ξ𝑡|𝑡−1 ⊙ η𝑡)
1′(ξ

t|t−1
⊙ η

t
)

ξ𝑡+1|𝑡 = P ξ
t|t

where 1 is a 𝑘 × 1 vector of 1s. The log-likelihood function is obtained as

𝐿(θ) =
𝑇

∑
𝑡=1

log𝑓(𝑦𝑡|𝑦𝑡−1;θ)

where

𝑓(𝑦𝑡|𝑦𝑡−1;θ) = 1′(ξ
t|t−1

⊙ η
t
)

Smoothed probabilities
Let ξ𝑡|𝑇, where 𝑡 < 𝑇, denote the 𝑘×1 vector of conditional probabilities Pr(𝑠𝑡 = 𝑖|𝑦𝑇;θ), which rep-

resents the probability of 𝑠𝑡 = 𝑖 using observations available through time 𝑇. The smoothed probabilities
are calculated using an algorithm developed in Kim (1994).

ξ𝑡|𝑇 = ξ𝑡|𝑡 ⊙ {P′ (ξ
t+1|T

(÷)ξ
t+1|t

)}

where (÷) denotes element-by-element division. The smoothed probabilities are obtained by iterating

backwards from 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 1.
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Unconditional probabilities
The log-likelihood function has a recursive structure that starts from the unconditional state probabil-

ities ξ1|0. These unconditional state probabilities are unknown. There are three standard ways to obtain

them.

By default, or by the p0(transition) option, the unconditional state probabilities are estimated

from the conditional transition probabilities and the Markov structure of the model. Specifically, the

vector of unconditional state probabilities is obtained as

π = (A′A)−1A′ek+1

where A is a (𝑘 + 1) × 𝑘 matrix given by

A = [Ik − P

1′ ]

Ik denotes a 𝑘 × 𝑘 identity matrix, and ek denotes the 𝑘th column of Ik.
Sometimes researchers prefer to estimate unconditional state probabilities by adding 𝑘 − 1 additional

parameters to the model. This method is seldom used because it requires enough observations to estimate

the additional parameters. mswitch uses this method when the p0(smoothed) option is specified.

Sometimes researchers prefer to set the unconditional state probabilities to 1/𝑘. mswitch uses this

method when the p0(fixed) option is specified.
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