
mgarch — Multivariate GARCH models

Description Syntax Remarks and examples References Also see

Description
mgarch estimates the parameters ofmultivariate generalized autoregressive conditional-heteroskedasticity

(MGARCH) models. MGARCH models allow both the conditional mean and the conditional covariance to

be dynamic.

The generalMGARCHmodel is so flexible that not all the parameters can be estimated. For this reason,

there are many MGARCH models that parameterize the problem more parsimoniously.

mgarch implements four commonly used parameterizations: the diagonal vech model, the constant

conditional correlation model, the dynamic conditional correlation model, and the time-varying condi-

tional correlation model.

Syntax
mgarch model eq [ eq . . . eq ] [ if ] [ in ] [ , . . . ]

Family model

Vech

diagonal vech dvech

Conditional correlation

constant conditional correlation ccc
dynamic conditional correlation dcc
varying conditional correlation vcc

Remarks and examples
Remarks are presented under the following headings:

An introduction to MGARCH models
Diagonal vech MGARCH models
Conditional correlation MGARCH models

Constant conditional correlation MGARCH model
Dynamic conditional correlation MGARCH model
Varying conditional correlation MGARCH model

Error distributions and quasimaximum likelihood
Treatment of missing data

An introduction to MGARCH models
Multivariate GARCH models allow the conditional covariance matrix of the dependent variables to

follow a flexible dynamic structure and allow the conditional mean to follow a vector-autoregressive

structure.
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The general MGARCH model is too flexible for most problems. There are many restricted MGARCH

models in the literature because there is no parameterization that always provides an optimal tradeoff

between flexibility and parsimony.

mgarch implements four commonly used parameterizations: the diagonal vech (DVECH) model, the

constant conditional correlation (CCC) model, the dynamic conditional correlation (DCC) model, and the

time-varying conditional correlation (VCC) model.

Bollerslev, Engle, and Wooldridge (1988); Bollerslev, Engle, and Nelson (1994); Bauwens, Laurent,

and Rombouts (2006); Silvennoinen and Teräsvirta (2009); and Engle (2009) provide general introduc-

tions to MGARCH models. We provide a quick introduction organized around the models implemented

in mgarch.

We give a formal definition of the general MGARCH model to establish notation that facilitates com-

parisons of the models. The general MGARCH model is given by

y𝑡 = Cx𝑡 + ε𝑡

ε𝑡 = H
1/2
𝑡 ν𝑡

where

y𝑡 is an 𝑚 × 1 vector of dependent variables;

C is an 𝑚 × 𝑘 matrix of parameters;

x𝑡 is a 𝑘 × 1 vector of independent variables, which may contain lags of y𝑡;

H
1/2
𝑡 is the Cholesky factor of the time-varying conditional covariance matrix H𝑡; and

ν𝑡 is an 𝑚 × 1 vector of zero-mean, unit-variance, and independent and identically distributed

innovations.

In the general MGARCHmodel,H𝑡 is a matrix generalization of univariate GARCHmodels. For exam-

ple, in a general MGARCH model with one autoregressive conditional heteroskedastic (ARCH) term and

one GARCH term,

vech (H𝑡) = s+ Avech (ε𝑡−1ε
′
𝑡−1) + Bvech (H𝑡−1) (1)

where the vech() function stacks the unique elements that lie on or below themain diagonal in a symmetric

matrix into a vector, s is a vector of parameters, and A and B are conformable matrices of parameters.

Because this model uses the vech() function to extract and model the unique elements of H𝑡, it is also

known as the VECH model.

Because it is a conditional covariance matrix, H𝑡 must be positive definite. Equation (1) can be used

to show that the parameters in s, A, and B are not uniquely identified and that further restrictions must

be placed on s, A, and B to ensure that H𝑡 is positive definite for all 𝑡.
The various MGARCH models proposed in the literature differ in how they tradeoff flexibility and

parsimony in their specifications for H𝑡. Increased flexibility allows a model to capture more complex

H𝑡 processes. Increased parsimony makes parameter estimation feasible for more datasets. An important

measure of the flexibility–parsimony tradeoff is how fast the number of model parameters increases with

the number of time series 𝑚, because many applied models use multiple time series.
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Diagonal vech MGARCH models
Bollerslev, Engle, and Wooldridge (1988) derived the diagonal vech (DVECH) model by restricting A

and B to be diagonal. Although the DVECHmodel is much more parsimonious than the general model, it

can only handle a few series because the number of parameters grows quadratically with the number of

series. For example, there are 3𝑚(𝑚 + 1)/2 parameters in a DVECH(1,1) model for H𝑡.

Despite the large number of parameters, the diagonal structure implies that each conditional variance

and each conditional covariance depends on its own past but not on the past of the other conditional

variances and covariances. Formally, in the DVECH(1,1) model each element of H𝑡 is modeled by

ℎ𝑖𝑗,𝑡 = 𝑠𝑖𝑗 + 𝑎𝑖𝑗𝜖𝑖,(𝑡−1)𝜖𝑗,(𝑡−1) + 𝑏𝑖𝑗ℎ𝑖𝑗,(𝑡−1)

Parameter estimation can be difficult because it requires that H𝑡 be positive definite for each 𝑡. The
requirement that H𝑡 be positive definite for each 𝑡 imposes complicated restrictions on the off-diagonal
elements.

See [TS] mgarch dvech for more details about this model.

Conditional correlation MGARCH models
Conditional correlation (CC) models use nonlinear combinations of univariate GARCH models to rep-

resent the conditional covariances. In each of the conditional correlation models, the conditional covari-

ance matrix is positive definite by construction and has a simple structure, which facilitates parameter

estimation. CC models have a slower parameter growth rate than DVECH models as the number of time

series increases.

In CC models, H𝑡 is decomposed into a matrix of conditional correlations R𝑡 and a diagonal matrix

of conditional variances D𝑡:

H𝑡 = D
1/2
𝑡 R𝑡D

1/2
𝑡 (2)

where each conditional variance follows a univariate GARCH process and the parameterizations of R𝑡
vary across models.

Equation (2) implies that

ℎ𝑖𝑗,𝑡 = 𝜌𝑖𝑗,𝑡𝜎𝑖,𝑡𝜎𝑗,𝑡 (3)

where 𝜎2
𝑖,𝑡 is modeled by a univariate GARCH process. Equation (3) highlights that CC models use non-

linear combinations of univariate GARCH models to represent the conditional covariances and that the

parameters in the model for 𝜌𝑖𝑗,𝑡 describe the extent to which the errors from equations 𝑖 and 𝑗 move

together.

Comparing (1) and (2) shows that the number of parameters increases more slowly with the number

of time series in a CC model than in a DVECH model.

The three CC models implemented in mgarch differ in how they parameterize R𝑡.

Constant conditional correlation MGARCH model

Bollerslev (1990) proposed a CC MGARCH model in which the correlation matrix is time invariant. It

is for this reason that the model is known as a constant conditional correlation (CCC) MGARCH model.

Restricting R𝑡 to a constant matrix reduces the number of parameters and simplifies the estimation but

may be too strict in many empirical applications.

See [TS] mgarch ccc for more details about this model.

https://www.stata.com/manuals/tsmgarchdvech.pdf#tsmgarchdvech
https://www.stata.com/manuals/tsmgarch.pdf#tsmgarchRemarksandexampleseq1
https://www.stata.com/manuals/tsmgarch.pdf#tsmgarchRemarksandexampleseq2
https://www.stata.com/manuals/tsmgarchccc.pdf#tsmgarchccc
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Dynamic conditional correlation MGARCH model

Engle (2002) introduced a dynamic conditional correlation (DCC)MGARCHmodel in which the condi-

tional quasicorrelations R𝑡 follow a GARCH(1,1)-like process. (As described by Engle [2009] and Aielli

[2013], the parameters in R𝑡 are not standardized to be correlations and are thus known as quasicorre-

lations.) To preserve parsimony, all the conditional quasicorrelations are restricted to follow the same

dynamics. The DCC model is significantly more flexible than the CCC model without introducing an

unestimable number of parameters for a reasonable number of series.

See [TS] mgarch dcc for more details about this model.

Varying conditional correlation MGARCH model

Tse and Tsui (2002) derived the varying conditional correlation (VCC) MGARCH model in which the

conditional correlations at each period are a weighted sum of a time-invariant component, a measure of

recent correlations among the residuals, and last period’s conditional correlations. For parsimony, all the

conditional correlations are restricted to follow the same dynamics.

See [TS] mgarch vcc for more details about this model.

Error distributions and quasimaximum likelihood
By default, mgarch dvech, mgarch ccc, mgarch dcc, and mgarch vcc estimate the parameters of

MGARCHmodels bymaximum likelihood (ML), assuming that the errors come from amultivariate normal

distribution. Both the ML estimator and the quasimaximum likelihood (QML) estimator, which drops

the normality assumption, are assumed to be consistent and normally distributed in large samples; see

Jeantheau (1998), Berkes and Horváth (2003), Comte and Lieberman (2003), Ling and McAleer (2003),

and Fiorentini and Sentana (2007). Specify vce(robust) to estimate the parameters by QML. The QML

parameter estimates are the same as the ML estimates, but the VCEs are different.

Based on low-level assumptions, Jeantheau (1998), Comte and Lieberman (2003), and Ling and

McAleer (2003) prove that some of the ML and QML estimators implemented in mgarch are consistent

and asymptotically normal. Based on higher-level assumptions, Fiorentini and Sentana (2007) prove that

all the ML and QML estimators implemented in mgarch are consistent and asymptotically normal. The

low-level assumption proofs specify the technical restrictions on the data-generating processes more pre-

cisely than the high-level proofs, but they do not cover as many models or cases as the high-level proofs.

It is generally accepted that there could be more low-level theoretical work done to substantiate the

claims that the ML and QML estimators are consistent and asymptotically normally distributed. These

widely applied estimators have been subjected to many Monte Carlo studies that show that the large-

sample theory performs well in finite samples.

The distribution(t) option causes the mgarch commands to estimate the parameters of the cor-

responding model by ML assuming that the errors come from a multivariate Student 𝑡 distribution.
The choice between the multivariate normal and the multivariate 𝑡 distributions is one between robust-

ness and efficiency. If the disturbances come from a multivariate Student 𝑡, then the ML estimates based

on the multivariate Student 𝑡 assumption will be consistent and efficient, while the QML estimates based

on the multivariate normal assumption will be consistent but not efficient. In contrast, if the disturbances

come from a well-behaved distribution that is neither multivariate Student 𝑡 nor multivariate normal, then
the ML estimates based on the multivariate Student 𝑡 assumption will not be consistent, while the QML

estimates based on the multivariate normal assumption will be consistent but not efficient.

https://www.stata.com/manuals/tsmgarchdcc.pdf#tsmgarchdcc
https://www.stata.com/manuals/tsmgarchvcc.pdf#tsmgarchvcc
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Fiorentini and Sentana (2007) compare the ML and QML estimators implemented in mgarch and pro-

vide many useful technical results pertaining to the estimators.

Treatment of missing data
mgarch allows for gaps due to missing data. The unconditional expectations are substituted for the

dynamic components that cannot be computed because of gaps. This method of handling gaps can only

handle the case in which 𝑔/𝑇 goes to zero as 𝑇 goes to infinity, where 𝑔 is the number of observations

lost to gaps in the data and 𝑇 is the number of nonmissing observations.
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Also see
[TS] arch —Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[TS] var — Vector autoregressive models

[U] 20 Estimation and postestimation commands
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