
lpirf — Local-projection impulse–response functions
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Description
lpirf estimates local-projection impulse–response functions (IRFs). Dynamic multipliers on exoge-

nous variables can also be computed.

Quick start
Local-projection IRFs for dependent variable y1 with the default of 8 steps

lpirf y1

Same as above, but for dependent variables y1 and y2 with 12 steps

lpirf y1 y2, step(12)

Same as above, but use lags 1 through 4 instead of the default lags 1 and 2

lpirf y1 y2, step(12) lags(1/4)

Local-projection IRFs for y1 and y2 and dynamic multipliers for exogenous variable x
lpirf y1 y2, exog(x)

Same as above, but use robust standard errors, and make a small-sample degrees-of-freedom adjustment

lpirf y1 y2, exog(x) vce(robust) dfk

Menu
Statistics > Multivariate time series > Local-projection IRFs
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Syntax
lpirf depvarlist [ if ] [ in ] [ , options ]

options Description

Model

lags(numlist) include specified lags of dependent variables

step(#) set forecast horizon to # steps; default is step(8)
exog(varlist) include exogenous variables

dfk include small-sample degrees-of-freedom adjustment

small report small-sample 𝑡 statistics

SE/Robust

vce(vcetype) vcetype may be ols, robust, or hac hacspec

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats and row spacing

coeflegend display legend instead of statistics

You must tsset your data before using lpirf; see [TS] tsset.
depvarlist and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

lags(numlist) specifies the lags of the dependent variables to be included in the model. The default is

lags(1 2). The first-lag coefficient is the local-projection coefficient and must be included. Addi-

tional lags may be included as controls. Lags may be skipped; for example, lags(1 3) would include

lags 1 and 3 but not lag 2.

step(#) specifies the step (forecast) horizon; the default is eight periods.

exog(varlist) specifies a list of exogenous variables to be included in the local projections. Coefficients

on contemporaneous exogenous variables are interpreted as dynamic multiplier coefficients. Other

exogenous variables such as lags are included as controls.

dfk specifies that a small-sample degrees-of-freedom adjustment be used when estimating the residual

covariance matrix. Specifically, 1/(𝑇 − 𝑚) is used instead of the large-sample divisor 1/𝑇, where 𝑚
is the number of right-hand-side variables used in each local projection.

small causes lpirf to report small-sample 𝑡 statistics instead of large-sample normal statistics.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/tslpirf.pdf#tslpirfOptionsvcetype
https://www.stata.com/manuals/tslpirf.pdf#tslpirfOptionshacspec
https://www.stata.com/manuals/tslpirf.pdf#tslpirfOptionsdisplay_options
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived

from asymptotic theory (ols) and that are robust to some kinds of misspecification (robust); see
[R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

lpirf also allows the following:

vce(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) variance–

covariance matrix. The full syntax of hacspec is the following:

vce(hac kernel [ # ]) requests a HAC variance–covariance matrix using the specified kernel (see

below) with optional # lags. The bandwidth of a kernel is equal to # + 1. If # is not specified,

a kernel with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West 1994) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt),
and nolstretch; see [R] Estimation options.

The following option is available with lpirf but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
An IRF measures how an endogenous variable responds in the future to a present-day shock to itself

or another endogenous variable in the model. In economics, for example, these functions are used to

study how inflation shocks today affect the evolution of prices and GDP in the months to come. Local-

projections estimate the IRF directly by running multistep regressions of response variables on impulse

variables. lpirf estimates these regressions jointly, allowing for tests of hypotheses involving multiple

impulse–response coefficients.

Local projections were introduced by Jordà (2005) as an alternative to traditional IRF estimation based

on vector autoregressive (VAR) models (see var). Local-projection estimation is not constrained by a

model and thus provides more flexible impulse–response coefficients. Local projections also greatly

simplify IRF estimation for multiple endogenous variables and horizons, making inference and hypoth-

esis testing easier. See example 3 in [TS] lpirf postestimation for an example. Moreover, confidence

intervals provided by local projections can have better small-sample coverage than those based on theVAR

model’s asymptotic distribution and the delta method. The IRF coefficients are highly nonlinear functions

of the parameters in the VAR model and thus the delta-method approximation can perform poorly. See

Kilian and Kim (2011) andMontiel Olea and Plagborg-Møller (2021) for simulation evidence comparing

the local-projection estimator against vector autoregression IRFs.

Because local projections are a direct multistep method, they have the disadvantage of having a re-

duced sample size compared with an equivalent VAR model. Both local projections and VAR models

condition on 𝑝 initial values. However, local projections also condition on 𝐻 − 1 trailing values, where

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/tsvar.pdf#tsvar
https://www.stata.com/manuals/tslpirfpostestimation.pdf#tslpirfpostestimationRemarksandexamplesex3
https://www.stata.com/manuals/tslpirfpostestimation.pdf#tslpirfpostestimation
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𝐻 − 1 is the maximum desired impulse–response step (horizon). Conditioning on the trailing observa-

tions can severely reduce the sample size when attempting to estimate long horizon responses using a

short sample size.

The local-projection estimator conditions on past lags of the model variables. A series of regressions

is run for each dependent variable and each horizon ℎ = 1, 2, . . . , 𝐻

𝑦𝑖,𝑡+ℎ−1 = 𝜃𝑖𝑗ℎ𝑦𝑗,𝑡−1 + z𝑡δ + 𝑢𝑡+ℎ−1

where 𝑦𝑖 is the response variable and 𝑦𝑗 is the impulse variable. The parameter of interest is the impulse–

response coefficient 𝜃𝑖𝑗ℎ. Additional controls z𝑡 dated 𝑡 or earlier, such as further lags of the endogenous
variables, may be included; their associated coefficients δ are nuisance parameters.

Exogenous variables may also be included. The effect of the 𝑘th exogenous variable 𝑥𝑘,𝑡 on the 𝑖th
dependent variable ℎ steps ahead 𝑦𝑖,𝑡+ℎ is found by estimating the local projection

𝑦𝑖,𝑡+ℎ = 𝜙𝑖𝑘ℎ𝑥𝑘,𝑡 + z𝑡δ + 𝑢𝑡+ℎ

for ℎ = 0, 1, 2, . . . , 𝐻 − 1. The coefficient of interest is the dynamic multiplier coefficient 𝜙𝑖𝑘ℎ. Addi-

tional controls z𝑡 dated 𝑡 or earlier, such as further lags of the endogenous variables, may be included;

their associated coefficients δ are nuisance parameters.

lpirf estimates all the impulse–response and dynamic multiplier coefficients simultaneously, al-

lowing for joint inference across arbitrary combinations of impulse variables, response variables, and

horizons.

Example 1: Univariate local-projection model
Consider a model with one endogenous variable, the interest rate, and no exogenous variables. In this

univariate model, there is only one possible shock, so the IRFmeasures the effect of a shock to the interest

rate on itself. We use data on the federal funds rate from 1955 to 2010 to estimate the local-projection

IRF.

. use https://www.stata-press.com/data/r19/usmacro
(Federal Reserve Economic Data - St. Louis Fed)
. lpirf fedfunds
Local-projection impulse responses
Sample: 1955q1 thru 2009q1 Number of obs = 217

Number of impulses = 1
Number of responses = 1
Number of controls = 1

IRF
coefficient Std. err. z P>|z| [95% conf. interval]

fedfunds
F1. 1.221569 .0653797 18.68 0.000 1.093427 1.34971
F2. 1.080856 .1049245 10.30 0.000 .8752076 1.286504
F3. 1.118528 .1267763 8.82 0.000 .8700512 1.367005
F4. 1.166434 .145672 8.01 0.000 .8809218 1.451945
F5. 1.255471 .1620139 7.75 0.000 .9379294 1.573012
F6. 1.139327 .1803676 6.32 0.000 .7858127 1.492841
F7. .8283938 .1959921 4.23 0.000 .4442565 1.212531
F8. .7639486 .2038356 3.75 0.000 .3644381 1.163459

Impulse: fedfunds
Response: fedfunds
Control: L2.fedfunds
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The header of the output reports the time span of the estimation sample and the numbers of observations,

impulse and response variables, and controls. The estimation table provides the impulse–response co-

efficients, ordered by impulse, response, and step. In this example, there is only one impulse and one

response variable. By default, impulse–response coefficients are reported up to horizon 8. The footer

contains information on the impulse and response variables; it also provides a full list of controls used

in each local projection.

The IRF coefficients in the table are interpreted as follows. For a 1 percentage point shock to the

interest rate, we expect the interest rate rises by 1.22 percentage points in the following period. The

interest rate remains elevated for all steps 1 through 8. Eight periods after the shock, the interest rate

remains 0.76 percentage points above its long-run value. By convention, the response at time 0 is set to

1 and is not reported.

Example 2: Model with two endogenous variables
Next we estimate the impulse–response coefficients of a model with two endogenous variables, the

output gap and the federal funds rate. We use the lags() option to specify lags 1 through 4 of both

endogenous variables. Lags 2 through 4 are controls, while coefficients on the first lags are the impulse–

responses of interest.
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. lpirf ogap fedfunds, lags(1/4)
Local-projection impulse responses
Sample: 1955q3 thru 2009q1 Number of obs = 215

Number of impulses = 2
Number of responses = 2
Number of controls = 6

IRF
coefficient Std. err. z P>|z| [95% conf. interval]

ogap
ogap
F1. 1.195888 .0703241 17.01 0.000 1.058055 1.333721
F2. 1.357788 .1113556 12.19 0.000 1.139535 1.576041
F3. 1.258217 .1461423 8.61 0.000 .971783 1.54465
F4. 1.154532 .1703871 6.78 0.000 .8205797 1.488485
F5. .9490696 .1886837 5.03 0.000 .5792564 1.318883
F6. .8409692 .2005783 4.19 0.000 .447843 1.234095
F7. .7290706 .2099352 3.47 0.001 .3176052 1.140536
F8. .5371741 .2168984 2.48 0.013 .112061 .9622872

fedfunds
F1. .340385 .0755028 4.51 0.000 .1924023 .4883677
F2. .6155252 .1219423 5.05 0.000 .3765228 .8545277
F3. .6645369 .1471894 4.51 0.000 .376051 .9530228
F4. .5518402 .1727784 3.19 0.001 .2132007 .8904797
F5. .6452311 .1949615 3.31 0.001 .2631136 1.027349
F6. .7062151 .2179209 3.24 0.001 .279098 1.133332
F7. .6356759 .2388224 2.66 0.008 .1675926 1.103759
F8. .3931728 .2502723 1.57 0.116 -.097352 .8836975

fedfunds
ogap
F1. .0706023 .0642572 1.10 0.272 -.0553395 .196544
F2. -.1944006 .1017489 -1.91 0.056 -.3938248 .0050235
F3. -.2381567 .1335345 -1.78 0.075 -.4998795 .0235661
F4. -.3092885 .1556876 -1.99 0.047 -.6144307 -.0041464
F5. -.4381839 .1724058 -2.54 0.011 -.776093 -.1002748
F6. -.5121501 .1832742 -2.79 0.005 -.871361 -.1529392
F7. -.5796563 .1918239 -3.02 0.003 -.9556242 -.2036884
F8. -.6646151 .1981864 -3.35 0.001 -1.053053 -.2761769

fedfunds
F1. 1.170208 .0689891 16.96 0.000 1.034992 1.305424
F2. .9238313 .1114222 8.29 0.000 .7054478 1.142215
F3. .9727738 .1344912 7.23 0.000 .7091758 1.236372
F4. .9796306 .1578727 6.21 0.000 .6702059 1.289055
F5. 1.044107 .178142 5.86 0.000 .694955 1.393259
F6. 1.019702 .1991207 5.12 0.000 .6294331 1.409972
F7. .7324305 .218219 3.36 0.001 .3047292 1.160132
F8. .6598259 .2286811 2.89 0.004 .2116192 1.108033

Impulses: ogap fedfunds
Responses: ogap fedfunds
Controls: L2.fedfunds L2.ogap L3.fedfunds L3.ogap L4.fedfunds L4.ogap
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The estimation table has two blocks, one for each impulse variable. Responses are grouped by impulse

and then by response.

The coefficients of the table are interpreted as follows. The effect of an impulse to ogap on ogap
itself is 1.196 at horizon 1, rises to 1.358 at horizon 2, and declines to 0.537 at horizon 8. The effect of an

impulse to ogap on fedfunds is 0.340 at horizon 1, rises to 0.706 at horizon 6, and declines to 0.393 at

horizon 8. A shock to fedfunds is associated with a rise in ogap of 0.071 at horizon 1, and the response

at every other horizon is negative. The response of ogap at horizon 8 is −0.665.

Example 3: Estimating dynamic multipliers
The local-projection estimator allows for the inclusion of exogenous variables. The responses of

endogenous variables to shocks to exogenous variables are called dynamic multipliers. In this example,

we fit a three-equation model of inflation, the output gap, and the interest rate, treating the interest rate

as exogenous.

We include the step() option to compute the responses for four steps, instead of the default eight.

We use the exog() option to specify fedfunds as the exogenous variable.
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. lpirf ogap inflation, lags(1/4) step(4) exog(fedfunds)
Local-projection impulse responses
Sample: 1956q3 thru 2010q1 Number of obs = 215

Number of impulses = 3
Number of responses = 2
Number of controls = 6

IRF
coefficient Std. err. z P>|z| [95% conf. interval]

ogap
ogap
F1. 1.183248 .0696613 16.99 0.000 1.046714 1.319782
F2. 1.298995 .1084817 11.97 0.000 1.086374 1.511615
F3. 1.240221 .1408233 8.81 0.000 .9642124 1.51623
F4. 1.163917 .1641595 7.09 0.000 .8421708 1.485664

inflation
F1. .065811 .0546801 1.20 0.229 -.04136 .172982
F2. .1562728 .0875892 1.78 0.074 -.0153988 .3279444
F3. .2659506 .1150475 2.31 0.021 .0404616 .4914396
F4. .4547818 .1445588 3.15 0.002 .1714517 .7381119

inflation
ogap
F1. -.1348397 .0849333 -1.59 0.112 -.301306 .0316265
F2. -.2116188 .1322643 -1.60 0.110 -.4708521 .0476145
F3. -.2891468 .1716962 -1.68 0.092 -.6256653 .0473716
F4. -.4686839 .2001485 -2.34 0.019 -.8609677 -.0764001

inflation
F1. 1.205986 .0666677 18.09 0.000 1.075319 1.336652
F2. 1.209659 .1067915 11.33 0.000 1.000351 1.418966
F3. 1.396595 .1402696 9.96 0.000 1.121671 1.671518
F4. .9968414 .1762507 5.66 0.000 .6513963 1.342286

fedfunds
ogap
--. .0289642 .0270094 1.07 0.284 -.0239732 .0819016
F1. -.0017852 .0420609 -0.04 0.966 -.0842231 .0806527
F2. -.0506758 .0546005 -0.93 0.353 -.1576909 .0563393
F3. -.0776979 .0636485 -1.22 0.222 -.2024467 .0470509

inflation
--. .073647 .0212008 3.47 0.001 .0320943 .1151997
F1. .115983 .0339604 3.42 0.001 .0494218 .1825442
F2. .120239 .0446067 2.70 0.007 .0328115 .2076664
F3. .1092225 .0560489 1.95 0.051 -.0006313 .2190763

Note: IRF coefficients for exogenous variables are dynamic multipliers.
Impulses: ogap inflation fedfunds
Responses: ogap inflation
Controls: L2.inflation L2.ogap L3.inflation L3.ogap L4.inflation L4.ogap

The estimation table has three blocks, one for each impulse. The first block reports the responses of the

output gap and inflation to an impulse to the output gap. The second block reports the responses of the

output gap and inflation to an impulse to inflation. The third block reports the dynamic multipliers of the

output gap and inflation to an impulse to the interest rate.
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The contemporaneous effect of the exogenous variable is not constrained to be 1. These effects are

displayed in the third block of the table. The contemporaneous effect, also known as the impact effect,

of a shock to the interest rate on the output gap is 0.029 with a standard error of 0.027. The responses

of the output gap at horizons 1, 2, and 3 are all negative. The effect of a shock to the interest rate on

inflation is 0.074 on impact. Inflation continues to rise in the first three periods after a shock, reaching a

value of 0.109 in the third period after the shock.

Example 4: Robust inference
Several options control how standard errors are calculated and reported. The dfk option provides a

small-sample degrees-of-freedom adjustment for estimating the residual covariance matrix. The small
option requests that small-sample 𝑡 statistics be reported instead of large-sample 𝑧 statistics.

We revisit the simple univariate model of the interest rate, but this time we specify the dfk and small
options.

. lpirf fedfunds, dfk small
Local-projection impulse responses
Sample: 1955q1 thru 2009q1 Number of obs = 217

Number of impulses = 1
Number of responses = 1
Number of controls = 1

IRF
coefficient Std. err. t P>|t| [95% conf. interval]

fedfunds
F1. 1.221569 .0658364 18.55 0.000 1.091798 1.351339
F2. 1.080856 .1056574 10.23 0.000 .8725934 1.289118
F3. 1.118528 .1276618 8.76 0.000 .8668925 1.370164
F4. 1.166434 .1466895 7.95 0.000 .8772924 1.455575
F5. 1.255471 .1631456 7.70 0.000 .9338928 1.577049
F6. 1.139327 .1816275 6.27 0.000 .7813188 1.497335
F7. .8283938 .1973611 4.20 0.000 .4393732 1.217414
F8. .7639486 .2052594 3.72 0.000 .3593595 1.168538

Note: Small-sample degrees-of-freedom adjustment applied when estimating
covariance matrix of residuals.

Impulse: fedfunds
Response: fedfunds
Control: L2.fedfunds

Confidence intervals here are somewhat wider than in example 1.

Montiel Olea and Plagborg-Møller (2021) provide a thorough discussion of inference in local-

projection models. They suggest two additional adjustments. First, if the true model is believed to be a

VARmodel of order 𝑝, then 𝑝+1 lags should be included in the local projections. Second,White-corrected

standard errors should be reported.

https://www.stata.com/manuals/tslpirf.pdf#tslpirfRemarksandexamplesex1
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We use the lags(1/3) option to add one further lag to the controls. Additionally, we specify the

vce(robust) option to provideWhite-corrected standard errors. With all of these options, the output of

lpirf changes to the following:

. lpirf fedfunds, lags(1/3) dfk small vce(robust)
Local-projection impulse responses
Sample: 1955q2 thru 2009q1 Number of obs = 216

Number of impulses = 1
Number of responses = 1
Number of controls = 2

IRF Robust
coefficient std. err. t P>|t| [95% conf. interval]

fedfunds
F1. 1.264674 .1123728 11.25 0.000 1.043163 1.486185
F2. 1.087209 .1681724 6.46 0.000 .755705 1.418714
F3. 1.098138 .1927819 5.70 0.000 .7181227 1.478153
F4. 1.105892 .2030137 5.45 0.000 .705708 1.506076
F5. 1.216923 .2099187 5.80 0.000 .8031281 1.630719
F6. 1.168236 .2192774 5.33 0.000 .7359926 1.600479
F7. .8415941 .2382936 3.53 0.001 .3718657 1.311323
F8. .7565939 .2355971 3.21 0.002 .2921808 1.221007

Note: Small-sample degrees-of-freedom adjustment applied when estimating
covariance matrix of residuals.

Impulse: fedfunds
Response: fedfunds
Controls: L2.fedfunds L3.fedfunds

The use of three lags indicates a belief that the the underlying VAR model is of order two. Thus,

three lags provide the appropriate adjustment. We also adjust for the possibility of heteroskedasticity

by specifying vce(robust), which is equivalent to the standard errors that would be obtained with

regress, vce(robust).
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For comparison, the results of sureg for the first two response horizons would be given by the fol-

lowing:

. sureg (f(0/1).fedfunds = l(1/3).fedfunds) if e(sample), vce(robust) dfk small
Seemingly unrelated regression

Equation Obs Params RMSE ”R-squared” F P>F

fedfunds 216 3 .8940584 0.9278 412.58 0.0000
F_fedfunds 216 3 1.453377 0.8102 129.56 0.0000

Robust
Coefficient std. err. t P>|t| [95% conf. interval]

fedfunds
fedfunds

L1. 1.264674 .1113275 11.36 0.000 1.045852 1.483497
L2. -.4670027 .1513732 -3.09 0.002 -.7645381 -.1694674
L3. .1604177 .121733 1.32 0.188 -.0788575 .3996929

_cons .2333601 .1568402 1.49 0.138 -.0749211 .5416413

F_fedfunds
fedfunds

L1. 1.087209 .166608 6.53 0.000 .7597289 1.41469
L2. -.2141638 .242216 -0.88 0.377 -.6902574 .2619298
L3. .023556 .1679403 0.14 0.889 -.3065431 .3536551

_cons .5746647 .2276758 2.52 0.012 .1271509 1.022178

Note: Small-sample degrees-of-freedom adjustment applied when estimating
covariance matrix of residuals.

The regression of the current interest rate on its first three lags is identical to the underlying projection

for the first horizon. The coefficient estimate on L.fedfunds is 1.265, identical to the coefficient on

F1.fedfunds in the local-projection estimation table. The standard errors are also identical, 0.111.

The regression of the one–period-ahead interest rate on the first three lags of the interest rate in the

sureg output is identical to the underlying projection for the second horizon of lpirf. The coefficient
estimate on L.fedfunds is 1.087, identical to the coefficient on F2.fedfunds in the local-projection

estimation table. The standard errors are also identical, 0.167.
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Newey–West standard errors may be requested by specifying vce(hac nwest #), where # represents
the maximum lag order of autocorrelation. If a number is not specified, the number of lags used is equal

to the maximum step.

. lpirf fedfunds, lags(1/3) dfk small vce(hac nwest)
Local-projection impulse responses
Sample: 1955q2 thru 2009q1 Number of obs = 216

Number of impulses = 1
HAC kernel: Newey--West with 8 lags Number of responses = 1

Number of controls = 2

IRF HAC
coefficient std. err. t P>|t| [95% conf. interval]

fedfunds
F1. 1.264674 .1367966 9.24 0.000 .9950182 1.53433
F2. 1.087209 .1731642 6.28 0.000 .7458652 1.428554
F3. 1.098138 .1677261 6.55 0.000 .767513 1.428762
F4. 1.105892 .2446402 4.52 0.000 .6236531 1.588131
F5. 1.216923 .2595175 4.69 0.000 .7053581 1.728489
F6. 1.168236 .2757997 4.24 0.000 .6245749 1.711897
F7. .8415941 .2968191 2.84 0.005 .2564993 1.426689
F8. .7565939 .3054195 2.48 0.014 .1545458 1.358642

Note: Small-sample degrees-of-freedom adjustment applied when estimating
covariance matrix of residuals.

Impulse: fedfunds
Response: fedfunds
Controls: L2.fedfunds L3.fedfunds

The Newey–West standard errors reported here correct for both heteroskedasticity and autocorrelation

and are often recommended for local-projection IRFs.
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Stored results
lpirf stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k endog) number of dependent variables

e(k exog) number of exogenous variables

e(k impulses) number of impulse variables

e(k responses) number of response variables

e(k controls) number of control variables

e(df r) residual degrees of freedom (small only)

e(tmin) minimum time in sample

e(tmax) maximum time in sample

e(step) maximum step

e(rank) rank of e(V)

Macros

e(cmd) lpirf
e(cmdline) command as typed

e(depvar) names of dependent variables

e(title) title in estimation output

e(allcontrols) list of control variables used in each projection

e(tsfmt) format of the time variable

e(tvar) variable denoting time within groups

e(tmins) formatted minimum time

e(tmaxs) formatted maximum time

e(lags) lags used in controls

e(dfk) dfk, if specified
e(small) small, if specified
e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
lpirf is equivalent to running regress, equation by equation, for each possible combination of

impulse variable, response variable, and horizon (step). lpirf performs these regressions jointly to

allow for tests of hypotheses that involve multiple impulse–response coefficients.
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Let y𝑡 be the 𝑘 × 1 vector of endogenous variables in the model. For a given horizon ℎ, consider the
regression of response variables at time 𝑡 + ℎ − 1 on lags 1 through 𝑝 of the dependent variables. Hence,

for horizon 1, we use the current values of y on the left-hand side; for horizon 2, we use the values of y

one period ahead; for horizon 3, we use the values of y two periods ahead; and so on. In each regression,

the right-hand-side variables remain the same, lags 1 through 𝑝 of the dependent variables.

When the model does not include any exogenous variables, the system of regressions is

y𝑡+ℎ−1 = Bℎ
1y𝑡−1 + Bℎ

2y𝑡−2 + · · · + Bℎ
𝑝y𝑡−𝑝 + u𝑡+ℎ−1

for ℎ = 1, . . . , 𝐻, where 𝐻 is the desired maximum horizon. In the system of regressions, Bℎ
1 is the 𝑘×𝑘

matrix of impulse–response coefficients at horizon ℎ. The lags() option specifies which additional lags

to use as controls in the local projections. Missing lags are allowed.

Contemporaneous exogenous variables are used to estimate dynamic multipliers. Here the timing

convention is simpler: a regression of the endogenous variables at time 𝑡 + ℎ, y𝑡+ℎ, on the exogenous

variable today, x𝑡, gives the dynamic multiplier at horizon ℎ:

y𝑡+ℎ = Dℎx𝑡 + 𝚪z𝑡 + u𝑡+ℎ

Matrix Dℎ contains the dynamic multipliers at horizon ℎ. Additional controls dated 𝑡 or earlier, z, can be
specified using the exog() option.

OLS and robust sandard errors are calculated as in sureg. The dfk, small, and vce(robust) options
perform in lpirf exactly as they do in sureg; see [R] sureg. The vce(hac nwest #) and vce(hac
gallant #) options perform exactly as they do in [R] gmm.
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