irf table — Tables of IRFs, dynamic-multiplier functions, and FEVDs

DescriptionQuick startMenuSyntaxOptionsRemarks and examplesStored resultsAlso see

Description

irf table makes a table of the values of the requested statistics at each time since impulse. Each column represents a combination of an impulse variable and a response variable for each statistic from the named IRF results.

Quick start

Table of impulse-response function for dependent variables y1 and y2 given an unexpected shock to y1 irf table irf, impulse(y1) response(y2)

Same as above, but for orthogonalized shocks

irf table oirf, impulse(y1) response(y2)

Same as above, but with 3 as the common maximum step horizon for all tables irf table oirf, impulse(y1) response(y2) step(3)

Same as above, but with a separate table for each IRF in the active IRF file irf table oirf, impulse(y1) response(y2) step(3) individual

Note: irf commands can be used after var, svar, ivsvar, vec, arima, arfima, lpirf, ivlpirf, dsge, dsgenl, or xtvar; see [TS] var, [TS] var svar, [TS] var ivsvar, [TS] vec, [TS] arima, [TS] arfima, [TS] lpirf, [TS] ivlpirf, [DSGE] dsge, [DSGE] dsgenl, or [XT] xtvar.

Menu

Statistics > Postestimation

Syntax

irf <u>t</u> able	[stat]	[, options]
-------------------	--------	-------------

stat	Description
Main	
Main	
irf	impulse-response function
oirf	orthogonalized impulse-response function
dm	dynamic-multiplier function
cirf	cumulative impulse-response function
coirf	cumulative orthogonalized impulse-response function
cdm	cumulative dynamic-multiplier function
fevd	Cholesky forecast-error variance decomposition
sirf	structural impulse-response function
csirf	cumulative structural impulse-response function
sfevd	structural forecast-error variance decomposition

If *stat* is not specified, all statistics are included, unless option nostructural is also specified, in which case sirf and sfevd are excluded. You may specify more than one *stat*.

options	Description
Main	
<u>s</u> et(<i>filename</i>)	make <i>filename</i> active
<u>ir</u> f(<i>irfnames</i>)	use <i>irfnames</i> IRF result sets
<pre>impulse(impulsevar)</pre>	use <i>impulsevar</i> as impulse variables
<u>r</u> esponse(<i>endogvars</i>)	use endogenous variables as response variables
<u>in</u> dividual	make an individual table for each result set
<pre>title("text")</pre>	use <i>text</i> for overall table title
Options	
<u>l</u> evel(#)	set confidence level; default is level(95)
noci	suppress confidence intervals
<u>std</u> error	include standard errors in the tables
<u>nostr</u> uctural	suppress sirf and sfevd from the default list of statistics
<u>st</u> ep(#)	use common maximum step horizon # for all tables

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

Main

set(filename) specifies the file to be made active; see [TS] irf set() is not specified, the active
file is used.

All results are obtained from one IRF file. If you have results in different files that you want in one table, use irf add to copy results into one file; see [TS] irf add.

- irf(irfnames) specifies the IRF result sets to be used. If irf() is not specified, all the results in the active IRF file are used. (Files often contain just one set of IRF results, saved under one irfname; in that case, those results are used. When there are multiple IRF results, you may also wish to specify the individual option.)
- impulse(impulsevar) specifies the impulse variables for which the statistics are to be reported. If
 impulse() is not specified, each model variable, in turn, is used. impulsevar should be specified
 as an endogenous variable for all statistics except dm or cdm; for those, specify as an exogenous variable.
- response(*endogvars*) specifies the response variables for which the statistics are to be reported. If response() is not specified, each endogenous variable, in turn, is used.
- individual specifies that each set of IRF results be placed in its own table, with its own title and footer. By default, irf table places all the IRF results in one table with one title and one footer. individual may not be combined with title().

title("*text*") specifies a title for the overall table.

Options

- level(#) specifies the default confidence level, as a percentage, for confidence intervals, when they are reported. The default is level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.
- noci suppresses reporting of the confidence intervals for each statistic. noci is assumed when the model was fit by vec because no confidence intervals were estimated.

stderror specifies that standard errors for each statistic also be included in the table.

nostructural specifies that stat, when not specified, exclude sirf and sfevd.

step(#) specifies the maximum step horizon for all tables. If step() is not specified, each table is
constructed using all steps available.

Remarks and examples

If you have not read [TS] irf, please do so.

Also see [TS] **irf graph**, which produces output in graphical form, and see [TS] **irf ctable**, which also produces tabular output. **irf ctable** is more difficult to use but provides more control over how tables are formed.

Example 1

We have fit a model with var, and we saved the IRFs from two different orderings. The commands we previously used were

```
. use https://www.stata-press.com/data/r19/lutkepohl2
. var dln_inv dln_inc dln_consump
. irf set results4
. irf create ordera, step(8)
. irf create orderb, order(dln_inc dln_inv dln_consump) step(8)
```

We now wish to compare the two orderings:

```
. irf table oirf fevd, impulse(dln_inc) response(dln_consump) noci std
```

```
> title("ordera versus orderb")
```

ordera versus orderb

	(1)	(1)	(1)	(1)
Step	oirf	S.E.	fevd	S.E.
0	.005123	.000878	0	0
1	.001635	.000984	.288494	.077483
2	.002948	.000993	.294288	.073722
3	000221	.000662	.322454	.075562
4	.000811	.000586	.319227	.074063
5	.000462	.000333	.322579	.075019
6	.000044	.000275	.323552	.075371
7	.000151	.000162	.323383	.075314
8	.000091	.000114	.323499	.075386
	(2)	(2)	(2)	(2)
Step	oirf	S.E.	fevd	S.E.
0	.005461	.000925	0	0
1	.001578	.000988	.327807	.08159
2	.003307	.001042	.328795	.077519
3	00019	.000676	.370775	.080604
4	.000846	.000617	.366896	.079019
5	.000491	.000349	.370399	.079941
6	.000069	.000292	.371487	.080323
7	.000158	.000172	.371315	.080287
8	.000096	.000122	.371438	.080366
	me = ordera,			
irfna	me = orderb,	impulse =	dln_inc, and	d response =

The output is displayed as a "single" table; because the table did not fit horizontally, it wrapped automatically. At the bottom of the table is a definition of the keys that appear at the top of each column. The results in the table above indicate that the orthogonalized IRFs do not change by much.

4

Example 2

Because the estimated FEVDs do change significantly, we might want to produce two tables that contain the estimated FEVDs and their 95% confidence intervals:

. irf table fevd, impulse(dln_inc) response(dln_consump) individual Results from ordera

Step	(1) fevd	(1) Lower	(1) Upper
0	0	0	0
1	.288494	.13663	.440357
2	.294288	.149797	.43878
3	.322454	.174356	.470552
4	.319227	.174066	.464389
5	.322579	.175544	.469613
6	.323552	.175826	.471277
7	.323383	.17577	.470995
8	. 323499	.175744	.471253

95% lower and upper bounds reported.

(1) irfname = ordera, impulse = dln_inc, and response = dln_consump.

Results from orderb

Step	(1) fevd	(1) Lower	(1) Upper
0	0	0	0
1	.327807	.167893	.487721
2	.328795	.17686	.48073
3	.370775	.212794	.528757
4	.366896	.212022	.52177
5	.370399	.213718	.52708
6	.371487	.214058	.528917
7	.371315	.213956	.528674
8	.371438	.213923	.528953

95% lower and upper bounds reported.

(1) irfname = orderb, impulse = dln_inc, and response = dln_consump.

Because we specified the individual option, the output contains two tables, one for each set of IRF results. Examining the results in the tables indicates that each of the estimated functions is well within the confidence interval of the other, so we conclude that the functions are not significantly different.

4

Technical note

Be careful in how you name variables when you fit models. Say that you fit one model with var and used time-series operators to form one of the endogenous variables

. var d.ln_inv ...

and in another model, you created a new variable:

. generate dln_inv = d.ln_inv
. var dln inv ...

Say that you saved IRF results from both (perhaps they differ in the number of lags). Now you wish to use irftable to compare them. You would not be able to specify response(d.ln_inv) or response(dln_inv) because neither variable is in both models. Similarly, you could not specify impulse(d.ln_inv) or impulse(dln_inv) for the same reason.

All is not lost; if impulse() is not specified, all endogenous variables are used, and similarly if response() is not specified, so you could obtain the result you desired by simply not specifying the options, but you will also obtain a lot more, besides. If you want to specify the impulse() or response() options, be sure to name variables consistently.

Also, you may forget how the endogenous variables were named. If so, irf describe, detail can provide the answer. In irf describe's output, the endogenous variables are listed next to endog.

Stored results

If the individual option is not specified, irf table stores the following in r():

Scalars

r(ncols)	number of columns in table
r(k_umax)	number of distinct keys
r(k)	number of specific table commands
Macros	
r(key#)	#th key
r(tnotes)	list of keys applied to each column

If the individual option is specified, then for each *irfname*, irf table stores the following in r():

Scalars

	r(<i>irfname</i> _ncols) r(<i>irfname</i> _k_umax) r(<i>irfname</i> _k)	number of columns in table for <i>irfname</i> number of distinct keys in table for <i>irfname</i> number of specific table commands used to create table for <i>irfname</i>
Ma	cros	* · · ·
	r(<i>irfname_</i> key#) r(<i>irfname_</i> tnotes)	#h key for <i>irfname</i> table list of keys applied to each column in table for <i>irfname</i>

Also see

- [TS] irf Create and analyze IRFs, dynamic-multiplier functions, and FEVDs
- [TS] var intro Introduction to vector autoregressive models
- [TS] vec intro Introduction to vector error-correction models

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.