
Glossary

add factor. An add factor is a quantity added to an endogenous variable in a forecast model. Add factors

can be used to incorporate outside information into a model, and they can be used to produce forecasts

under alternative scenarios.

ARCH model. An autoregressive conditional heteroskedasticity (ARCH) model is a regression model in

which the conditional variance is modeled as an autoregressive (AR) process. TheARCH(𝑚) model is

𝑦𝑡 = x𝑡β + 𝜖𝑡

𝐸(𝜖2
𝑡 |𝜖2

𝑡−1, 𝜖2
𝑡−2, . . .) = 𝛼0 + 𝛼1𝜖2

𝑡−1 + · · · + 𝛼𝑚𝜖2
𝑡−𝑚

where 𝜖𝑡 is a white-noise error term. The equation for 𝑦𝑡 represents the conditional mean of the pro-

cess, and the equation for 𝐸(𝜖2
𝑡 |𝜖2

𝑡−1, 𝜖2
𝑡−2, . . .) specifies the conditional variance as an autoregressive

function of its past realizations. Although the conditional variance changes over time, the uncondi-

tional variance is time invariant because 𝑦𝑡 is a stationary process. Modeling the conditional variance

as an AR process raises the implied unconditional variance, making this model particularly appealing

to researchers modeling fat-tailed data, such as financial data.

ARFIMAmodel. An autoregressive fractionally integrated moving-average (ARFIMA) model is a time-

series model suitable for use with long-memory processes. ARFIMAmodels generalize autoregressive

integrated moving-average (ARIMA) models by allowing the differencing parameter to be a real num-

ber in (−0.5, 0.5) instead of requiring it to be an integer.
ARIMA model. An autoregressive integrated moving-average (ARIMA) model is a time-series model

suitable for use with integrated processes. In an ARIMA(𝑝, 𝑑, 𝑞) model, the data are differenced 𝑑
times to obtain a stationary series, and then anARMA(𝑝, 𝑞) model is fit to this differenced data. ARIMA

models that include exogenous explanatory variables are known as ARMAX models.

ARMAmodel. An autoregressive moving-average (ARMA) model is a time-series model in which the

current period’s realization is the sum of an autoregressive (AR) process and a moving-average (MA)

process. An ARMA(𝑝, 𝑞) model includes 𝑝 AR terms and 𝑞 MA terms. ARMA models with just a few

lags are often able to fit data as well as pure AR or MAmodels with many more lags.

ARMAprocess. An autoregressive moving average (ARMA) process is a time series in which the current

value of the variable is a linear function of its own past values and a weighted average of current and

past realizations of a white-noise process. It consists of an autoregressive component and a moving-

average component; see autoregressive (AR) process and moving-average (MA) process.

ARMAXmodel. AnARMAXmodel is a time-series model in which the current period’s realization is an

ARMA process plus a linear function of a set of exogenous variables. Equivalently, an ARMAX model

is a linear regression model in which the error term is specified to follow an ARMA process.

autocorrelation function. The autocorrelation function (ACF) expresses the correlation between periods

𝑡 and 𝑡 − 𝑘 of a time series as function of the time 𝑡 and the lag 𝑘. For a stationary time series, theACF
does not depend on 𝑡 and is symmetric about 𝑘 = 0, meaning that the correlation between periods 𝑡
and 𝑡 − 𝑘 is equal to the correlation between periods 𝑡 and 𝑡 + 𝑘.

autoregressive (AR) process. An autoregressive (AR) process is a time series in which the current value

of a variable is a linear function of its own past values and a white-noise error term. A first-order AR

process, denoted as an AR(1) process, is 𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝜖𝑡. An AR(𝑝) model contains 𝑝 lagged values

of the dependent variable.
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band-pass filter. Time-series filters are designed to pass or block stochastic cycles at specified frequen-

cies. Band-pass filters, such as those implemented in tsfilter bk and tsfilter cf, pass through
stochastic cycles in the specified range of frequencies and block all other stochastic cycles.

Cholesky ordering. Cholesky ordering is a method used to orthogonalize the error term in a VAR

model or a VEC model to impose a recursive structure on the dynamic model, so that the resulting im-

pulse–response functions can be given a causal interpretation. The method is so named because it uses

the Cholesky decomposition of the error-covariance matrix.

Cochrane–Orcutt estimator. This estimation is a linear regression estimator that can be used when the

error term exhibits first-order autocorrelation. An initial estimate of the autocorrelation parameter 𝜌
is obtained from OLS residuals, and then OLS is performed on the transformed data ̃𝑦𝑡 = 𝑦𝑡 − 𝜌𝑦𝑡−1
and x̃𝑡 = x𝑡 − 𝜌x𝑡−1.

cointegrating vector. A cointegrating vector specifies a stationary linear combination of nonstationary

variables. Specifically, if each of the variables𝑥1, 𝑥2, . . . , 𝑥𝑘 is integrated of order one and there exists

a set of parameters 𝛽1, 𝛽2, . . . , 𝛽𝑘 such that 𝑧𝑡 = 𝛽1𝑥1 + 𝛽2𝑥2 + · · · + 𝛽𝑘𝑥𝑘 is a stationary process,

the variables 𝑥1, 𝑥2, . . . , 𝑥𝑘 are said to be cointegrated, and the vector β is known as a cointegrating

vector.

companion matrix. See lag-polynomial matrix.

conditional variance. Although the conditional variance is simply the variance of a conditional distri-

bution, in time-series analysis the conditional variance is often modeled as an autoregressive (AR)

process, giving rise to ARCH models.

correlogram. A correlogram is a table or graph showing the sample autocorrelations or partial autocor-

relations of a time series.

covariance stationary process. A process is covariance stationary if the mean of the process is finite

and independent of 𝑡, the unconditional variance of the process is finite and independent of 𝑡, and the
covariance between periods 𝑡 and 𝑡 − 𝑠 is finite and depends on 𝑡 − 𝑠 but not on 𝑡 or 𝑠 themselves.

Covariance stationary processes are also known as weakly stationary processes. See also stationary

process.

cross-correlation function. The cross-correlation function expresses the correlation between one series

at time 𝑡 and another series at time 𝑡−𝑘 as a function of the time 𝑡 and lag 𝑘. If both series are stationary,
the function does not depend on 𝑡. The function is not symmetric about 𝑘 = 0: 𝜌12(𝑘) ≠ 𝜌12(−𝑘).

cyclical component. A cyclical component is a part of a time series that is a periodic function of time.

Deterministic functions of time are deterministic cyclical components, and random functions of time

are stochastic cyclical components. For example, fixed seasonal effects are deterministic cyclical

components and random seasonal effects are stochastic seasonal components.

Random coefficients on time inside of periodic functions form an especially useful class of stochastic

cyclical components; see [TS] ucm.

deterministic trend. A deterministic trend is a deterministic function of time that specifies the long-run

tendency of a time series.

difference operator. The difference operatorΔ denotes the change in the value of a variable from period

𝑡−1 to period 𝑡. Formally,Δ𝑦𝑡 = 𝑦𝑡−𝑦𝑡−1, andΔ2𝑦𝑡 = Δ(𝑦𝑡−𝑦𝑡−1) = (𝑦𝑡−𝑦𝑡−1)−(𝑦𝑡−1−𝑦𝑡−2) =
𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2.
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drift. Drift is the constant term in a unit-root process. In

𝑦𝑡 = 𝛼 + 𝑦𝑡−1 + 𝜖𝑡

𝛼 is the drift when 𝜖𝑡 is a stationary, zero-mean process.

dynamic forecast. A dynamic forecast uses forecast values wherever lagged values of the endogenous

variables appear in the model, allowing one to forecast multiple periods into the future. See also static

forecast.

dynamic-multiplier function. A dynamic-multiplier function measures the effect of a shock to an ex-

ogenous variable on an endogenous variable. The 𝑘th dynamic-multiplier function of variable 𝑖 on
variable 𝑗 measures the effect on variable 𝑗 in period 𝑡 + 𝑘 in response to a one-unit shock to variable

𝑖 in period 𝑡, holding everything else constant.
endogenous variable. An endogenous variable is a regressor that is correlated with the unobservable er-

ror term. Equivalently, an endogenous variable is one whose values are determined by the equilibrium

or outcome of a structural model.

exogenous variable. An exogenous variable is a regressor that is not correlated with any of the unob-

servable error terms in the model. Equivalently, an exogenous variable is one whose values change

independently of the other variables in a structural model.

exponential smoothing. Exponential smoothing is a method of smoothing a time series in which the

smoothed value at period 𝑡 is equal to a fraction 𝛼 of the series value at time 𝑡 plus a fraction 1 − 𝛼
of the previous period’s smoothed value. The fraction 𝛼 is known as the smoothing parameter.

forecast-error variance decomposition. Forecast-error variance decompositions measure the fraction

of the error in forecasting variable 𝑖 after ℎ periods that is attributable to the orthogonalized shocks

to variable 𝑗.
forward operator. The forward operator 𝐹 denotes the value of a variable at time 𝑡 + 1. Formally,

𝐹𝑦𝑡 = 𝑦𝑡+1, and 𝐹 2𝑦𝑡 = 𝐹𝑦𝑡+1 = 𝑦𝑡+2. A forward operator is also known as a lead operator.

frequency-domain analysis. Frequency-domain analysis is analysis of time-series data by considering

its frequency properties. The spectral density function and the spectral distribution function are key

components of frequency-domain analysis, so it is often called spectral analysis. In Stata, the cumsp
and pergram commands are used to analyze the sample spectral distribution and density functions,

respectively. psdensity estimates the spectral density or the spectral distribution function after esti-

mating the parameters of a parametric model using arfima, arima, or ucm.

gain (of a linear filter). The gain of a linear filter scales the spectral density of the unfiltered series

into the spectral density of the filtered series for each frequency. Specifically, at each frequency,

multiplying the spectral density of the unfiltered series by the square of the gain of a linear filter

yields the spectral density of the filtered series. If the gain at a particular frequency is 1, the filtered

and unfiltered spectral densities are the same at that frequency and the corresponding stochastic cycles

are passed through perfectly. If the gain at a particular frequency is 0, the filter removes all the

corresponding stochastic cycles from the unfiltered series.

GARCH model. A generalized autoregressive conditional heteroskedasticity (GARCH) model is a re-

gression model in which the conditional variance is modeled as an ARMA process. The GARCH(𝑚, 𝑘)
model is

𝑦𝑡 = x𝑡β + 𝜖𝑡

𝜎2
𝑡 = 𝛾0 + 𝛾1𝜖2

𝑡−1 + · · · + 𝛾𝑚𝜖2
𝑡−𝑚 + 𝛿1𝜎2

𝑡−1 + · · · + 𝛿𝑘𝜎2
𝑡−𝑘
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where the equation for 𝑦𝑡 represents the conditional mean of the process and 𝜎𝑡 represents the con-

ditional variance. See [TS] arch or Hamilton (1994, chap. 21) for details on how the conditional

variance equation can be viewed as an ARMA process. GARCH models are often used because the

ARMA specification often allows the conditional variance to be modeled with fewer parameters than

are required by a pure ARCH model. Many extensions to the basic GARCH model exist; see [TS] arch

for those that are implemented in Stata. See also ARCH model.

generalized least-squares estimator. A generalized least-squares (GLS) estimator is used to estimate

the parameters of a regression function when the error term is heteroskedastic or autocorrelated. In

the linear case, GLS is sometimes described as “OLS on transformed data” because the GLS estimator

can be implemented by applying an appropriate transformation to the dataset and then using OLS.

Granger causality. The variable x is said to Granger-cause variable y if, given the past values of y, past

values of x are useful for predicting y.

high-pass filter. Time-series filters are designed to pass or block stochastic cycles at specified frequen-

cies. High-pass filters, such as those implemented in tsfilter bw and tsfilter hp, pass through
stochastic cycles above the cutoff frequency and block all other stochastic cycles.

Holt–Winters smoothing. A set of methods for smoothing time-series data that assume that the value

of a time series at time 𝑡 can be approximated as the sum of a mean term that drifts over time, as well

as a time trend whose strength also drifts over time. Variations of the basic method allow for seasonal

patterns in data, as well.

impulse–response function. An impulse–response function (IRF) measures the effect of a shock to an

endogenous variable on itself or another endogenous variable. The 𝑘th impulse–response function

of variable 𝑖 on variable 𝑗 measures the effect on variable 𝑗 in period 𝑡 + 𝑘 in response to a one-unit

shock to variable 𝑖 in period 𝑡, holding everything else constant.
independent and identically distributed. A series of observations is independent and identically dis-

tributed (i.i.d.) if each observation is an independent realization from the same underlying distribu-

tion. In some contexts, the definition is relaxed to mean only that the observations are independent

and have identical means and variances; see Davidson and MacKinnon (1993, 42).

integrated process. A nonstationary process is integrated of order 𝑑, written I(𝑑), if the process must be
differenced 𝑑 times to produce a stationary series. An I(1) process 𝑦𝑡 is one in whichΔ𝑦𝑡 is stationary.

Kalman filter. The Kalman filter is a recursive procedure for predicting the state vector in a state-space

model.

lag operator. The lag operator 𝐿 denotes the value of a variable at time 𝑡 − 1. Formally, 𝐿𝑦𝑡 = 𝑦𝑡−1,

and 𝐿2𝑦𝑡 = 𝐿𝑦𝑡−1 = 𝑦𝑡−2.

lag polynomial. A lag polynomial is a function of the lag operator and the parameters of the model. For

the MA(𝑞) model given by

𝑦𝑡 = 𝜖𝑡 + 𝜃1𝜖𝑡−1 + · · · + 𝜃𝑞𝜖𝑡−𝑞

= (1 + 𝜃1𝐿 + · · · + 𝜃𝑞𝐿𝑞) 𝜖𝑡

= 𝜃 (𝐿) 𝜖𝑡

the lag polynomial is 𝜃(𝐿). Lag polynomials are a succinct way of writing time-series models.
lag-polynomial matrix. A lag-polynomial matrix is a matrix containing lag polynomials.

lead operator. See forward operator.
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linear filter. A linear filter is a sequence of weights used to compute a weighted average of a time series

at each time period. More formally, a linear filter 𝛼(𝐿) is

𝛼(𝐿) = 𝛼0 + 𝛼1𝐿 + 𝛼2𝐿2 + · · · =
∞

∑
𝜏=0

𝛼𝜏𝐿𝜏

where 𝐿 is the lag operator. Applying the linear filter 𝛼(𝐿) to the time series 𝑥𝑡 yields a sequence of

weighted averages of 𝑥𝑡:

𝛼(𝐿)𝑥𝑡 =
∞

∑
𝜏=0

𝛼𝜏𝐿𝜏𝑥𝑡−𝜏

long-memory process. A long-memory process is a stationary process whose autocorrelations decay at a

slower rate than a short-memory process. ARFIMAmodels are typically used to represent long-memory

processes, and ARMAmodels are typically used to represent short-memory processes.

moving-average (MA) process. A moving-average (MA) process is a time-series process in which the

current value of a variable is modeled as a weighted average of current and past realizations of a

white-noise process and, optionally, a time-invariant constant. By convention, the weight on the

current realization of the white-noise process is equal to one, and the weights on the past realizations

are known as the MA coefficients. A first-order MA process, denoted as an MA(1) process, is 𝑦𝑡 =
𝜃𝜖𝑡−1 + 𝜖𝑡.

multivariate GARCH models. Multivariate GARCH models are multivariate time-series models in

which the conditional covariance matrix of the errors depends on its own past and its past shocks.

The acute tradeoff between parsimony and flexibility has given rise to a plethora of models; see

[TS] mgarch.

Newey–West covariance matrix. The Newey–West covariance matrix is a member of the class of

heteroskedasticity- and autocorrelation-consistent (HAC) covariancematrix estimators usedwith time-

series data that produces covariance estimates that are robust to both arbitrary heteroskedasticity and

autocorrelation up to a prespecified lag.

one-step-ahead forecast. See static forecast.

orthogonalized impulse–response function. An orthogonalized impulse–response function (OIRF)

measures the effect of an orthogonalized shock to an endogenous variable on itself or another en-

dogenous variable. An orthogonalized shock is one that affects one variable at time 𝑡 but no other

variables. See [TS] irf create for a discussion of the difference between IRFs and OIRFs.

output gap. The output gap, sometimes called the GDP gap, is the difference between the actual output

of an economy and its potential output.

partial autocorrelation function. The partial autocorrelation function (PACF) expresses the correlation

between periods 𝑡 and 𝑡 − 𝑘 of a time series as a function of the time 𝑡 and lag 𝑘, after controlling
for the effects of intervening lags. For a stationary time series, the PACF does not depend on 𝑡. The
PACF is not symmetric about 𝑘 = 0: the partial autocorrelation between 𝑦𝑡 and 𝑦𝑡−𝑘 is not equal to

the partial autocorrelation between 𝑦𝑡 and 𝑦𝑡+𝑘.

periodogram. A periodogram is a graph of the spectral density function of a time series as a function

of frequency. The pergram command first standardizes the amplitude of the density by the sample

variance of the time series, and then plots the logarithm of that standardized density. Peaks in the

periodogram represent cyclical behavior in the data.

phase function. The phase function of a linear filter specifies how the filter changes the relative impor-

tance of the random components at different frequencies in the frequency domain.
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Phillips curve. The Phillips curve is a macroeconomic relationship between inflation and economic

activity, usually expressed as an equation involving inflation and the output gap. Historically, the

Phillips curve describes an inverse relationship between the unemployment rate and the rate of rises

in wages.

portmanteau statistic. The portmanteau, or 𝑄, statistic is used to test for white noise and is calculated

using the first 𝑚 autocorrelations of the series, where 𝑚 is chosen by the user. Under the null hy-

pothesis that the series is a white-noise process, the portmanteau statistic has a 𝜒2 distribution with

𝑚 degrees of freedom.

Prais–Winsten estimator. A Prais–Winsten estimator is a linear regression estimator that is used when

the error term exhibits first-order autocorrelation; see also Cochrane–Orcutt estimator. Here the first

observation in the dataset is transformed as ̃𝑦1 = √1 − 𝜌2 𝑦1 and x̃1 = √1 − 𝜌2 x1, so that the first

observation is not lost. The Prais–Winsten estimator is a generalized least-squares estimator.

priming values. Priming values are the initial, preestimation values used to begin a recursive process.

random walk. A random walk is a time-series process in which the current period’s realization is equal

to the previous period’s realization plus a white-noise error term: 𝑦𝑡 = 𝑦𝑡−1 + 𝜖𝑡. A random walk

with drift also contains a nonzero time-invariant constant: 𝑦𝑡 = 𝛿 + 𝑦𝑡−1 + 𝜖𝑡. The constant term

𝛿 is known as the drift parameter. An important property of random-walk processes is that the best

predictor of the value at time 𝑡 + 1 is the value at time 𝑡 plus the value of the drift parameter.
recursive regression analysis. A recursive regression analysis involves performing a regression at time

𝑡 by using all available observations from some starting time 𝑡0 through time 𝑡, performing another

regression at time 𝑡 + 1 by using all observations from time 𝑡0 through time 𝑡 + 1, and so on. Unlike

a rolling regression analysis, the first period used for all regressions is held fixed.

regressand. The regressand is the variable that is being explained or predicted in a regression model.

Synonyms include dependent variable, left-hand-side variable, and endogenous variable.

regressor. Regressors are variables in a regression model used to predict the regressand. Synonyms

include independent variable, right-hand-side variable, explanatory variable, predictor variable, and

exogenous variable.

rolling regression analysis. A rolling, or moving window, regression analysis involves performing re-

gressions for each period by using the most recent 𝑚 periods’ data, where 𝑚 is known as the window

size. At time 𝑡 the regression is fit using observations for times 𝑡 − 19 through time 𝑡; at time 𝑡 + 1

the regression is fit using the observations for time 𝑡 − 18 through 𝑡 + 1; and so on.

seasonal difference operator. The period-𝑠 seasonal difference operatorΔ𝑠 denotes the difference in the

value of a variable at time 𝑡 and time 𝑡−𝑠. Formally, Δ𝑠𝑦𝑡 = 𝑦𝑡 −𝑦𝑡−𝑠, andΔ2
𝑠𝑦𝑡 = Δ𝑠(𝑦𝑡 −𝑦𝑡−𝑠) =

(𝑦𝑡 − 𝑦𝑡−𝑠) − (𝑦𝑡−𝑠 − 𝑦𝑡−2𝑠) = 𝑦𝑡 − 2𝑦𝑡−𝑠 + 𝑦𝑡−2𝑠.

serial correlation. Serial correlation refers to regression errors that are correlated over time. If a re-

gression model does not contained lagged dependent variables as regressors, the OLS estimates are

consistent in the presence of mild serial correlation, but the covariance matrix is incorrect. When the

model includes lagged dependent variables and the residuals are serially correlated, the OLS estimates

are biased and inconsistent. See, for example, Davidson and MacKinnon (1993, chap. 10) for more

information.

serial correlation tests. Because OLS estimates are at least inefficient and potentially biased in the

presence of serial correlation, econometricians have developed many tests to detect it. Popular ones

include the Durbin–Watson (1950, 1951, 1971) test, the Breusch–Pagan (1980) test, and Durbin’s

(1970) alternative test. See [R] regress postestimation time series.

https://www.stata.com/manuals/tsglossary.pdf#tsGlossarywhite_noise
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryCochrane--Orcuttestimator
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryrolling_reg
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryendogenous_variable
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryexogenous_variable
https://www.stata.com/manuals/rregresspostestimationtimeseries.pdf#rregresspostestimationtimeseries
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smoothing. Smoothing a time series refers to the process of extracting an overall trend in the data. The

motivation behind smoothing is the belief that a time series exhibits a trend component as well as an

irregular component and that the analyst is interested only in the trend component. Some smoothers

also account for seasonal or other cyclical patterns.

spectral analysis. See frequency-domain analysis.

spectral density function. The spectral density function is the derivative of the spectral distribution

function. Intuitively, the spectral density function 𝑓(𝜔) indicates the amount of variance in a time

series that is attributable to sinusoidal components with frequency 𝜔. See also spectral distribution

function. The spectral density function is sometimes called the spectrum.

spectral distribution function. The (normalized) spectral distribution function 𝐹(𝜔) of a process de-
scribes the proportion of variance that can be explained by sinusoids with frequencies in the range

(0, 𝜔), where 0 ≤ 𝜔 ≤ 𝜋. The spectral distribution and density functions used in frequency-domain
analysis are closely related to the autocorrelation function used in time-domain analysis; see Chatfield

(2004, chap. 6) and Wei (2006, chap. 12).

spectrum. See spectral density function.

stability and stability condition. In the context of VAR models, a VAR process is stable if it has an

infinite-order vector moving-average representation. This is true if the modulus of each eigenvalue of

the lag-polynomial matrix of the VAR model is strictly less than 1.

state-space model. A state-space model describes the relationship between an observed time series and

an unobservable state vector that represents the “state” of the world. The measurement equation

expresses the observed series as a function of the state vector, and the transition equation describes

how the unobserved state vector evolves over time. By defining the parameters of the measurement

and transition equations appropriately, one can write a wide variety of time-series models in the state-

space form.

static forecast. A static forecast uses actual values wherever lagged values of the endogenous variables

appear in the model. As a result, static forecasts perform at least as well as dynamic forecasts, but

static forecasts cannot produce forecasts into the future if lags of the endogenous variables appear in

the model.

Because actual values will be missing beyond the last historical time period in the dataset, static

forecasts can forecast only one period into the future (assuming only first lags appear in the model);

thus they are often called one-step-ahead forecasts.

stationary process. A process is stationary if the joint distribution of 𝑦1, . . . , 𝑦𝑘 is the same as the joint

distribution of 𝑦1+𝜏, . . . , 𝑦𝑘+𝜏 for all 𝑘 and 𝜏. Intuitively, shifting the origin of the series by 𝜏 units has
no effect on the joint distributions; the marginal distribution of the series does not change over time.

A stationary process is also known as a strictly stationary process or a strongly stationary process.

See also covariance stationary process.

steady-state equilibrium. The steady-state equilibrium is the predicted value of a variable in a dynamic

model, ignoring the effects of past shocks, or, equivalently, the value of a variable, assuming that the

effects of past shocks have fully died out and no longer affect the variable of interest.

stochastic cycle. A stochastic cycle is a cycle characterized by an amplitude, phase, or frequency that

can be random functions of time. See cyclical component.

stochastic equation. A stochastic equation, in contrast to an identity, is an equation in a forecast model

that includes a random component, most often in the form of an additive error term. Stochastic equa-

tions include parameters that must be estimated from historical data.

https://www.stata.com/manuals/tsglossary.pdf#tsGlossarytrend
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryfrequency-domainanalysis
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryspectraldistributionfunction
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryspectraldistributionfunction
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryfrequency-domainanalysis
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryfrequency-domainanalysis
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryspectraldensityfunction
https://www.stata.com/manuals/tsglossary.pdf#tsGlossarylag_polynomial_matrix
https://www.stata.com/manuals/tsglossary.pdf#tsGlossarydynamic_forecast
https://www.stata.com/manuals/tsglossary.pdf#tsGlossarycov_stationary_process
https://www.stata.com/manuals/tsglossary.pdf#tsGlossarycyclical_component
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stochastic trend. A stochastic trend is a nonstationary random process. Unit-root process and random

coefficients on time are two common stochastic trends. See [TS] ucm for examples and discussions

of more commonly applied stochastic trends.

strictly stationary process. See stationary process.

strongly stationary process. See stationary process.

structural model. In time-series analysis, a structural model is one that describes the relationship among

a set of variables, based on underlying theoretical considerations. Structural models may contain both

endogenous and exogenous variables.

SVAR. A structural vector autoregressive (SVAR) model is a type of VAR model in which short- or long-

run constraints are placed on the resulting impulse–response functions. The constraints are usually

motivated by economic theory and therefore allow causal interpretations of the IRFs to be made.

time-domain analysis. Time-domain analysis is analysis of data viewed as a sequence of observations

observed over time. The autocorrelation function, linear regression, ARCHmodels, and ARIMAmodels

are common tools used in time-domain analysis.

trend. The trend specifies the long-run behavior in a time series. The trend can be deterministic or

stochastic. Many economic, biological, health, and social time series have long-run tendencies to

increase or decrease. Before the 1980s, most time-series analysis specified the long-run tendencies as

deterministic functions of time. Since the 1980s, the stochastic trends implied by unit-root processes

have become a standard part of the toolkit.

unit-root process. A unit-root process is one that is integrated of order one, meaning that the process

is nonstationary but that first-differencing the process produces a stationary series. The simplest ex-

ample of a unit-root process is the random walk. See Hamilton (1994, chap. 15) for a discussion of

when general ARMA processes may contain a unit root.

unit-root tests. Whether a process has a unit root has both important statistical and economic rami-

fications, so a variety of tests have been developed to test for them. Among the earliest tests pro-

posed is the one by Dickey and Fuller (1979), though most researchers now use an improved variant

called the augmented Dickey–Fuller test instead of the original version. Other common unit-root

tests implemented in Stata include the DF–GLS test of Elliott, Rothenberg, and Stock (1996) and the

Phillips–Perron (1988) test. See [TS] dfuller, [TS] dfgls, and [TS] pperron.

Variants of unit-root tests suitable for panel data have also been developed; see [XT] xtunitroot.

VAR. A vector autoregressive (VAR) model is a multivariate regression technique in which each depen-

dent variable is regressed on lags of itself and on lags of all the other dependent variables in the model.

Occasionally, exogenous variables are also included in the model.

VEC. A vector error-correction (VEC) model is a type of VAR model that is used with variables that

are cointegrated. Although first-differencing variables that are integrated of order one makes them

stationary, fitting a VAR model to such first-differenced variables results in misspecification error if

the variables are cointegrated. See The multivariate VEC model specification in [TS] vec intro for

more on this point.

weak stationary process. See covariance stationary process.

white-noise process. Avariable 𝑢𝑡 represents a white-noise process if the mean of 𝑢𝑡 is zero, the variance

of 𝑢𝑡 is 𝜎2, and the covariance between 𝑢𝑡 and 𝑢𝑠 is zero for all 𝑠 ≠ 𝑡.

https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryunit_root_process
https://www.stata.com/manuals/tsucm.pdf#tsucm
https://www.stata.com/manuals/tsglossary.pdf#tsGlossarystationary_process
https://www.stata.com/manuals/tsglossary.pdf#tsGlossarystationary_process
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryimpulse_response
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryARCH_model
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryARIMA_model
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryARMA_process
https://www.stata.com/manuals/tsdfuller.pdf#tsdfuller
https://www.stata.com/manuals/tsdfgls.pdf#tsdfgls
https://www.stata.com/manuals/tspperron.pdf#tspperron
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https://www.stata.com/manuals/tsvecintro.pdf#tsvecintro
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Yule–Walker equations. The Yule–Walker equations are a set of difference equations that describe the

relationship among the autocovariances and autocorrelations of an autoregressive moving-average

(ARMA) process.

References
Breusch, T. S., and A. R. Pagan. 1980. The Lagrange multiplier test and its applications to model specification in econo-

metrics. Review of Economic Studies 47: 239–253. https://doi.org/10.2307/2297111.

Chatfield, C. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman and Hall/CRC.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. NewYork: Oxford University Press.

Dickey, D.A., andW.A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal

of the American Statistical Association 74: 427–431. https://doi.org/10.2307/2286348.

Durbin, J. 1970. Testing for serial correlation in least-squares regressions when some of the regressors are lagged depen-

dent variables. Econometrica 38: 410–421. https://doi.org/10.2307/1909547.

Durbin, J., and G. S. Watson. 1950. Testing for serial correlation in least squares regression. I. Biometrika 37: 409–428.

https://doi.org/10.2307/2332391.

———. 1951. Testing for serial correlation in least squares regression. II. Biometrika 38: 159–177. https://doi.org/10.

2307/2332325.

———. 1971. Testing for serial correlation in least squares regression. III. Biometrika 58: 1–19. https://doi.org/10.2307/

2334313.

Elliott, G. R., T. J. Rothenberg, and J. H. Stock. 1996. Efficient tests for an autoregressive unit root. Econometrica 64:

813–836. https://doi.org/10.2307/2171846.

Hamilton, J. D. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press. https://doi.org/10.2307/j.

ctv14jx6sm.

Phillips, P. C. B., and P. Perron. 1988. Testing for a unit root in time series regression. Biometrika 75: 335–346. https:

//doi.org/10.2307/2336182.

Wei, W. W. S. 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Boston: Pearson.

https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryARMA_process
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryARMA_process
https://doi.org/10.2307/2297111
https://www.stata.com/bookstore/eie.html
https://doi.org/10.2307/2286348
https://doi.org/10.2307/1909547
https://doi.org/10.2307/2332391
https://doi.org/10.2307/2332325
https://doi.org/10.2307/2332325
https://doi.org/10.2307/2334313
https://doi.org/10.2307/2334313
https://doi.org/10.2307/2171846
https://doi.org/10.2307/j.ctv14jx6sm
https://doi.org/10.2307/j.ctv14jx6sm
https://doi.org/10.2307/2336182
https://doi.org/10.2307/2336182


Glossary 10

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

