
forecast solve — Obtain static and dynamic forecasts

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
forecast solve computes static or dynamic forecasts based on the model currently in memory.

Before you can solve a model, you must first create a new model using forecast create and add

equations and variables to it using the commands summarized in [TS] forecast.

Quick start
Compute dynamic forecast after forecast create and forecast estimates

forecast solve

Same as above, but with forecasts starting at 1990q1 and ending at 1995q3

forecast solve, begin(q(1990q1)) end(q(1995q3))

Same as above, and change prefix of predicted endogenous variables to hat
forecast solve, begin(q(1990q1)) end(q(1995q3)) prefix(hat)

Same as above, but forecast 11 periods starting at 1990q1

forecast solve, begin(q(1990q1)) prefix(hat) periods(11)

Incorporate forecast uncertainty via simulation, and store point forecasts and their standard deviations in

variables prefixed with d and sd
forecast solve, prefix(d_) ///

simulate(betas, statistic(stddev, prefix(sd_)))

Menu
Statistics > Time series > Forecasting
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Syntax
forecast solve [ , { prefix(stub) | suffix(stub) } options ]

options Description

Model
∗ prefix(string) specify prefix for forecast variables
∗ suffix(string) specify suffix for forecast variables

begin(time constant) specify period to begin forecasting
† end(time constant) specify period to end forecasting
† periods(#) specify number of periods to forecast

double store forecast variables as doubles instead of as floats
static produce static forecasts instead of dynamic forecasts

actuals use actual values if available instead of forecasts

Simulation

simulate(sim technique, sim statistic sim options)
specify simulation technique and options

Reporting

log(log level) specify level of logging display; log level may be detail,
on, brief, or off

Solver

vtolerance(#) specify tolerance for forecast values

ztolerance(#) specify tolerance for function zero

iterate(#) specify maximum number of iterations

technique(technique) specify solution method; may be dampedgaussseidel #,

gaussseidel, broydenpowell, or newtonraphson
∗ You can specify prefix() or suffix() but not both.

† You can specify end() or periods() but not both.

collect is allowed; see [U] 11.1.10 Prefix commands.

sim technique Description

betas draw multivariate-normal parameter vectors

errors draw additive errors from multivariate normal distribution

residuals draw additive residuals based on static forecast errors

You can specify one or two sim methods separated by a space, though you cannot specify both errors and residuals.

sim statistic is

statistic(statistic, {prefix(string) | suffix(string)})

and may be repeated up to three times.

statistic Description

mean record the mean of the simulation forecasts

variance record the variance of the simulation forecasts

stddev record the standard deviation of the simulation forecasts

https://www.stata.com/manuals/tsforecastsolve.pdf#tsforecastsolveSyntaxsim_technique
https://www.stata.com/manuals/tsforecastsolve.pdf#tsforecastsolveSyntaxsim_statistic
https://www.stata.com/manuals/tsforecastsolve.pdf#tsforecastsolveSyntaxsim_options
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/tsforecastsolve.pdf#tsforecastsolveSyntaxstatistic


forecast solve — Obtain static and dynamic forecasts 3

sim options Description

saving(filename, . . .) save results to file; save statistics in double precision; save results to
filename every # replications

nodots suppress replication dots

reps(#) perform # replications; default is reps(50)

Options

� � �
Model �

prefix(string) and suffix(string) specify a name prefix or suffix that will be used to name the

variables holding the forecast values of the variables in the model. You may specify prefix() or

suffix() but not both. Sometimes, it is more convenient to have all forecast variables start with the

same set of characters, while other times, it is more convenient to have all forecast variables end with

the same set of characters.

If you specify prefix(f ), then the forecast values of endogenous variables x, y, and zwill be stored
in new variables f x, f y, and f z.

If you specify suffix( g), then the forecast values of endogenous variables x, y, and zwill be stored
in new variables x g, y g, and z g.

begin(time constant) requests that forecast begin forecasting at period time constant. By default,

forecast determines when to begin forecasting automatically.

end(time constant) requests that forecast end forecasting at period time constant. By default,

forecast produces forecasts for all periods on or after begin() in the dataset.

periods(#) specifies the number of periods after begin() to forecast. By default, forecast produces

forecasts for all periods on or after begin() in the dataset.

double requests that the forecast and simulation variables be stored in double precision. The default is

to use single-precision floats. See [D] Data types for more information.

static requests that static forecasts be produced. Actual values of variables are used wherever lagged

values of the endogenous variables appear in the model. By default, dynamic forecasts are produced,

which use the forecast values of variables wherever lagged values of the endogenous variables appear

in the model. Static forecasts are also called one-step-ahead forecasts.

actuals specifies how nonmissing values of endogenous variables in the forecast horizon are treated.

By default, nonmissing values are ignored, and forecasts are produced for all endogenous variables.

When you specify actuals, forecast sets the forecast values equal to the actual values if they are

nonmissing. The forecasts for the other endogenous variables are then conditional on the known

values of the endogenous variables with nonmissing data.

https://www.stata.com/manuals/ddatatypes.pdf#dDatatypes
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� � �
Simulation �

simulate(sim technique, sim statistic sim options) allows you to simulate your model to obtain

measures of uncertainty surrounding the point forecasts produced by the model. Simulating a model

involves repeatedly solving the model, each time accounting for the uncertainty associated with the

error terms and the estimated coefficient vectors.

sim technique can be betas, errors, or residuals, or you can specify both betas and one of

errors or residuals separated by a space. You cannot specify both errors and residuals.
The sim technique controls how uncertainty is introduced into the model.

sim statistic specifies a summary statistic to summarize the forecasts over all the simulations.

sim statistic takes the form

statistic(statistic, { prefix(string) | suffix(string) })

where statisticmay be mean, variance, or stddev. You may specify either the prefix or the suffix
that will be used to name the variables that will contain the requested statistic. You may specify up

to three sim statistics, allowing you to track the mean, variance, and standard deviations of your

forecasts.

sim options include saving(filename[ , suboptions ]), nodots, and reps(#).

saving(filename[ , suboptions ]) creates a Stata data file (.dta file) consisting of (for each en-

dogenous variable in the model) a variable containing the simulated values.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals.

By default, they are saved as floats, meaning 4-byte reals.

replace specifies that filename be overwritten if it exists.

every(#) specifies that results be written to disk every #th replication. every() should be speci-

fied only in conjunction with saving() when the command takes a long time for each replication.

This will allow recovery of partial results should some other software crash your computer. See

[P] postfile.

nodots suppresses display of the replication dots. By default, one dot character is displayed for

each successful replication. If during a replication convergence is not achieved, forecast
solve exits with an error message.

reps(#) requests that forecast solve perform # replications; the default is reps(50).

� � �
Reporting �

log(log level) specifies the level of logging provided while solving the model. log level may be

detail, on, brief, or off.

log(detail) provides a detailed iteration log including the current values of the convergence criteria
for each period in each panel (in the case of panel data) for which the model is being solved.

log(on), the default, provides an iteration log showing the current panel and period for which the

model is being solved as well as a sequence of dots for each period indicating the number of iterations.

log(brief), when used with a time-series dataset, is equivalent to log(on). When used with a panel

dataset, log(brief) produces an iteration log showing the current panel being solved but does not

show which period within the current panel is being solved.

log(off) requests that no iteration log be produced.

https://www.stata.com/manuals/ppostfile.pdf#ppostfile
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� � �
Solver �

vtolerance(#), ztolerance(#), and iterate(#) control when the solver of the system of

equations stops. ztolerance() is ignored if either technique(dampedgaussseidel #) or

technique(gaussseidel) is specified. These options are seldom used. See [M-5] solvenl( ).

technique(technique) specifies the technique to use to solve the system of equations. technique may

be dampedgaussseidel #, gaussseidel, broydenpowell, or newtonraphson, where 0 < # < 1

specifies the amount of damping with smaller numbers indicating less damping. The default is

technique(dampedgaussseidel 0.2), which works well in most situations. If you have conver-

gence issues, first try continuing to use dampedgaussseidel # but with a larger damping factor.

Techniques broydenpowell and newtonraphson usually work well, but because they require the

computation of numerical derivatives, they tend to be much slower. See [M-5] solvenl( ).

Remarks and examples
For an overview of the forecast commands, see [TS] forecast. This manual entry assumes you have

already read that manual entry. The forecast solve command solves a forecast model in Stata. Before

you can solve a model, you must first create a model using forecast create, and you must add at

least one equation using forecast estimates, forecast coefvector, or forecast identity. We

covered the most commonly used options of forecast solve in the examples in [TS] forecast.

Here we focus on two sets of options that are available with forecast solve. First, we discuss the
actuals option, which allows you to obtain forecasts conditional on prespecified values for one or more

of the endogenous variables. Then we focus on performing simulations to obtain estimates of uncertainty

around the point forecasts.

Remarks are presented under the following headings:

Performing conditional forecasts
Using simulations to measure forecast accuracy

Performing conditional forecasts
Sometimes, you already know the values of some of the endogenous variables in the forecast horizon

and would like to obtain forecasts for the remaining endogenous variables conditional on those known

values. Other times, you may not know the values but would nevertheless like to specify a path for some

endogenous variables and see how the others would evolve conditional on that path. To accomplish these

types of exercises, you can use the actuals option of forecast solve.

https://www.stata.com/manuals/m-5solvenl.pdf#m-5solvenl()
https://www.stata.com/manuals/m-5solvenl.pdf#m-5solvenl()
https://www.stata.com/manuals/tsforecast.pdf#tsforecast
https://www.stata.com/manuals/tsforecast.pdf#tsforecast
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Example 1: Specifying alternative scenarios
gdpoil.dta contains quarterly data on the annualized growth rate of GDP and the percentage change

in the quarterly average price of oil through the end of 2007. We want to explore how GDP would have

evolved if the price of oil had risen 10% in each of the first three quarters of 2008 and then held steady

for several years. We will use a bivariate vector autoregressive (VAR) model to forecast the variables

gdp and oil. Results obtained from the varsoc command indicate that the Hannan–Quinn information

criterion is minimized when the VAR model includes two lags. First, we fit our VAR model and store the

estimation results:

. use https://www.stata-press.com/data/r19/gdpoil

. var gdp oil, lags(1 2)
Vector autoregression
Sample: 1986q4 thru 2007q4 Number of obs = 85
Log likelihood = -500.0749 AIC = 12.00176
FPE = 559.0724 HQIC = 12.11735
Det(Sigma_ml) = 441.7362 SBIC = 12.28913
Equation Parms RMSE R-sq chi2 P>chi2

gdp 5 1.88516 0.1820 18.91318 0.0008
oil 5 11.8776 0.1140 10.93614 0.0273

Coefficient Std. err. z P>|z| [95% conf. interval]

gdp
gdp
L1. .1498285 .1015076 1.48 0.140 -.0491227 .3487797
L2. .3465238 .1022446 3.39 0.001 .146128 .5469196

oil
L1. -.0374609 .0167968 -2.23 0.026 -.070382 -.0045399
L2. .0119564 .0164599 0.73 0.468 -.0203043 .0442172

_cons 1.519983 .4288145 3.54 0.000 .6795226 2.360444

oil
gdp
L1. .8102233 .6395579 1.27 0.205 -.4432871 2.063734
L2. 1.090244 .6442017 1.69 0.091 -.1723684 2.352856

oil
L1. .0995271 .1058295 0.94 0.347 -.1078949 .3069491
L2. -.1870052 .103707 -1.80 0.071 -.3902672 .0162568

_cons -4.041859 2.701785 -1.50 0.135 -9.33726 1.253543

. estimates store var

The dataset ends in the fourth quarter of 2007, so before we can produce forecasts for 2008 and beyond,

we need to extend our dataset. We can do that using the tsappend command. Here we extend our dataset
three years:

. tsappend, add(12)
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Now we can create a forecast model and obtain baseline forecasts:

. forecast create oilmodel
Forecast model oilmodel started.

. forecast estimates var
Added estimation results from var.
Forecast model oilmodel now contains 2 endogenous variables.

. forecast solve, prefix(bl_)
Computing dynamic forecasts for model oilmodel.

Starting period: 2008q1
Ending period: 2010q4
Forecast prefix: bl_
2008q1: .................
(output omitted )

2010q4: ............
Forecast 2 variables spanning 12 periods.

To see how GDP evolves if oil prices increase 10% in each of the first three quarters of 2008 and then

remain flat, we need to obtain a forecast for gdp conditional on a specified path for oil. The actuals
option of forecast solve will do that for us. With the actuals option, if an endogenous variable

contains a nonmissing value for the period currently being forecast, forecast solve will use that value

as the forecast, overriding whatever value might be produced by that variable’s underlying estimation

result or identity. Then the endogenous variables with missing values will be forecast conditional on the

endogenous variables that do have valid data. Here we fill in oil with our hypothesized price path:

. replace oil = 10 if qdate == tq(2008q1)
(1 real change made)
. replace oil = 10 if qdate == tq(2008q2)
(1 real change made)
. replace oil = 10 if qdate == tq(2008q3)
(1 real change made)
. replace oil = 0 if qdate > tq(2008q3)
(9 real changes made)

Now we obtain forecasts conditional on our oil variable. We will use the prefix alt for these

forecast variables:

. forecast solve, prefix(alt_) actuals
Computing dynamic forecasts for model oilmodel.

Starting period: 2008q1
Ending period: 2010q4
Forecast prefix: alt_
2008q1: ...............
(output omitted )

2010q4: ...........
Forecast 2 variables spanning 12 periods.
Forecasts used actual values if available.
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Finally, we make a variable containing the difference between our alternative and our baseline gdp fore-

casts and graph it:

. generate diff_gdp = alt_gdp - bl_gdp
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Assumes oil increases 10% for 3 quarters, then holds steady.

Oil's effect on GDP

Our model indicates GDP growth would be about 0.4% less in the second through fourth quarters of

2008 than it would otherwise be, but would be mostly unaffected thereafter if oil prices followed our

hypothetical path. The one-quarter lag in the response of GDP is due to our using a VAR model. In our

VAR model, lagged values of oil predict the current value of gdp, but the current value of oil does not.

Technical note
The previous example allowed us to demonstrate forecast solve’s actuals option, but in fact

measuring the economy’s response to oil shocks is much more difficult than our simple VAR analysis

would suggest. One obvious complication is that positive and negative oil price shocks do not have

symmetric effects on the economy. In our simple model, if a 50% increase in oil prices lowers GDP by

𝑥%, then a 50% decrease in oil prices must raise GDP by 𝑥%. However, a 50% decrease in oil prices is

perhaps more likely to portend weakness in the economy rather than an imminent growth spurt. See, for

example, Hamilton (2003) and Kilian and Vigfusson (2013).

Another way to specify alternative scenarios for your forecasts is to use the forecast adjust com-

mand. That command is more flexible in the types of manipulations you can perform on endogenous

variables but, depending on the task at hand, may involve more effort. The actuals option of the

forecast solve and the forecast adjust commands are complementary. There is much overlap in

what you can achieve; in some situations, specifying the actuals option will be easier, while in other

situations, using adjustments via forecast adjust will prove to be easier.

https://www.stata.com/manuals/tsforecastsolve.pdf#tsforecastsolveRemarksandexamplesex1_fcsolve
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Using simulations to measure forecast accuracy
To motivate the discussion, we will focus on the simple linear regression model. Even though

forecast can handle models with many equations with equal ease, all the issues that arise can be il-

lustrated with one equation. Suppose we have the following relationship between variables 𝑦 and 𝑥:

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝜖𝑡 (1)

where 𝜖𝑡 is a zero-mean error term. Say we fit (1) by ordinary least squares (OLS) using observations

1, . . . , 𝑇 and obtain the point estimates ̂𝛼 and ̂𝛽. Assuming we have data for exogenous variable 𝑥 at

time 𝑇 + 1, we could forecast 𝑦𝑇 +1 as

̂𝑦𝑇 +1 = ̂𝛼 + ̂𝛽𝑥𝑇 +1 (2)

However, there are several factors that prevent us from guaranteeing ex ante that 𝑦𝑇 +1 will indeed equal

̂𝑦𝑇 +1. We must assume that (1) specifies the correct relationship between 𝑦 and 𝑥. Even if that relation-
ship held for times 1 through 𝑇, are we sure it will hold at time 𝑇 +1? Uncertainty due to issues like that

are inherent to the type of forecasting that the forecast commands are designed for. Here we discuss

two additional sources of uncertainty that forecast solve can help you measure.

First, we estimated 𝛼 and 𝛽 by OLS to obtain ̂𝛼 and ̂𝛽, but we must emphasize the word estimated. Our
estimates are subject to sampling error. When you fit a regression using regress or any other estimation

command, Stata presents not just the point estimates of the parameters but also the standard errors and

confidence intervals representing the level of uncertainty surrounding those point estimates. Uncertainty

surrounding the true values of 𝛼 and 𝛽 mean that there is some level of uncertainty surrounding our

predicted value ̂𝑦𝑇 +1 as well.

Second, (1) states that 𝑦𝑡 depends not just on 𝛼, 𝛽, and 𝑥𝑡 but also on an unobserved error term 𝜖𝑡.

When we make our forecast using (2), we assume that the error term will equal its expected value of

zero. Saying a random error has an expected value of zero is clearly not the same as saying it will be

zero every time. If a positive outside shock occurs at 𝑇 + 1, 𝑦𝑇 +1 will be higher than our estimate based

on (2) would lead us to believe.

Fortunately, quantifying both these sources of uncertainty is straightforward using simulation. First,

we solve our model as usual, providing us with our point forecasts. To see how uncertainty surrounding

our estimated parameters affects our forecasts, we can take random draws from a multivariate normal

distribution whose mean is ( ̂𝛼, ̂𝛽) and whose variance is the covariance matrix produced by regress.
We then solve our model using these randomly drawn parameters rather than the original point estimates.

If we repeat the process of drawing random parameters and solving the model many times, we can use

the variance or standard deviation across replications for each time period as a measure of uncertainty.

To account for uncertainty surrounding the error term, we can also use simulation. Here, at each

replication, we add a random noise term to our forecast for 𝑦𝑇 +1, where we draw our random errors such

that they have the same characteristics as 𝜖𝑡. There are two ways we can do that. First, all the estimation

commands commonly used in forecasting provide us with an estimate of the variance or standard devi-

ation of the error term. For example, regress labels the estimated standard deviation of the error term

“Root RMSE” and conveniently saves it in a macro that forecast can access. If we are willing to assume
that all the errors in the equations in our model are normally distributed, then we can use random-normal

errors drawn with means equal to zero and variances as reported by the estimation command used to fit

each equation.
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Sometimes the assumption of normality is unpalatable. In those cases, an alternative is to solve the

model to obtain static forecasts and then compute the sample residuals based on the observations for

which we have nonmissing values of the endogenous variables. Then in our simulations, we randomly

choose one of the residuals observed for that equation.

At each replication, whether we draw errors based on the normal errors or from the pool of static-

forecast residuals, we add the drawn value to our estimate of ̂𝑦𝑇 +1 to provide a simulated value for our

forecast. Then, just like when simulating parameter uncertainty, we can use the variance or standard

deviation across replications to measure uncertainty. In fact, we can perform simulations that draw both

random parameters and random errors to account for both sources of uncertainty at once.

Example 2: Accounting for parameter uncertainty
Here we revisit our Klein (1950) model from example 1 of [TS] forecast and perform simulations in

which we account for uncertainty associated with the estimated parameters of the model. First, we load

the dataset and set up our model:

. use https://www.stata-press.com/data/r19/klein2, clear

. quietly reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y)
> exog(t wg g)
. estimates store klein
. forecast create kleinmodel, replace

(Forecast model oilmodel ended.)
Forecast model kleinmodel started.

. forecast estimates klein
Added estimation results from reg3.
Forecast model kleinmodel now contains 3 endogenous variables.

. forecast identity y = c + i + g
Forecast model kleinmodel now contains 4 endogenous variables.

. forecast identity p = y - t - wp
Forecast model kleinmodel now contains 5 endogenous variables.

. forecast identity k = L.k + i
Forecast model kleinmodel now contains 6 endogenous variables.

. forecast identity w = wg + wp
Forecast model kleinmodel now contains 7 endogenous variables.

. forecast exogenous wg
Forecast model kleinmodel now contains 1 declared exogenous variable.

. forecast exogenous g
Forecast model kleinmodel now contains 2 declared exogenous variables.

. forecast exogenous t
Forecast model kleinmodel now contains 3 declared exogenous variables.

. forecast exogenous yr
Forecast model kleinmodel now contains 4 declared exogenous variables.

https://www.stata.com/manuals/tsforecast.pdf#tsforecastRemarksandexamplesex_klein
https://www.stata.com/manuals/tsforecast.pdf#tsforecast
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Now we are ready to solve our model. We are going to begin dynamic forecasts in 1936, and we

are going to perform 100 replications. We will store the point forecasts in variables prefixed with d ,

and we will store the standard deviations of our forecasts in variables prefixed with sd . Because the

simulations involve the use of random numbers, we must remember to set the random-number seed if

we want to be able to replicate our results; see [R] set seed. We type

. set seed 1

. forecast solve, prefix(d_) begin(1936)
> simulate(betas, statistic(stddev, prefix(sd_)) reps(100))
Computing dynamic forecasts for model kleinmodel.

Starting period: 1936
Ending period: 1941
Forecast prefix: d_
1936: ............................................
1937: ..........................................
1938: .............................................
1939: .............................................
1940: ............................................
1941: ..............................................
Performing simulations (100): .......................
> ........................... 50
.................................................. 100
Forecast 7 variables spanning 6 periods.

The key here is the simulate() option. We requested that forecast solve perform 100 simulations by

taking random draws for the parameters (betas), and we requested that it record the standard deviation
(stddev) of each endogenous variable in new variables that begin with sd . Next we compute the upper

and lower bounds of a 95% prediction interval for our forecast of total income y:

. generate d_y_up = d_y + invnormal(0.975)*sd_y
(16 missing values generated)
. generate d_y_dn = d_y + invnormal(0.025)*sd_y
(16 missing values generated)

https://www.stata.com/manuals/rsetseed.pdf#rsetseed
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We obtained 16 missing values after each generate because the simulation summary variables only

contain nonmissing data for the periods in which forecasts were made. The point-forecast variables

that begin with d in this example are filled in with the corresponding actual values of the endogenous

variables for periods before the beginning of the forecast horizon; in our experience, having both the

historical data and forecasts in one set of variables simplifies many tasks. Here we graph our forecast of

total income along with the 95% prediction interval:
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95% confidence bands based on parameter uncertainty.

Total income

Our next example will use the same forecast model, but we will not need the forecast variables we

just created. forecast drop makes removing those variables easy:

. forecast drop
(dropped 14 variables)

forecast drop drops all variables created by the previous invocation of forecast solve, including
both the point-forecast variables and any variables that contain simulation results. In this case, forecast
drop will remove all the variables that begin with sd as well as d y, d c, d i, and so on. However, we
are not done yet. We created the variables d y dn and d y up ourselves, and they were not part of the

forecast model. Therefore, they are not removed by forecast drop, and we need to do that ourselves:

. drop d_y_dn d_y_up
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Example 3: Accounting for both parameter uncertainty and random errors
In the previous example, we measured uncertainty in our model stemming from the fact that our

parameters were estimated. Here we not only simulate random draws for the parameters but also add

random-normal errors to the stochastic equations. We type

. set seed 1

. forecast solve, prefix(d_) begin(1936)
> simulate(betas errors, statistic(stddev, prefix(sd_)) reps(100))
Computing dynamic forecasts for model kleinmodel.

Starting period: 1936
Ending period: 1941
Forecast prefix: d_
1936: ............................................
1937: ..........................................
1938: .............................................
1939: .............................................
1940: ............................................
1941: ..............................................
Performing simulations (100): .......................
> ........................... 50
.................................................. 100
Forecast 7 variables spanning 6 periods.

The only difference between this call to forecast solve and the one in the previous example is that

here we specified betas errors in the simulate() option rather than just betas. Had we wanted to
perform simulations involving the parameters and random draws from the pool of static-forecast residuals

rather than random-normal errors, we would have specified betas residuals. After we re-create the
variables containing the bounds on our prediction interval, we obtain the following graph:
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Dashed lines denote forecast values.
95% confidence bands based on parameter uncertainty and normally distributed errors.

Total income

Notice that by accounting for both parameter and additive error uncertainty, our prediction interval be-

came much wider.

https://www.stata.com/manuals/tsforecastsolve.pdf#tsforecastsolveRemarksandexamplesex2
https://www.stata.com/manuals/tsforecastsolve.pdf#tsforecastsolveRemarksandexamplesex2
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Stored results
forecast solve stores the following in r():
Scalars

r(first obs) first observation in forecast horizon

r(last obs) last observation in forecast horizon

(of first panel if forecasting panel data)

r(Npanels) number of panels forecast

r(Nvar) number of forecast variables

r(vtolerance) tolerance for forecast values

r(ztolerance) tolerance for function zero

r(iterate) maximum number of iterations

r(sim nreps) number of simulations

r(damping) damping parameter for damped Gauss–Seidel

Macros

r(prefix) forecast variable prefix

r(suffix) forecast variable suffix

r(actuals) actuals, if specified
r(static) static, if specified
r(double) double, if specified
r(technique) solution method

r(sim technique) specified sim technique

r(logtype) on, off, brief, or detail

Methods and formulas
Formalizing the definition of amodel provided in [TS] forecast, we represent the endogenous variables

in the model as the 𝑘 × 1 vector y, and we represent the exogenous variables in the model as the 𝑚 × 1

vector x. We refer to the contemporaneous values as y𝑡 and x𝑡; for notational simplicity, we refer to lagged

values as y𝑡−1 and x𝑡−1 with the implication that further lags of the variables can also be included with

no loss of generality. We use θ to refer to the vector of all the estimated parameters in all the equations

of the model. We use u𝑡 and u𝑡−1 to refer to contemporaneous and lagged error terms, respectively.

The forecast commands solve models of the form

𝑦𝑖𝑡 = 𝑓𝑖(y−𝑖,𝑡, y𝑡−1, x𝑡, x𝑡−1,ut,u𝑡−1;θ) (3)
where 𝑖 = 1, . . . , 𝑘 and y−𝑖,𝑡 refers to the 𝑘 − 1× 1 vector of endogenous variables other than 𝑦𝑖 at time

𝑡. If equation 𝑗 is an identity, we take 𝑢𝑗𝑡 = 0 for all 𝑡; for stochastic equations, the errors correspond to
the usual regression error terms. Equation (3) does not include subscripts indexing panels for notational

simplicity, but the extension is obvious. Amodel is solvable if 𝑘 ≥ 1. 𝑚 may be zero.

Endogenous variables are added to the forecast model via forecast estimates, forecast
identity, and forecast coefvector. Equations added via forecast estimates are always stochas-
tic, while equations added via forecast identity are always nonstochastic. Equations added via

forecast coefvector are treated as stochastic if options variance() or errorvariance() (or both)

are specified and nonstochastic if neither is specified.

Exogenous variables are declared using forecast exogenous, but the model may contain additional
exogenous variables. For example, the right-hand side of an equation may contain exogenous variables

that are not declared using forecast exogenous. Before solving the model, forecast solve deter-

mines whether the declared exogenous variables contain missing values over the forecast horizon and

issues an informative error message if any do. Undeclared exogenous variables that contain missing val-

ues within the forecast horizon will cause forecast solve to exit with a less-informative error message

and require the user to do more work to pinpoint the problem.
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Adjustments added via forecast adjust easily fit within the framework of (3). Simply let 𝑓𝑖(⋅) rep-
resent the value of 𝑦𝑖𝑡 obtained by first evaluating the appropriate estimation result, coefficient vector,

or identity and then performing the adjustments based on that intermediate result. Endogenous variables

may have multiple adjustments; adjustments are made in the order in which they were specified via

forecast adjust. For single-equation estimation results and coefficient vectors as well as identities,

adjustments are performed right after the equation is evaluated. For multiple-equation estimation results

and coefficient vectors, adjustments are made after all the equations within that set of results are evalu-

ated. Suppose an estimation result that uses predict includes two left-hand-side variables, 𝑦1𝑡 and 𝑦2𝑡,

and you have added two adjustments to 𝑦1𝑡 and one adjustment to 𝑦2𝑡. Here forecast solve first calls

predict twice to obtain candidate values for 𝑦1𝑡 and 𝑦2𝑡; then it performs the two adjustments to 𝑦1𝑡,

and finally it adjusts 𝑦2𝑡.

forecast solve offers four solution techniques: Gauss–Seidel, damped Gauss–Seidel, Broy-

den–Powell, and Newton–Raphson. The Gauss–Seidel techniques are simple iterative techniques that

are often fast and typically work well, particularly when a damping factor is used. Gauss–Seidel is sim-

ply damped Gauss–Seidel without damping (a damping factor of 0). By default, damped Gauss–Seidel

with a damping factor of 0.2 is used, representing a small amount of damping. As Fair (1984, 250)

notes, while these techniques often work well, there is no guarantee that they will converge. Technique

Newton–Raphson typically works well but is slow because it requires the use of numerical derivatives at

every iteration to obtain a Jacobian matrix. The Broyden–Powell (Broyden 1970; Powell 1970) method

is analogous to quasi-Newton methods used for function optimization in that an updating method is used

at each iteration to update an estimate of the Jacobian matrix rather than actually recalculating it. For

additional details as well as a discussion of the convergence criteria, see [M-5] solvenl( ).

If you do not specify the begin() option, forecast solve uses the following algorithm to select the

starting time period. Suppose the time variable 𝑡 runs from 1 to 𝑇. If, at time 𝑇, none of the endogenous
variables contains missing values, forecast solve exits with an error message: there are no periods

in which the endogenous variables are not known; therefore, there are no periods where a forecast is

obviously required. Otherwise, consider period 𝑇 − 1. If none of the endogenous variables contains

missing values in that period, then the only period to forecast is 𝑇. Otherwise, work back through time
to find the latest period in which all the endogenous variables contain nonmissing values and then begin

forecasting in the subsequent period. In the case of panel datasets, the same algorithm is applied to each

panel, and forecasts for all panels begin on the earliest period selected.

When you specify the simulate() option with sim technique betas, forecast solve draws ran-

dom vectors from the multivariate normal distribution for each estimation result individually. The mean

and variance are based on the estimation result’s e(b) and e(V) macros, respectively. If the estima-

tion result is from a multiple-equation estimator, the corresponding Stata command stores in e(b) and

e(V) the full parameter vector and covariance matrix for all equations so that forecast solve’s sim-
ulations will account for covariances among parameters in that estimation result’s equations. However,

covariances among parameters that appear in different estimation results are taken to be zero.

If you specify a coefficient vector using forecast coefvector and specify a variance matrix in the

variance() option, then those coefficient vectors are simulated just like the parameter vectors from

estimation results. If you do not specify the variance() option, then the coefficient vector is assumed

to be nonstochastic and therefore is not simulated.

When you specify the simulate() option with sim technique residuals, forecast solve first

obtains static forecasts from your model for all possible periods. For each endogenous variable defined

by a stochastic equation, it then computes residuals as the forecast value minus the actual value for

all observations with nonmissing data. At each replication and for each period in the forecast horizon,

https://www.stata.com/manuals/tsforecastsolve.pdf#tsforecastsolveMethodsandformulaseq3
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forecast solve randomly selects one element from each stochastic equation’s pool of residuals before

solving the model for that replication and period. Then whenever forecast solve evaluates a stochas-

tic equation, it adds the chosen element to the predicted value for that equation. Suppose an estimation

result represents a multiple-equation estimator with 𝑚 equations, and suppose that there are 𝑛 time pe-

riods for which sample residuals are available. Arrange the residuals into the 𝑛 × 𝑚 matrix R. Then

when forecast solve is randomly selecting residuals for this estimation result, it will choose a random

number 𝑗 between 1 and 𝑛 and select the entire 𝑗th row from R. That preserves the correlation structure

among the error terms of the estimation result’s equations.

If you specify a coefficient vector using forecast coefvector and specify either the variance()
option or the errorvariance() option (or both), sim technique residuals considers the equation

represented by the coefficient vector to be stochastic and resamples residuals for that equation.

When you specify the simulate() option with sim technique errors, forecast solve, for each
stochastic equation, replication, and period, takes a random draw from a multivariate normal distribution

with zero mean before solving the model for that replication and period. Then whenever forecast
solve evaluates a stochastic equation, it adds that random draw to the predicted value for that equation.

The variance of the distribution from which errors are drawn is based on the estimation results for that

equation. The forecast commands look in e(rmse), e(sigma), and e(Sigma) to find the estimated

variance. If you add an estimation result that does not set any of those three macros and you request

sim technique errors, forecast solve exits with an error message. Multiple-equation commands

typically set e(Sigma) so that the randomly drawn errors reflect the estimated error correlation structure.

If you specify a coefficient vector using forecast coefvector and specify the errorvariance()
option, sim technique errors simulates errors for that equation. Otherwise, the equation is treated like

an identity and no errors are added.

forecast solve solves panel-data models by solving for all periods in the forecast horizon for the

first panel in the dataset, then the second dataset, and so on. When you perform simulations with panel

datasets, one replication is completed for all panels in the dataset before moving to the next replication.

Simulations that include residual resampling select residuals from the pool containing residuals for all

panels; forecast solve does not restrict itself to the static-forecast residuals for a single panel when

simulating that panel.
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