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Description
arfima estimates the parameters of autoregressive fractionally integrated moving-average (ARFIMA)

models.

Long-memory processes are stationary processes whose autocorrelation functions decay more slowly

than short-memory processes. The ARFIMA model provides a parsimonious parameterization of long-

memory processes that nests the autoregressive moving-average (ARMA) model, which is widely used

for short-memory processes. By allowing for fractional degrees of integration, the ARFIMA model also

generalizes the autoregressive integrated moving-average (ARIMA) model with integer degrees of inte-

gration. See [TS] arima for ARMA and ARIMA parameter estimation.

Quick start
Autoregressive fractionally integrated moving-average model for y with regressor x using tsset data

arfima y x

Add autoregressive components of orders 1 and 2 and a moving-average component of order 4

arfima y x, ar(1 2) ma(4)

ARIMA for y with autoregressive components of orders 1 and 2
arfima y, ar(1 2) smemory

Menu
Statistics > Time series > ARFIMA > ARFIMA models
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Syntax
arfima depvar [ indepvars ] [ if ] [ in ] [ , options ]

options Description

Model

noconstant suppress constant term

ar(numlist) autoregressive terms

ma(numlist) moving-average terms

smemory estimate short-memory model without fractional integration

mle maximum likelihood estimates; the default

mpl maximum modified-profile-likelihood estimates

constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

You must tsset your data before using arfima; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

ar(numlist) specifies the autoregressive (AR) terms to be included in the model. An AR(𝑝), 𝑝 ≥ 1,

specification would be ar(1/p). This model includes all lags from 1 to 𝑝, but not all lags need to
be included. For example, the specification ar(1 𝑝) would specify an AR(𝑝) with only lags 1 and 𝑝
included, setting all the other AR lag parameters to 0.

ma(numlist) specifies the moving-average terms to be included in the model. These are the terms for the
lagged innovations (white-noise disturbances). ma(1/𝑞), 𝑞 ≥ 1, specifies an MA(𝑞) model, but like
the ar() option, not all lags need to be included.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaOptionsdisplay_options
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaOptionsmaxopts
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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smemory causes arfima to fit a short-memory model with 𝑑 = 0. This option causes arfima to estimate
the parameters of an ARMAmodel by a method that is asymptotically equivalent to that produced by

arima; see [TS] arima.

mle causes arfima to estimate the parameters by maximum likelihood. This method is the default.

mpl causes arfima to estimate the parameters by maximum modified profile likelihood (MPL). The

MPL estimator of the fractional-difference parameter has less small-sample bias than the maximum

likelihood estimator when there are covariates in the model. mpl may only be specified when there is
a constant term or indepvars in the model, and it may not be combined with the mle option.

constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to

some kinds of misspecification (robust) and that are derived from asymptotic theory (oim); see
[R] vce option.

Options vce(robust) and mpl may not be combined.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), gtolerance(#), nonrtolerance(#), and from(init specs); see [R]Maximize

for all options.

Some special points for arfima’s maximize options are listed below.

technique(algorithm spec) sets the optimization algorithm. The default algorithm is BFGS and

BHHH is not allowed. See [R]Maximize for a description of the available optimization algorithms.

You can specify multiple optimization methods. For example, technique(bfgs 10 nr) requests that
the optimizer perform 10 BFGS iterations and then switch to Newton–Raphson until convergence.

iterate(#) sets the maximum number of iterations. When the maximization is not going well, set

the maximum number of iterations to the point where the optimizer appears to be stuck and inspect

the estimation results at that point.

from(matname) allows you to specify starting values for the model parameters in a row vector. We

recommend that you use the iterate(0) option, retrieve the initial estimates from e(b), and
modify these elements.

The following options are available with arfima but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/tsarima.pdf#tsarima
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Long-memory processes are stationary processes whose autocorrelation functions decay more slowly

than short-memory processes. Because the autocorrelations die out so slowly, long-memory processes

display a type of long-run dependence. The autoregressive fractionally integrated moving-average

(ARFIMA) model provides a parsimonious parameterization of long-memory processes. This parameter-

ization nests the autoregressive moving-average (ARMA) model, which is widely used for short-memory

processes.

The ARFIMA model also generalizes the autoregressive integrated moving-average (ARIMA) model

with integer degrees of integration. ARFIMAmodels provide a solution for the tendency to overdifference

stationary series that exhibit long-run dependence. In theARIMA approach, a nonstationary time series is

differenced 𝑑 times until the differenced series is stationary, where 𝑑 is an integer. Such series are said to
be integrated of order 𝑑, denoted 𝐼(𝑑), with not differencing, 𝐼(0), being the option for stationary series.
Many series exhibit too much dependence to be 𝐼(0) but are not 𝐼(1), and ARFIMAmodels are designed

to represent these series.

The ARFIMAmodel allows for a continuum of fractional differences, −0.5 < 𝑑 < 0.5. The general-

ization to fractional differences allows the ARFIMA model to handle processes that are neither 𝐼(0) nor
𝐼(1), to test for overdifferencing, and to model long-run effects that only die out at long horizons.

Technical note
An ARIMAmodel for the series 𝑦𝑡 is given by

𝜌(𝐿)(1 − 𝐿)𝑑𝑦𝑡 = 𝜃(𝐿)𝜖𝑡 (1)

where 𝜌(𝐿) = (1− 𝜌1𝐿 − 𝜌2𝐿2 − · · · − 𝜌𝑝𝐿𝑝) is the autoregressive (AR) polynomial in the lag operator
𝐿; 𝐿𝑦𝑡 = 𝑦𝑡−1; 𝜃(𝐿) = (1+ 𝜃1𝐿 + 𝜃2𝐿2 + · · · + 𝜃𝑝𝐿𝑝) is the moving-average (MA) lag polynomial; 𝜖𝑡
is the independent and identically distributed innovation term; and 𝑑 is the integer number of differences
required to make the 𝑦𝑡 stationary. AnARFIMAmodel is also specified by (1) with the generalization that

−0.5 < 𝑑 < 0.5. Series with 𝑑 ≥ 0.5 are handled by differencing and subsequent ARFIMAmodeling.

Because long-memory processes are stationary, one might be tempted to approximate the processes

with many terms in an ARMA model. But these approximate models are difficult to fit and to interpret

because ARMAmodels with many terms are difficult to estimate and the ARMA parameterization has an

inherent short-run nature. In contrast, the ARFIMA model has the 𝑑 parameter for the long-run depen-

dence and ARMA parameters for short-run dependence. Using different parameters for different types of

dependence facilitates estimation and interpretation, as discussed by Sowell (1992a).

Technical note
An ARFIMA model specifies a fractionally integrated ARMA process. Formally, the ARFIMA model

specifies that

𝑦𝑡 = (1 − 𝐿)−𝑑{𝜌(𝐿)}−1𝜃(𝐿)𝜖𝑡

The short-runARMA process 𝜌(𝐿)−1𝜃(𝐿)𝜖𝑡 captures the short-run effects, and the long-run effects are

captured by fractionally integrating the short-run ARMA process.

https://www.stata.com/manuals/tsarfima.pdf#tsarfimaRemarksandexampleseq1
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Essentially, the fractional-integration parameter 𝑑 captures the long-run effects, and the ARMA pa-

rameters capture the short-run effects. Having separate parameters for short-run and long-run effects

makes the ARFIMA model more flexible and easier to interpret than the ARMA model. After estimating

the ARFIMA parameters, the short-run effects are obtained by setting 𝑑 = 0, whereas the long-run effects

use the estimated value for 𝑑. The short-run effects describe the behavior of the fractionally differenced
process (1 − 𝐿)𝑑𝑦𝑡, whereas the long-run effects describe the behavior of the fractionally integrated 𝑦𝑡.

ARFIMA models have been useful in fields as diverse as hydrology and economics. Long-memory

processes were first introduced in hydrology byHurst (1951). Hosking (1981), in hydrology, andGranger

and Joyeux (1980), in economics, independently discovered the ARFIMA representation of long-memory

processes. Beran (1994), Baillie (1996), and Palma (2007) provide good introductions to long-memory

processes and ARFIMAmodels.

Example 1: Mount Campito tree ring data
Baillie (1996) discusses a time series of measurements of the widths of the annual rings of a Mount

Campito Bristlecone pine. The series contains measurements on rings formed in the tree from 3436 BC

to 1969AD. Essentially, larger widths were good years for the tree and narrower widths were harsh years.

We begin by plotting the time series.

. use https://www.stata-press.com/data/r19/campito
(Campito Mnt. tree ring data from 3435BC to 1969AD)
. tsline width, tlabel(-3435(500)1969, angle(45)) ysize(2)
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Good years and bad years seem to run together, causing the appearance of local trends. The local

trends are evidence of dependence, but they are not as pronounced as those in a nonstationary series.
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We plot the autocorrelations for another view:

. ac width, ysize(2)
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Bartlett's formula for MA(q) 95% confidence bands

The autocorrelations do not start below 1 but decay very slowly.

Granger and Joyeux (1980) show that the autocorrelations from anARMAmodel decay exponentially,

whereas the autocorrelations from an ARFIMA process decay at the much slower hyperbolic rate. Box

et al. (2016) define short-memory processes as those whose autocorrelations decay exponentially fast

and long-memory processes as those whose autocorrelations decay at the hyperbolic rate. The above

plot of autocorrelations looks closer to hyperbolic than exponential.

Together, the above plots make us suspect that the series was generated by a long-memory process.

We see evidence that the series is stationary but that the autocorrelations die out much slower than a

short-memory process would predict.
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Given that we believe the data were generated by a stationary process, we begin by fitting the data to

anARMAmodel. We begin by using a short-memorymodel because a comparison of the results highlights

the advantages of using an ARFIMAmodel for a long-memory process.

. arima width, ar(1/2) ma(1) technique(bhhh 4 nr)
(setting optimization to BHHH)
Iteration 0: Log likelihood = -18934.593
Iteration 1: Log likelihood = -18914.337
Iteration 2: Log likelihood = -18913.407
Iteration 3: Log likelihood = -18913.24
(switching optimization to Newton--Raphson)
Iteration 4: Log likelihood = -18913.214
Iteration 5: Log likelihood = -18913.208
Iteration 6: Log likelihood = -18913.208
ARIMA regression
Sample: -3435 thru 1969 Number of obs = 5405

Wald chi2(3) = 133686.46
Log likelihood = -18913.21 Prob > chi2 = 0.0000

OIM
width Coefficient std. err. z P>|z| [95% conf. interval]

width
_cons 42.45055 1.02142 41.56 0.000 40.44861 44.4525

ARMA
ar

L1. 1.264367 .0253199 49.94 0.000 1.214741 1.313993
L2. -.2848827 .0227534 -12.52 0.000 -.3294785 -.240287

ma
L1. -.8066007 .0189699 -42.52 0.000 -.8437811 -.7694204

/sigma 8.005814 .0770004 103.97 0.000 7.854896 8.156732

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The estimated coefficients seem high in magnitude. We use estat aroots to investigate further.

. estat aroots
Eigenvalue stability condition

Eigenvalue Modulus

.9709661 .970966

.2934013 .293401

All the eigenvalues lie inside the unit circle.
AR parameters satisfy stability condition.
Eigenvalue stability condition

Eigenvalue Modulus

.8066007 .806601

All the eigenvalues lie inside the unit circle.
MA parameters satisfy invertibility condition.
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The roots of the AR polynomial are 0.971 and 0.293, and the root of the MA polynomial is 0.807; all

of these are less than one in magnitude, indicating that the series is stationary and invertible but has a

high level of persistence. See Hamilton (1994, 59) and [TS] estat aroots for details about computing and

interpreting the roots of the polynomials from the estimated ARIMA coefficients.

Below we estimate the parameters of an ARFIMAmodel with only the fractional difference parameter

and a constant.

. arfima width
Iteration 0: Log likelihood = -18918.219
Iteration 1: Log likelihood = -18916.84
Iteration 2: Log likelihood = -18908.508
Iteration 3: Log likelihood = -18908.508 (backed up)
Iteration 4: Log likelihood = -18907.302
Iteration 5: Log likelihood = -18907.293
Iteration 6: Log likelihood = -18907.279
Iteration 7: Log likelihood = -18907.279
Refining estimates:
Iteration 0: Log likelihood = -18907.279
Iteration 1: Log likelihood = -18907.279
ARFIMA regression
Sample: -3435 thru 1969 Number of obs = 5,405

Wald chi2(1) = 1864.43
Log likelihood = -18907.279 Prob > chi2 = 0.0000

width Coefficient Std. err. z P>|z| [95% conf. interval]

width
_cons 44.01432 9.174318 4.80 0.000 26.03299 61.99565

ARFIMA
d .4468888 .0103497 43.18 0.000 .4266038 .4671737

/sigma2 63.92927 1.229754 51.99 0.000 61.519 66.33955

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The estimate of 𝑑 is large and statistically significant. The relative parsimony of the ARFIMA model

is illustrated by the fact that the estimates of the standard deviation of the idiosyncratic errors are about

the same in the five-parameter ARMAmodel and the three-parameter ARFIMAmodel.

https://www.stata.com/manuals/tsestataroots.pdf#tsestataroots


arfima — Autoregressive fractionally integrated moving-average models 9

Let’s add an AR parameter to the above ARFIMAmodel:

. arfima width, ar(1)
Iteration 0: Log likelihood = -18910.997
Iteration 1: Log likelihood = -18910.949 (backed up)
Iteration 2: Log likelihood = -18908.158 (backed up)
Iteration 3: Log likelihood = -18907.248
Iteration 4: Log likelihood = -18907.233
Iteration 5: Log likelihood = -18907.233
Iteration 6: Log likelihood = -18907.233
Refining estimates:
Iteration 0: Log likelihood = -18907.233
Iteration 1: Log likelihood = -18907.233
ARFIMA regression
Sample: -3435 thru 1969 Number of obs = 5,405

Wald chi2(2) = 1875.34
Log likelihood = -18907.233 Prob > chi2 = 0.0000

width Coefficient Std. err. z P>|z| [95% conf. interval]

width
_cons 43.98774 8.685174 5.06 0.000 26.96511 61.01037

ARFIMA
ar

L1. .0063325 .020983 0.30 0.763 -.0347933 .0474584

d .443247 .0158858 27.90 0.000 .4121114 .4743826

/sigma2 63.92915 1.229755 51.99 0.000 61.51887 66.33942

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

That the estimated AR term is tiny and statistically insignificant indicates that the 𝑑 parameter has

accounted for all the dependence in the series.

As mentioned above, there is a sense in which the main advantages of an ARFIMA model over an

ARMA model for long-memory processes are the relative parsimony of the ARFIMA parameterization

and the ability of the ARFIMA parameterization to separate out the long-run effects from the short-run

effects. If the true process was generated from an ARFIMAmodel, an ARMAmodel with many terms can

approximate the process, but the terms make estimation difficult and the lack of separate long-run and

short-run parameters complicates interpretation.

This example highlights the relative parsimony of the ARFIMA model. In the examples below, we

illustrate the advantages of having separate parameters for long-run and short-run effects.

Technical note
You may be wondering what long-run effects can be produced by a model for stationary processes.

Because the autocorrelations of a long-memory process die out so slowly, the spectral density becomes

infinite as the frequency goes to 0 and the impulse–response functions die out at a much slower rate.

The spectral density of a process describes the relative contributions of random components at dif-

ferent frequencies to the variance of the process, with the low-frequency components corresponding to

long-run effects. See [TS] psdensity for an introduction to estimating and interpreting spectral densities

implied by the estimated parameters of parametric models.

https://www.stata.com/manuals/tspsdensity.pdf#tspsdensity
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Granger and Joyeux (1980) motivate ARFIMA models by noting that their implied spectral densities

are finite except at frequency 0 with 0 < 𝑑 < 0.5, whereas stationary ARMAmodels have finite spectral

densities at all frequencies. Granger and Joyeux (1980) argue that the ability of ARFIMAmodels to cap-

ture this long-range dependence, which cannot be captured by stationary ARMAmodels, is an important

advantage of ARFIMAmodels over ARMAmodels when modeling long-memory processes.

Impulse–response functions are the coefficients on the infinite-order MA representation of a process,

and they describe how a shock feeds though the dynamic system. If the process is stationary, the coeffi-

cients decay to 0 and they sum to a finite constant. As expected, the coefficients from an ARFIMAmodel

die out at a slower rate than those from an ARMAmodel. Because the ARMA terms model the short-run

effects and the 𝑑 parameter models the long-run effects, an ARFIMA model specifies both a short-run

impulse–response function and a long-run impulse–response function. When an ARMA model is used

to approximate a long-memory model, the ARMA impulse–response-function coefficients confound the

two effects.

Example 2
In this example, we model the log of the monthly levels of carbon dioxide above Mauna Loa, Hawaii.

To remove the seasonality, wemodel the twelfth seasonal difference of the log of the series. This example

illustrates that theARFIMAmodel parameterizes long-run and short-run effects, whereas theARMAmodel

confounds the two effects. (Sowell [1992a] discusses this point in greater depth.)

We begin by fitting the series to an ARMAmodel with an AR(1) term and an MA(2).

. use https://www.stata-press.com/data/r19/mloa, clear

. arima S12.log, ar(1) ma(2)
(setting optimization to BHHH)
Iteration 0: Log likelihood = 2000.9262
Iteration 1: Log likelihood = 2001.5484
Iteration 2: Log likelihood = 2001.5637
Iteration 3: Log likelihood = 2001.5641
Iteration 4: Log likelihood = 2001.5641
ARIMA regression
Sample: 1960m1 thru 1990m12 Number of obs = 372

Wald chi2(2) = 500.41
Log likelihood = 2001.564 Prob > chi2 = 0.0000

OPG
S12.log Coefficient std. err. z P>|z| [95% conf. interval]

log
_cons .0036754 .0002475 14.85 0.000 .0031903 .0041605

ARMA
ar

L1. .7354346 .0357715 20.56 0.000 .6653237 .8055456

ma
L2. .1353086 .0513156 2.64 0.008 .0347319 .2358853

/sigma .0011129 .0000401 27.77 0.000 .0010344 .0011914

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

All the parameters are statistically significant, and they indicate a high degree of dependence.
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Below we nest the previously fit ARMAmodel into an ARFIMAmodel.

. arfima S12.log, ar(1) ma(2)
Iteration 0: Log likelihood = 2006.0757
Iteration 1: Log likelihood = 2006.0774 (backed up)
Iteration 2: Log likelihood = 2006.0775 (backed up)
Iteration 3: Log likelihood = 2006.0804
Iteration 4: Log likelihood = 2006.0805
Refining estimates:
Iteration 0: Log likelihood = 2006.0805
Iteration 1: Log likelihood = 2006.0805
ARFIMA regression
Sample: 1960m1 thru 1990m12 Number of obs = 372

Wald chi2(3) = 248.88
Log likelihood = 2006.0805 Prob > chi2 = 0.0000

S12.log Coefficient Std. err. z P>|z| [95% conf. interval]

S12.log
_cons .003616 .0012968 2.79 0.005 .0010743 .0061578

ARFIMA
ar

L1. .2160894 .1015578 2.13 0.033 .0170397 .415139

ma
L2. .1633916 .0516909 3.16 0.002 .0620793 .2647038

d .4042573 .0805435 5.02 0.000 .2463949 .5621197

/sigma2 1.20e-06 8.84e-08 13.63 0.000 1.03e-06 1.38e-06

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

All the parameters are statistically significant at the 5% level. That the confidence interval for the

fractional-difference parameter 𝑑 includes numbers greater than 0.5 is evidence that the series may be

nonstationary. Alternatively, we proceed as if the series is stationary, and the wide confidence interval

for 𝑑 reflects the difficulty of fitting a complicated dynamic model with only 372 observations.
With the above caveat, we can now proceed to compare the interpretations of the ARMA and ARFIMA

estimates. We compare these estimates in terms of their implied spectral densities. The spectral density

of a stationary time series describes the relative importance of components at different frequencies. See

[TS] psdensity for an introduction to spectral densities.

Belowwe quietly refit theARMAmodel and use psdensity to estimate the parametric spectral density
implied by the ARMA parameter estimates.

. quietly arima S12.log, ar(1) ma(2)

. psdensity d_arma omega1

The psdensity command above put the estimated ARMA spectral density into the new variable

d arma at the frequencies stored in the new variable omega1.

Below we quietly refit the ARFIMA model and use psdensity to estimate the long-run parametric

spectral density and then the short-run parametric spectral density implied by the ARFIMA parameter

estimates. The long-run estimates use the estimated 𝑑, and the short-run estimates set 𝑑 to 0 (as is implied
by specifying the smemory option). The long-run estimates describe the fractionally integrated series,

and the short-run estimates describe the fractionally differenced series.

https://www.stata.com/manuals/tspsdensity.pdf#tspsdensity
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. quietly arfima S12.log, ar(1) ma(2)

. psdensity d_arfima omega2

. psdensity ds_arfima omega3, smemory

Now that we have the ARMA estimates, the long-run ARFIMA estimates, and the short-run ARFIMA

estimates, we graph them below.

. line d_arma d_arfima omega1, ylabel(, format(%3.1f)) name(lmem) nodraw

. line d_arma ds_arfima omega1, ylabel(, format(%3.1f)) name(smem) nodraw

. graph combine lmem smem, cols(1) xcommon
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ARMA  spectral density

ARFIMA long-memory spectral density
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0 1 2 3
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ARMA  spectral density

ARFIMA short-memory spectral density

The top graph contains a plot of the spectral densities implied by theARMAparameter estimates and by

the long-run ARFIMA parameter estimates. As discussed by Granger and Joyeux (1980), the two models

imply different spectral densities for frequencies close to 0 when 𝑑 > 0. When 𝑑 > 0, the spectral

density implied by the ARFIMA estimates diverges to infinity, whereas the spectral density implied by

the ARMA estimates remains finite at frequency 0 for stable ARMA processes. This difference reflects the

ability of ARFIMA models to capture long-run effects that ARMA models only capture as the parameters

approach those of an unstable model.

The bottom graph contains a plot of the spectral densities implied by the ARMA parameter estimates

and by the short-run ARFIMA parameter estimates, which are the ARMA parameters for the fractionally

differenced process. Comparing the two plots illustrates the ability of the short-run ARFIMA parameters

to capture both low-frequency and high-frequency components in the fractionally differenced series. In

contrast, the ARMA parameters captured only low-frequency components in the fractionally integrated

series.

Comparing the ARFIMA and ARMA spectral densities in the two graphs illustrates that the additional

fractional-difference parameter allows theARFIMAmodel to identify both long-run and short-run effects,

which the ARMAmodel confounds.
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Technical note
As noted above, the spectral density of an ARFIMA process with 𝑑 > 0 diverges to infinity as the

frequency goes to 0. In contrast, the spectral density of anARFIMA process with 𝑑 < 0 is 0 at frequency 0.

The autocorrelation function of an ARFIMA process with 𝑑 < 0 also decays at the slower hyperbolic

rate. ARFIMA processes with 𝑑 < 0 are sometimes called antipersistent because all the autocorrelations

for lags greater than 0 are negative.

Hosking (1981), Baillie (1996), and others refer to ARFIMA processes with 𝑑 < 0 as “intermediate

memory” processes and ARFIMA processes with 𝑑 > 0 as long-memory processes. Box, Jenkins, Rein-

sel, and Ljung (2016, 385) define long-memory processes as those with the slower hyperbolic rate of

decay, which includes ARFIMA processes with 𝑑 < 0. We follow Box et al. (2016) and thus call ARFIMA

processes for −0.5 < 𝑑 < 0 and 0 < 𝑑 < 0.5 long-memory processes.

Sowell (1992a) uses the properties ofARFIMA processes with 𝑑 < 0 to derive tests for whether a series

was generated by an 𝐼(1) process or an 𝐼(𝑑) process with 𝑑 < 1.

Example 3
In this example, we use arfima to test whether a series is nonstationary. More specifically, we test

whether the series was generated by an 𝐼(1) process by testing whether the first difference of the series
is overdifferenced.

We have monthly data on the log of the number of reported cases of mumps in NewYork City between

January 1928 and December 1972. We believe that the series is stationary, after accounting for the

monthly seasonal effects. We use an ARFIMAmodel for differenced series to test the null hypothesis of

nonstationarity. We use the confidence interval for the 𝑑 parameter from an ARFIMAmodel for the first

difference of the log of the series to perform the test. If the right-hand end of the 95% CI is less than 0,

we conclude that the differenced series was overdifferenced, which implies that the original series was

not nonstationary.

More formally, if 𝑦𝑡 is 𝐼(1), then Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 must be 𝐼(0). If Δ𝑦𝑡 is 𝐼(𝑑) with 𝑑 < 0, then Δ𝑦𝑡
is overdifferenced and 𝑦𝑡 is 𝐼(𝑑) with 𝑑 < 1.

We use seasonal indicators to account for the seasonal effects. In the output below, we specify the

mpl option to use the MPL estimator that is less biased in the presence of covariates.

arfima computes the maximum likelihood estimates (MLE) for the parameters of this stationary and

invertible Gaussian process. Alternatively, the maximumMPL estimates may be computed. See Methods

and formulas for a description of these two estimation techniques, but suffice it to say that the MLE

estimates for 𝑑 are biased in the presence of exogenous variables, even the constant term, for small

samples. The MPL estimator reduces this bias; see Hauser (1999) and Doornik and Ooms (2004).

https://www.stata.com/manuals/tsarfima.pdf#tsarfimaMethodsandformulas
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaMethodsandformulas
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. use https://www.stata-press.com/data/r19/mumps2, clear
(Hipel and Mcleod (1994), http://robjhyndman.com/tsdldata/epi/mumps.dat)
. arfima D.log i.month, ma(1 2) mpl
Iteration 0: Log modified profile likelihood = 53.766763
Iteration 1: Log modified profile likelihood = 54.388641
Iteration 2: Log modified profile likelihood = 54.934726 (backed up)
Iteration 3: Log modified profile likelihood = 54.937524 (backed up)
Iteration 4: Log modified profile likelihood = 55.002187
Iteration 5: Log modified profile likelihood = 55.20462
Iteration 6: Log modified profile likelihood = 55.205939
Iteration 7: Log modified profile likelihood = 55.205949
Iteration 8: Log modified profile likelihood = 55.205949
Refining estimates:
Iteration 0: Log modified profile likelihood = 55.205949
Iteration 1: Log modified profile likelihood = 55.205949
ARFIMA regression
Sample: 1928m2 thru 1972m6 Number of obs = 533

Wald chi2(14) = 1360.28
Log modified profile likelihood = 55.205949 Prob > chi2 = 0.0000

D.log Coefficient Std. err. z P>|z| [95% conf. interval]

D.log
month

February -.220719 .0428112 -5.16 0.000 -.3046275 -.1368105
March .0314683 .0424718 0.74 0.459 -.0517749 .1147115
April -.2800296 .0460084 -6.09 0.000 -.3702043 -.1898548

May -.3703179 .0449932 -8.23 0.000 -.4585029 -.2821329
June -.4722035 .0446764 -10.57 0.000 -.5597676 -.3846394
July -.9613239 .0448375 -21.44 0.000 -1.049204 -.873444

August -1.063042 .0449272 -23.66 0.000 -1.151098 -.9749868
September -.7577301 .0452529 -16.74 0.000 -.8464242 -.669036

October -.3024251 .0462887 -6.53 0.000 -.3931494 -.2117009
November -.0115317 .0426911 -0.27 0.787 -.0952046 .0721413
December .0247135 .0430401 0.57 0.566 -.0596435 .1090705

_cons .3656807 .0303215 12.06 0.000 .3062517 .4251096

ARFIMA
ma

L1. .258056 .0684414 3.77 0.000 .1239133 .3921987
L2. .1972011 .0506439 3.89 0.000 .0979409 .2964612

d -.2329426 .067336 -3.46 0.001 -.3649188 -.1009663

We interpret the fact that the estimated 95% CI is strictly less than 0 to mean that the differenced series

is overdifferenced, which implies that the original series is stationary.
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Stored results
arfima stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(s2) idiosyncratic error variance estimate, if e(method) = mpl
e(tmin) minimum time

e(tmax) maximum time

e(ar max) maximumAR lag

e(ma max) maximum MA lag

e(constant) 0 if noconstant, 1 otherwise
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) arfima
e(cmdline) command as typed

e(depvar) name of dependent variable

e(tvar) time variable

e(covariates) list of covariates

e(method) mle or mpl
e(eqnames) names of equations

e(title) title in estimation output

e(tmins) formatted minimum time

e(tmaxs) formatted maximum time

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(ma) lags for MA terms

e(ar) lags for AR terms

e(technique) maximization technique

e(tech steps) number of iterations performed before switching techniques

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
The likelihood function
The autocovariance function
The profile likelihood
The MPL

Introduction
Wemodel an observed second-order stationary time-series 𝑦𝑡, 𝑡 = 1, . . . , 𝑇, using theARFIMA(𝑝, 𝑑, 𝑞)

model defined as

ρ(𝐿𝑝)(1 − 𝐿)𝑑(𝑦𝑡 − x𝑡β) = θ(𝐿𝑞)𝜖𝑡

where

ρ(𝐿𝑝) = 1 − 𝜌1𝐿 − 𝜌2𝐿2 − · · · − 𝜌𝑝𝐿𝑝

θ(𝐿𝑞) = 1 + 𝜃1𝐿 + 𝜃2𝐿2 + · · · + 𝜃𝑞𝐿𝑞

(1 − 𝐿)𝑑 =
∞

∑
𝑗=0

(−1)𝑗 Γ(𝑗 + 𝑑)
Γ(𝑗 + 1)Γ(𝑑)

𝐿𝑗

and the lag operator is defined as 𝐿𝑗𝑦𝑡 = 𝑦𝑡−𝑗, 𝑡 = 1, . . . , 𝑇 and 𝑗 = 1, . . . , 𝑡 − 1; 𝜖𝑡 ∼ 𝑁(0, 𝜎2); Γ() is
the gamma function; and −0.5 < 𝑑 < 0.5, 𝑑 ≠ 0. The row vector x𝑡 contains the exogenous variables

specified as indepvars in the arfima syntax.

The process is stationary and invertible for −0.5 < 𝑑 < 0.5; the roots of the AR polynomial, ρ(𝑧) =
1− 𝜌1𝑧 − 𝜌2𝑧2 − · · · − 𝜌𝑝𝑧𝑝 = 0, and the MA polynomial, θ(𝑧) = 1+ 𝜃1𝑧 + 𝜃2𝑧2 + · · · + 𝜃𝑞𝑧𝑞 = 0, lie

outside the unit circle and there are no common roots. When 0 < 𝑑 < 0.5, the process has long memory

in that the autocovariance function, 𝛾ℎ, decays to 0 at a hyperbolic rate, such that ∑∞
ℎ=−∞ |𝛾ℎ| = ∞.

When −0.5 < 𝑑 < 0, the process also has long memory in that the autocovariance function, 𝛾ℎ, decays

to 0 at a hyperbolic rate such that ∑∞
ℎ=−∞ |𝛾ℎ| < ∞. (As discussed in the text, some authors refer to

ARFIMA processes with −0.5 < 𝑑 < 0 as having intermediate memory, but we follow Box et al. [2016]

and refer to them as long-memory processes.)

Granger and Joyeux (1980), Hosking (1981), Sowell (1992b, 1992a), Baillie (1996), and Palma (2007)

provide overviews of long-memory processes, fractional integration, and introductions to ARFIMAmod-

els.
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The likelihood function
Estimation of theARFIMA parameters ρ, θ, 𝑑, β and 𝜎2 is done by the method of maximum likelihood.

The log Gaussian likelihood of y given parameter estimates η̂ = (ρ̂′, θ̂
′
, ̂𝑑, β̂

′
, �̂�2) is

ℓ(y|η̂) = −1
2

{𝑇 log(2𝜋) + log|V̂| + (y− Xβ̂)′V̂−1(y− Xβ̂)} (2)

where the covariance matrix V has a Toeplitz structure

V =
⎛⎜⎜⎜
⎝

𝛾0 𝛾1 𝛾2 . . . 𝛾𝑇 −1
𝛾1 𝛾0 𝛾1 . . . 𝛾𝑇 −2
⋮ ⋮ ⋮ ⋱ ⋮

𝛾𝑇 −1 𝛾𝑇 −2 𝛾𝑇 −3 . . . 𝛾0

⎞⎟⎟⎟
⎠

Var(𝑦𝑡) = 𝛾0, Cov(𝑦𝑡, 𝑦𝑡−ℎ) = 𝛾ℎ (for ℎ = 1, . . . , 𝑡 − 1), and 𝑡 = 1, . . . , 𝑇 (Sowell 1992b).

We use the Durbin–Levinson algorithm (Palma 2007; Golub and Van Loan 2013) to factor and in-

vert V. Using only the vector of autocovariances 𝛄, the Durbin–Levinson algorithm will compute

̂ε = D̂−0.5L̂−1(y − Xβ̂), where L is lower triangular and V = LDL′ and D = Diag(ν), 𝜈𝑡 = Var(𝑦𝑡).
The algorithm performs these computations without generating the 𝑇 × 𝑇 matrix L−1.

During optimization, we restrict the fractional-integration parameter to (−0.5, 0.5) using a logistic
transform, 𝑑∗ = log {(𝑥 + 0.5)/(0.5 − 𝑥)}, so that the range of 𝑑∗ encompasses the real line. During

the “Refining estimates” step, the fractional-integration parameter is transformed back to the restricted

space, where we obtain its standard error from the observed information matrix.

The autocovariance function
Computation of the autocovariances 𝛾ℎ is given by Sowell (1992b) with numerical enhancements

by Doornik and Ooms (2003) and is reviewed by Palma (2007, sec. 3.2.4). We reproduce it here. The

autocovariance of an ARFIMA(0, 𝑑, 0) process is

𝛾∗
ℎ = 𝜎2 Γ(1 − 2𝑑)

Γ(1 − 𝑑)Γ(𝑑)
Γ(ℎ + 𝑑)

Γ(1 + ℎ − 𝑑)
where ℎ = 0, 1, . . . . For ARFIMA(𝑝, 𝑑, 𝑞), we have

𝛾ℎ = 𝜎2
𝑞

∑
𝑖=−𝑞

𝑝

∑
𝑗=1

𝜓(𝑖)𝜉𝑗𝐶(𝑑, 𝑝 + 𝑖 − ℎ, 𝜌𝑗) (3)
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where

𝜓(𝑖) =
min(𝑞,𝑞+𝑖)

∑
𝑘=max(0,𝑖)

𝜃𝑘𝜃𝑘−𝑖

𝜉𝑗 = {𝜌𝑗

𝑝

∏
𝑖=1

(1 − 𝜌𝑖𝜌𝑗) ∏
𝑚≠𝑗

(𝜌𝑗 − 𝜌𝑚)}
−1

and

𝐶(𝑑, ℎ, 𝜌) = 𝛾∗
ℎ

𝜎2 {𝜌2𝑝𝐹(𝑑 + ℎ, 1, 1 − 𝑑 + ℎ, 𝜌) + 𝐹(𝑑 − ℎ, 1, 1 − 𝑑 − ℎ, 𝜌) − 1}

𝐹(⋅) is the hypergeometric series (Zwillinger [Gradshteyn and Ryzhik] 2015)

𝐹(𝑎, 𝑏, 𝑐, 𝑥) = 1 + 𝑎𝑏
𝑐 ⋅ 1

𝑥 + 𝑎(𝑎 + 1)𝑏(𝑏 + 1)
𝑐(𝑐 + 1) ⋅ 1 ⋅ 2

𝑥2 + 𝑎(𝑎 + 1)(𝑎 + 2)𝑏(𝑏 + 1)(𝑏 + 2)
𝑐(𝑐 + 1)(𝑐 + 2) ⋅ 1 ⋅ 2 ⋅ 3

𝑥3 + · · ·

The series recursions are evaluated backward as Doornik and Ooms (2003) emphasize. Doornik and

Ooms (2003) also provide other computational enhancements, such as not dividing by 𝜌𝑗 in (3).

The profile likelihood
Doornik andOoms (2003) show that the parameters𝜎2 andβ can be concentrated out of the likelihood.

Using (2), the MLE for 𝜎2 is

�̂�2 = 1
𝑇

(y− Xβ̂)′R̂−1(y− Xβ̂) (4)

where R = 1
𝜎2V and

β̂ = (X′R̂−1X)−1X′R̂−1y (5)

is the weighted least-squares estimates for β. Substituting (4) into (2) results in the profile likelihood

ℓ𝑝(y|η̂𝑟) = −𝑇
2

{1 + log(2𝜋) + 1
𝑇
log|R̂| + log�̂�2}

We compute the MLEs using the profile likelihood for the reduced parameter set η𝑟 = (ρ′,θ′, 𝑑).
Equations (4) and (5) provide MLEs for 𝜎2 and β to create the full parameter vector η =
(β′,ρ′,θ′, 𝑑, 𝜎2). We follow with the “Refining estimates” step, optimizing on the log likelihood (1).

The refining step does not change the estimates; it produces the coefficient variance–covariance matrix

from the observed information matrix.

Using this profile likelihood prevents the use of the BHHH optimization method because there are no

observation-level scores.

The MPL
The small-sampleMLE for 𝑑 can be biased when there are exogenous variables in the model. TheMPL

reduces this bias (Hauser 1999; Doornik and Ooms 2004). The mpl option will direct arfima to use this
optimization criterion. The MPL is expressed as

ℓ𝑚(y|η̂𝑟) = −𝑇
2

{1 + log(2𝜋)} − ( 1
𝑇

− 1
2

) log|R̂| − (𝑇 − 𝑘 − 2
2

) log�̂�2 − 1
2
log|X′R̂−1X|

where 𝑘 = rank(X) (An and Bloomfield 1993).

https://www.stata.com/manuals/tsarfima.pdf#tsarfimaMethodsandformulaseq3
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaMethodsandformulaseq2
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaMethodsandformulaseq4
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaMethodsandformulaseq2
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaMethodsandformulaseq4
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaMethodsandformulaseq5
https://www.stata.com/manuals/tsarfima.pdf#tsarfimaRemarksandexampleseq1
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There is noMPL estimator for 𝜎2, and you will notice its absence from the coefficient table. However,

the unbiased estimate assuming ARFIMA(0, 0, 0),

�̃�2 = (y− Xβ̂)′R̂−1(y− Xβ̂)
𝑇 − 𝑘

is stored in e() for postestimation computation of the forecast and residual root mean squared errors.
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