stteffects wra — Survival-time weighted regression adjustment

Description

`stteffects wra` estimates the average treatment effect (ATE), the average treatment effect on the treated (ATET), and the potential-outcome means (POMs) from observational survival-time data with random time to censoring. Estimation is by weighted regression adjustment (WRA). WRA estimators use inverse-probability-of-censoring adjusted regression coefficients to compute averages of treatment-level predicted outcomes. Contrasts of these averages estimate the treatment effects. WRA uses estimated weights from a time-to-censoring model to account for censored survival times instead of including a term in the likelihood function. `stteffects wra` offers several choices for the functional forms of the outcome model and the time-to-censoring model. Binary and multivalued treatments are accommodated.

See [TE] `stteffects intro` for an overview of estimating treatment effects from observational survival-time data.

Quick start

Specify `time` as observed failure time and `fail` as failure indicator

```
stset time, failure(fail)
```

ATE from a Weibull model for `time` on `x1` and `x2` with binary treatment `treat2` and a Weibull model on `x1` and `x2` for censoring

```
stteffects wra (x1 x2) (treat2) (x1 x2)
```

As above, but estimate the ATET

```
stteffects wra (x1 x2) (treat2) (x1 x2), atet
```

ATE of `treat2` using a gamma model for `time` and a gamma censoring model

```
stteffects wra (x1 x2, gamma) (treat2) (x1 x2, gamma)
```

ATE for each level of three-valued treatment `treat3`

```
stteffects wra (x1 x2) (treat3) (x1 x2)
```

As above, and specify that `treat3 = 3` is the control level using the value label “MyControl” for 3

```
stteffects wra (x1 x2) (treat3) (x1 x2), control("MyControl")
```

Menu

Statistics > Treatment effects > Survival outcomes > Weighted regression adjustment
Syntax

```
stteffects wra (omvarlist [, omoptions]) (tvar) (cmvarlist [, cmoptions])
   [if] [in] [ , stat options]
```

omvarlist specifies the variables that predict the survival-time variable in the outcome model.
tvar must contain integer values representing the treatment levels.
cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weibull</code></td>
<td>Weibull; the default</td>
</tr>
<tr>
<td><code>exponential</code></td>
<td>exponential</td>
</tr>
<tr>
<td><code>gamma</code></td>
<td>two-parameter gamma</td>
</tr>
<tr>
<td><code>lnormal</code></td>
<td>lognormal</td>
</tr>
<tr>
<td><code>ancillary(avarlist [, noconstant])</code></td>
<td>specify variables used to model ancillary parameter</td>
</tr>
<tr>
<td><code>noconstant</code></td>
<td>suppress constant from outcome model</td>
</tr>
</tbody>
</table>

cmoptions

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weibull</code></td>
<td>Weibull; the default</td>
</tr>
<tr>
<td><code>exponential</code></td>
<td>exponential</td>
</tr>
<tr>
<td><code>gamma</code></td>
<td>two-parameter gamma</td>
</tr>
<tr>
<td><code>lnormal</code></td>
<td>lognormal</td>
</tr>
<tr>
<td><code>ancillary(avarlist [, noconstant])</code></td>
<td>specify variables used to model ancillary parameter</td>
</tr>
<tr>
<td><code>noconstant</code></td>
<td>suppress constant from censoring model</td>
</tr>
</tbody>
</table>

stat

<table>
<thead>
<tr>
<th>Stat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ate</code></td>
<td>estimate average treatment effect in population; the default</td>
</tr>
<tr>
<td><code>atet</code></td>
<td>estimate average treatment effect on the treated</td>
</tr>
<tr>
<td><code>pomeans</code></td>
<td>estimate potential-outcome means</td>
</tr>
</tbody>
</table>
Options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE/Robust</td>
</tr>
<tr>
<td>vce(vcetype)</td>
</tr>
<tr>
<td>Reporting</td>
</tr>
<tr>
<td>level(#)</td>
</tr>
<tr>
<td>aequations</td>
</tr>
<tr>
<td>noshow</td>
</tr>
<tr>
<td>display_options</td>
</tr>
<tr>
<td>Maximization</td>
</tr>
<tr>
<td>maximize_options</td>
</tr>
<tr>
<td>iterinit(#)</td>
</tr>
<tr>
<td>Advanced</td>
</tr>
<tr>
<td>pстolerance(#)</td>
</tr>
<tr>
<td>osample(newvar)</td>
</tr>
<tr>
<td>**control(#</td>
</tr>
<tr>
<td>**tlevel(#</td>
</tr>
<tr>
<td>coeflegend</td>
</tr>
</tbody>
</table>

You must *stset* your data before using *stteffects*; see [ST] stset.

omvarlist, *cmvarlist*, and *avarlist* may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, *by*, *jackknife*, and *statsby* are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the *bootstrap* prefix; see [R] bootstrap.

fweights, *iweights*, and *pweights* may be specified using *stset*; see Weights under Remarks and examples in [ST] stset. However, weights may not be specified if you are using the *bootstrap* prefix.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ancillary(avarlist [, noconstant])</td>
</tr>
</tbody>
</table>

ancillary() may be specified for the model for survival-time outcome, for the model for the censoring variable, or for both. If *ancillary()* is specified for both, the varlist used for each model may be different.

noconstant; see [R] Estimation options.
Stat

Stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting

level(#) ; see [R] Estimation options.

eaquations specifies that the results for the outcome-model or treatment-model parameters be displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects wra from showing the key st variables. This option is rarely used because most people type stset, show or stset, noshow to permanently set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: iterate(#), [no]log, and from(init_specs); see [R] Maximize. These options are seldom used.

init_specs is one of

mainame [, skip copy]

[, # ...], copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This option is seldom used.

Advanced

pстolerance(#) specifies the tolerance used to check the overlap assumption. The default value is pстolerance(1e-5). stteffects will exit with an error if an observation has an estimated propensity score smaller than that specified by pстolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate the overlap assumption.

control(#) | label specifies the level of tvar that is the control. The default is the first treatment level. You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric level. control() may not be specified with the statistic pomeans. control() and tlevel() may not specify the same treatment level.
tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box: coeflegend; see [R] Estimation options.

Remarks and examples

If you are not familiar with the framework for treatment-effects estimation from observational survival-time data, please see [TE] stteffects intro.

Weighted regression-adjustment (WRA) estimators use estimated weights to account for censoring when estimating outcome-regression parameters. The estimated outcome-regression parameters are used to compute averages of treatment-level predicted outcomes. Contrasts of these averages estimate the treatment effects.

WRA estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of a time-to-censoring model and compute inverse-probability-of-censoring weights.
2. Using the estimated inverse-probability-of-censoring weights, they use weighted maximum likelihood estimators for the outcome for each treatment level and obtain the treatment-specific predicted mean outcomes for each subject. The inverse-probability-of-censoring weights account for right-censored survival times.
3. They compute the means of the treatment-specific predicted mean outcomes. Contrasts of these averages provide the estimates of the ATEs. By restricting the computations of the means to the subset of treated subjects, we can obtain the ATETs.

WRA estimators differ from RA estimators in that WRA estimators use weights to account for observations lost to censoring while RA estimators use an additional term in the likelihood function. A model for the time to censoring is used to estimate the weights.

WRA estimators require more assumptions than RA estimators. Specifically, they require that the censoring time be random and that the time-to-censoring model be well specified. The implemented WRA estimators also require that the time-to-censoring process not vary by treatment level. The RA estimator and the likelihood-adjusted-censoring version of the inverse-probability-weighted RA estimator do not require these extra assumptions, because they use a likelihood term instead of weights to adjust for the data lost to censoring; see [TE] stteffects ra and [TE] stteffects ipwra.

Here we note only a few entry points to the vast literature on weighted estimators. Imbens (2004), Imbens and Wooldridge (2009), Robins and Rotnitzky (2006), Wooldridge (2002, 2007), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and to WRA estimators in particular.

Like streg and other survival-time commands, stteffects wra uses the outcome variable and the failure indicator computed by, and optionally weights specified with, stset. stteffects wra is not appropriate for data with time-varying covariates, also known as multiple-record survival-time data, or for delayed-entry data.
Example 1: Estimating the ATE

Suppose we wish to study the effect of smoking on the time to a second heart attack among women aged 45–55 years. In our fictional `sheart` dataset, `atime` is the observed time in years to a second heart attack or censoring, and `fail` is the 0/1 indicator that a second heart attack was observed. (When `fail` is 1, `atime` records the time to the second heart attack; when `fail` is 0, `atime` records a censored observation of the time to a second heart attack.) We previously `stset` these data; see *A quick tour of the estimators* in [TE] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator `smoke`. These data also contain age at the time of the first heart attack (`age`), and indices of the level of exercise (`exercise`), diet quality (`diet`), and education (`education`) prior to the first heart attack.

We can use `stteffects wra` to estimate the ATE by WRA. We model the mean survival time using the default Weibull outcome model with `age`, `exercise`, `diet`, and `education` as covariates, and we specify that `smoke` is the treatment variable. We also specify the default Weibull time-to-censoring model and include `age`, square of `age`, `exercise`, and `education`.

```
. use https://www.stata-press.com/data/r16/sheart
   (Time to second heart attack (fictional))
. stteffects wra (age exercise diet education)
          (smoke)
          (age c.age#c.age exercise diet education)
    failure _d: fail
  analysis time _t: atime
Iteration 0:   EE criterion =  4.096e-18
Iteration 1:   EE criterion =  1.406e-29
Survival treatment-effects estimation                    Number of obs   =     2,000
   Estimator : weighted regression adjustment
   Outcome model : Weibull
   Treatment model: none
   Censoring model: Weibull

<table>
<thead>
<tr>
<th></th>
<th>Robust</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>Std. Err.</td>
<td>z</td>
<td>P&gt;</td>
<td>z</td>
</tr>
<tr>
<td>ATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Smoker vs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmoker)</td>
<td>-2.374174</td>
<td>.6017498</td>
<td>-3.95</td>
<td>0.000</td>
<td>-3.553582 -1.194766</td>
</tr>
<tr>
<td>P0mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>4.302131</td>
<td>.5528943</td>
<td>7.78</td>
<td>0.000</td>
<td>3.218478  5.385784</td>
</tr>
</tbody>
</table>
```

When every woman smoked in the population of women aged 45–55 years who have had a heart attack, the average time to a second heart attack is estimated to be 2.37 years less than when no women in the subpopulation of interest smoked. The estimated average time to a second heart attack when no women in the subpopulation of interest smoked is 4.30 years.
Stored results

`stteffects wra` stores the following in `e()`:

Scalars
- `e(N)` number of observations
- `e(nj)` number of observations for treatment level `j`
- `e(N_clust)` number of clusters
- `e(k_eq)` number of equations in `e(b)`
- `e(k_levels)` number of levels in treatment variable
- `e(treated)` level of treatment variable defined as treated
- `e(control)` level of treatment variable defined as control
- `e(converged)` 1 if converged, 0 otherwise

Macros
- `e(cmd)` `stteffects`
- `e(cmdline)` command as typed
- `e(dead)` `_d`
- `e(depvar)` `_t`
- `e(tvar)` name of treatment variable
- `e(subcmd)` `wra`
- `e(model)` outcome model: `weibull`, `exponential`, `gamma`, or `lognormal`
- `e(cmodel)` censoring model: `weibull`, `exponential`, `gamma`, or `lognormal`
- `e(stat)` statistic estimated: `ate`, `atet`, or `pomeans`
- `e(utype)` weight type
- `e(wexp)` weight expression
- `e(ttitle)` title in estimation output
- `e(clustvar)` name of cluster variable
- `e(tlevels)` levels of treatment variable
- `e(vce)` `vcetype` specified in `vce()`
- `e(vcttype)` title used to label Std. Err.
- `e(properties)` `b V`
- `e(estat_cmd)` program used to implement `estat`
- `e(predict)` program used to implement `predict`
- `e(marginsnotok)` predictions disallowed by margins
- `e(asbalanced)` factor variables `fvset` as `asbalanced`
- `e(asobserved)` factor variables `fvset` as `asobserved`

Matrices
- `e(b)` coefficient vector
- `e(V)` variance–covariance matrix of the estimators

Functions
- `e(sample)` marks estimation sample

Methods and formulas

The methods and formulas for the WRA estimators implemented in `stteffects wra` are given in Methods and formulas of [TE] `stteffects ipwra`.

References

Also see

[TE] **stteffects postestimation** — Postestimation tools for stteffects

[TE] **stteffects intro** — Introduction to treatment effects for observational survival-time data

[ST] **streg** — Parametric survival models

[ST] **stset** — Declare data to be survival-time data

[U] **20 Estimation and postestimation commands**