
Collection principles — Tags, dimensions, levels, and layout from first principles

Description Remarks and examples Also see

Description
This entry is a self-contained introduction to tags, dimensions, and levels and how you use them in

collect layout to specify and create tables. It introduces other commands that are helpful in laying

out tables along the way. It uses simple examples on real data to demonstrate all concepts.

It explains what tags are and why they are organized into dimensions that contain levels. It explains

the inner workings of collect layout so you can understand when things do not go as you expect. It

demonstrates how to create one-way, two-way, multiway, and stacked tables and discusses what to do

when things go wrong.

Admittedly, there is quite a bit of overlap with [TABLES] Intro 2. Unlike Intro 2, this entry is focused

solely on laying out tables.

Remarks and examples
Remarks are presented under the following headings:

Basic concepts
Basics in practice
How collect layout processes tag specifications
The process in practice

Basic concepts
How do you make collections work for you? The answer is you just use tags organized into the levels

of dimensions to request tabular results. What? Let’s give meaning to that sentence.

We start by collecting something. That something will be incredibly simple. The undocumented Stata

command echo simply displays whatever number or string you type and returns that number or string in

r(value).

. echo 11
value = 11
. return list
scalars:

r(value) = 11

To collect its results, we simply prefix our echo command with collect:, but let’s do a little more.

Let’s collect the result and give it the tag myres1.

. collect, tag(myres1[]): echo 11
value = 11

Do not worry for now about the [] after myres1; just know that we have collected the value 11 and

tagged it with myres1.

1

https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2

Collection principles — Tags, dimensions, levels, and layout from first principles 2

The collect system is built to create tables of results, perhaps lots of different results from different

commands. The way we get things out of a collection is to lay out a table. We have only one value

collected, so let’s create the world’s simplest table.

. collect layout (myres1)
Collection: default

Rows: myres1
Table 1: 1 x 1

11

collect layout is the command to specify the layout of a table. Its first argument is a parentheses-

bound list of the tags that we want on the rows of the table, in this case (myres1). A tag is simply a

way to name and find things. We tagged our value 11 as myres1. When we asked for myres1, collect
layout gave our 11 back to us.

You may have noticed that we did not include the [] on myres. We could have; it would make no

difference.

Let’s add another value to our collection.

. collect, tag(myres2[]): echo 22
value = 22

And let’s show “all” of this as a table.

. collect layout (myres1 myres2)
Collection: default

Rows: myres1 myres2
Table 1: 2 x 1

11
22

We could go on, but I think we are going to get tired of typing myres1

Tags do not have to be a simple name; in fact, they rarely are. Tables tend to put a set of related things

on the rows and another set of related things on the columns. The contents of the table are the intersection

of those related things. Consider a cross-tabulation of region and sex.

Sex
Male Female

Region
NE 1,018 1,078
MW 1,310 1,464
S 1,332 1,521
W 1,255 1,373

“NE”, “MW”, “S”, and “W” are the related things on the rows. “Male” and “Female” are the related

things on the columns. The counts in the cells of the table are the intersection when both the row “thing”

and column “thing” are true. On this table, that is all obvious, but it is also at the heart of how tags are

used in the collect system.

Collection principles — Tags, dimensions, levels, and layout from first principles 3

Tags in the collect system provide a structure that directly supports sets of related things. Tags are

organized as dimensions that contain levels. In the table above, region is a dimension, and the levels

are NE, MW, S, and W. Likewise, sex is another dimension whose levels are Male and Female.

If this all seems like an unnecessary abstraction, it is not. The table above was a simple cross-

tabulation of two categorical variables. But that need not be the case. One of our dimensions might

be sets of regressions with different covariates. Or it might be sets of results from different datasets. All

categorical variables can be dimensions, but not all dimensions can be categorical variables.

Let’s now use the level within dimension organization to create a more interesting table. First, we

clear our current collection.

. collect clear

We collect the results of an echo but give it two tags.

. collect, tag(myrow[1] mycol[1]): echo 11
value = 11

We have tagged value 11 with myrow[1] and mycol[1]. We read tag myrow[1] as “dimension myrow,
level 1” or “level 1 in dimension myrow”.

Let’s collect and tag more results from echo commands.

. collect, tag(myrow[2] mycol[1]): echo 21
value = 21
. collect, tag(myrow[1] mycol[2]): echo 12
value = 12
. collect, tag(myrow[2] mycol[2]): echo 22
value = 22

You might see where this is heading.

Now, we can create a table from our four collected values,

. collect layout (myrow[1] myrow[2]) (mycol[1] mycol[2])
Collection: Table

Rows: myrow[1] myrow[2]
Columns: mycol[1] mycol[2]
Table 1: 3 x 2

mycol
1 2

myrow
1 11 12
2 21 22

The first parentheses-bound list still specifies the tags we want on the rows of our table. The second

parentheses-bound list specifies the tags we want on the columns of our table.

You can specify multiple levels inside the []; thus, a better way to type the layout command above

is

. collect layout (myrow[1 2]) (mycol[1 2])

If you are following along, type it. You will get the same result.

Collection principles — Tags, dimensions, levels, and layout from first principles 4

Better still, you can refer to an entire dimension and all the tags defined by its levels by typing just

the dimension name. The concise way to specify our table is

. collect layout (myrow) (mycol)

And now you see why collect organizes its tags as levels within dimensions.

Let’s elaborate on that point just a bit. You can tell from this example that it may take more than

one tag to uniquely identify a value. Each of our 4 values required 2 tags, for example, value 12 re-

quired myrow[1] and mycol[2]. Thus, there is a great advantage to representing tags as levels within

dimensions. If it takes two tags to uniquely identify a value and you organize those tags as the rows and

columns of a table, your values will naturally populate the cells of a table.

Moreover, this idea generalizes to higher-dimensional tables. If each of your values requires 3 tags

and those tags can be arranged in 3 dimensions, you have the makings of a 3-dimensional (3D) table.

One rarely presents 3D tables as their natural cube. It is hard to print. They are usually presented as

tables with super rows or super columns. Regardless, dimensions give you a natural way to specify the

structure of a table, whether that structure is a simple table with rows and columns or it is a table with

columns, super columns, rows, super rows, and super-super rows.

If you came here just to learn about the terms “tag”, “dimension”, and “level”, you can stop reading.

Basics in practice
Let’s put this organization to use on a real collection.

Grab the venerable (but familiar) automobile dataset.

. sysuse auto
(1978 automobile data)

Clear our default collection.

. collect clear

And collect the results of a simple regression.

. collect: regress mpg displacement i.foreign
Source SS df MS Number of obs = 74

F(2, 71) = 35.57
Model 1222.85283 2 611.426414 Prob > F = 0.0000

Residual 1220.60663 71 17.1916427 R-squared = 0.5005
Adj R-squared = 0.4864

Total 2443.45946 73 33.4720474 Root MSE = 4.1463

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

displacement -.0469161 .0066931 -7.01 0.000 -.0602618 -.0335704

foreign
Foreign -.8006817 1.335711 -0.60 0.551 -3.464015 1.862651

_cons 30.79176 1.666592 18.48 0.000 27.46867 34.11485

Just so you know, every number saved in the e() results after regress, which includes every number

displayed in the results above, has been pulled into the collection. You just have to tell collect how

you would like them pulled out and displayed.

Collection principles — Tags, dimensions, levels, and layout from first principles 5

But, you wonder, we did not specify any tags. What can we possibly do? We can do a lot. collect
creates tags for us behind the scenes. We get a list of the dimensions by typing

. collect dims
Collection dimensions
Collection: default

Dimension No. levels

Layout, style, header, label
cmdset 1
coleq 1

colname 4
colname_remainder 1

foreign 2
program_class 1

result 33
result_type 3

rowname 1
Style only

border_block 4
cell_type 4

Let’s focus on two of those dimensions. First, colname,

. collect levelsof colname
Collection: default
Dimension: colname

Levels: displacement 0.foreign 1.foreign _cons

Those look promising. They are the coefficient names from our regression. And, yes, the levels are

strings—displacement, 0.foreign, 1.foreign, and cons. Dimension levels can be either integers

or strings, and the strings can have spaces if you wish.

We apologize for the name colname; it is a bit arcane. It comes from the fact that Stata matrices have

colnames, and this dimension was taken from the colnames on the e(b) matrix saved by regress. We

will also find that many different commands save many different things that need to go into the colname
dimension. There simply is no good name for all the levels that can appear in colname. If it makes you

feel any better, everyone does eventually get used to typing colname.

If you really cannot abide colname, you can actually change it. Type

. collect remap colname = parameters

Now, you can type parameters instead of colname.

Second, the dimension, result, sounds truly promising.

. collect levelsof result
Collection: default
Dimension: result

Levels: F N _r_b _r_ci _r_df _r_lb _r_p _r_se _r_ub _r_z _r_z_abs beta
cmd cmdline depvar df_m df_r estat_cmd ll ll_0 marginsok model
mss predict properties r2 r2_a rank rmse rss sum_w title vce

That is a lot to figure out. We recognize some things: r2 sounds as if it might be “𝑅2”, and rmse might

be “Root mean squared error”. What about those underscore things— r b, r se, r ci. We might

guess. Let’s not. Let’s use another command that gives us a bit more information, collect label list.

Collection principles — Tags, dimensions, levels, and layout from first principles 6

. collect label list result, all
Collection: default
Dimension: result

Label: Result
Level labels:

F F statistic
N Number of observations

_r_b Coefficient
_r_ci __LEVEL__% CI
_r_df df
_r_lb __LEVEL__% lower bound
_r_p p-value

_r_se Std. error
_r_ub __LEVEL__% upper bound
_r_z t

_r_z_abs |t|
beta Standardized coefficient
cmd Command

cmdline Command line as typed
depvar Dependent variable

df_m Model DF
df_r Residual DF

estat_cmd Program used to implement estat
ll Log likelihood

ll_0 Log likelihood, constant-only model
marginsok Predictions allowed by margins

model Model
mss Model sum of squares

predict Program used to implement predict
properties Command properties

r2 R-squared
r2_a Adjusted R-squared
rank Rank of VCE
rmse RMSE
rss Residual sum of squares

sum_w Sum of the weights
title Title of output

vce SE method

We have listed all the levels of dimension result and the labels for each level. Now this dimension

does look promising; it includes all the results from the regression. Apparently, level r b is the level

that refers to the coefficients. r se refers to the standard errors of the coefficients. r ci is a little

odd because apparently it contains a placeholder for the level of significance. Regardless, it looks like a

confidence interval. Many of the levels are a one-to-one match with the names of the e() results—df m,
df r, ll, r2, In fact, all the e() results are here, and they have the same names they had in e().

We say all the e() results, but that is not quite true. e(V) is excluded unless you explicitly collect it.

Why would we need the full VCE? Also, e(b) is not here. It is effectively here because you can use the

level r b to access the coefficient values.

It seems as if we have enough information to pull some values out of the collection using their tags.

Let’s pull the value for 𝑅2. From the listing above, we know the dimension (result) and level (r2) of
its tag.

Collection principles — Tags, dimensions, levels, and layout from first principles 7

. collect layout (result[r2])
Collection: default

Rows: result[r2]
Table 1: 1 x 1

R-squared .5004596

How about grabbing all the results by just using the whole result dimension.

. collect layout (result)
Collection: default

Rows: result
Table 1: 24 x 1

F statistic 35.56533
Number of observations 74
Standardized coefficient -.7447313
Command regress
Command line as typed regress mpg displacement i.foreign
Dependent variable mpg
Model DF 2
Residual DF 71
Program used to implement estat regress_estat
Log likelihood -208.7139
Log likelihood, constant-only model -234.3943
Predictions allowed by margins XB default
Model ols
Model sum of squares 1222.853
Program used to implement predict regres_p
Command properties b V
R-squared .5004596
Adjusted R-squared .4863881
Rank of VCE 3
RMSE 4.146281
Residual sum of squares 1220.607
Sum of the weights 74
Title of output Linear regression
SE method ols

Well, that is both more and less than we probably expected. Regarding the “more”, we probably do not

care about “Command” or “Command line” or several of the other string results (really macro results).

Let’s ask specifically for what we want and for the order we want.

. collect layout (result[N F df_r df_m r2 r2_a rmse ll])
Collection: default

Rows: result[N F df_r df_m r2 r2_a rmse ll]
Table 1: 8 x 1

Number of observations 74
F statistic 35.56533
Residual DF 71
Model DF 2
R-squared .5004596
Adjusted R-squared .4863881
RMSE 4.146281
Log likelihood -208.7139

Collection principles — Tags, dimensions, levels, and layout from first principles 8

More importantly, where are our coefficients? The answer is that no coefficient can be uniquely iden-

tified by just the tag result[r b]. There were three coefficients in our model, one for displacement,
one for 1.foreign, and one for cons. Tag result[r b] refers to all of those, but collect layout
needs us to tell it where each of those coefficients goes in the table. We have not done that. Just as we

needed both a row and a column dimension to create our table in Basic concepts, we need another dimen-

sion to create a table with coefficients. Recall that the colname dimension enumerated the coefficient

names; that is what we need.

. collect layout (colname) (result[_r_b])
Collection: default

Rows: colname
Columns: result[_r_b]
Table 1: 4 x 1

Coefficient

Displacement (cu. in.) -.0469161
Domestic 0
Foreign -.8006817
Intercept 30.79176

We put the colname dimension on our table’s rows and the result dimension on our table’s columns.

We also limited the result dimension to the level r b.

Let’s get a more complete regression table by adding some levels to the result dimension.

. collect layout (colname) (result[_r_b _r_se _r_p _r_ci])
Collection: default

Rows: colname
Columns: result[_r_b _r_se _r_p _r_ci]
Table 1: 4 x 4

Coefficient Std. error p-value 95% CI

Displacement (cu. in.) -.0469161 .0066931 0.000 -.0602618 -.0335704
Domestic 0 0
Foreign -.8006817 1.335711 0.551 -3.464015 1.862651
Intercept 30.79176 1.666592 0.000 27.46867 34.11485

How collect layout processes tag specifications
When we specify layouts, it is helpful to understand what collect layout does with the tags we

specify for the rows and columns. When we type

. collect layout (result[N F r2])

a search is performed to see whether any values are tagged result[N]. If exactly one value with that

tag is found, collect layout creates a row in the table for result[N] and places that value into the

newly created row. If nothing is found with that tag, collect layout does nothing. If more than one

thing with that tag is found, collect layout does nothing. Then, the process repeats for values tagged

result[F] and finally result[r2]. That is it.

https://www.stata.com/manuals/tablescollectionprinciples.pdf#tablesCollectionprinciplesRemarksandexamplesBasicconcepts

Collection principles — Tags, dimensions, levels, and layout from first principles 9

When we type the command

. collect layout (result)

the process is as we just described, but it is done for every level in the dimension result, not just for
the levels N, F, and r2.

Let’s call this process enumerating the levels of a dimension.

Enumerating a single dimension is all that is required for a one-way table, like the one we just speci-

fied. Two-way tables add just a bit to this process. When we type

. collect layout (colname) (result) (1)

the command not only enumerates the levels in dimension colname and result but also interacts all the

levels of colname and result. Let’s specify the levels we want to make this a bit easier to explain.

. collect layout (colname[displacement _cons]) (result[_r_b _r_se r2]) (2)

collect layout begins with the tag colname[displacement], which might form the first row. It

looks sequentially for all pairings of colname[displacement] with the levels of result. It looks first
for values that are tagged colname[displacement] and tagged result[r b]. If it finds exactly one
value, it creates the row for colname[displacement] and the column for result[r b] and places

the value it finds in that row/column position. It then looks for values tagged colname[displacement]
and result[r se]. If it finds exactly one value with those tags, it places that value in the correct row
and column. It then does the same thing for the tags colname[displacement] and result[r2]. That
completes the process for the displacement row in the table.

collect layout then repeats that whole process with colname[cons] to create the potential sec-

ond row in the table.

Why do we say “potential” second row? Because it is possible that for some pairings of the levels of

colname and result, collect layout will not find a unique value. Or that it will always find multiple

values. If either happens for a whole row or column, then that row or column is not created.

The whole process is hardly different when we type

. collect layout (colname) (result) (3)

In this case, collect layout enumerates over all the levels of result within all the levels of

colname, rather than just the three levels of result[b r b se r2] within the two levels of

colname[displacement cons], which we explicitly specified in (2).

An important thing to realize is that collect layout must find exactly one thing or it does nothing.

Why can’t it handle finding more than one thing? The row and column arguments to collect layout
specify both what to look for and where to put it. Each level from the row specification is a possible

row for the table. Each level from the column specification is a possible column for the table. Finding

multiple values for a row and column combination means that we have not told collect layout where

those values go. It means that we have not included enough dimensions in our specification.

We can also tell you that in (2) our use of r2 in result[r b r se r2] had no effect on the table. It

yields exactly the same table as typing result[r b r se]. Type it and see. Why? Because the value

of 𝑅2 is a model statistic, not a coefficient. It is not tagged with any specific variable. It is not tagged

with colname[displacement] or with colname[cons]. You cannot find model statistics when the

result dimension is interacted with colname. More on that in The process in practice.

https://www.stata.com/manuals/tablescollectionprinciples.pdf#tablesCollectionprinciplesRemarksandexampleseq2
https://www.stata.com/manuals/tablescollectionprinciples.pdf#tablesCollectionprinciplesRemarksandexampleseq2
https://www.stata.com/manuals/tablescollectionprinciples.pdf#tablesCollectionprinciplesRemarksandexamplesTheprocessinpractice

Collection principles — Tags, dimensions, levels, and layout from first principles 10

collect layout always interacts row and column specifications. That is really what makes a table

a table. We can also explicitly specify interactions. That lets us create multiway tables rather than just

two-way tables.

The process in practice
Our collection currently has a single regression. What if we wanted to compare that regression with

another regression? Let’s add weight to our regression and collect those results.

. collect: regress mpg displacement i.foreign weight
Source SS df MS Number of obs = 74

F(3, 70) = 45.88
Model 1619.71935 3 539.906448 Prob > F = 0.0000

Residual 823.740114 70 11.7677159 R-squared = 0.6629
Adj R-squared = 0.6484

Total 2443.45946 73 33.4720474 Root MSE = 3.4304

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129

foreign
Foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699

weight -.0067745 .0011665 -5.81 0.000 -.0091011 -.0044479
_cons 41.84795 2.350704 17.80 0.000 37.15962 46.53628

We might want to see how the additional covariate affects the coefficient on displacement.

. collect layout (colname) (result[_r_b _r_se _r_p _r_ci])
Collection: default

Rows: colname
Columns: result[_r_b _r_se _r_p _r_ci]
Table 1: 1 x 4

Coefficient Std. error p-value 95% CI

Weight (lbs.) -.0067745 .0011665 0.000 -.0091011 -.0044479

That is disappointing. We typed just what we typed to create a table from a single regression. We added

another whole regression, and we get just one row?

Let’s apply what we learned in How collect layout processes tag specifications. The first thing

collect layout searched for was the first level of dimension colname interacted with the first specified
level of dimension result. That would be the two tags colname[displacement] and result[r b].
That search finds two values: −0.047 from the first regression and 0.002 from the second regression.

collect layout did not find a unique value, so it did nothing. That same thing happens when collect
layout searches for colname[displacement] in combination with result[r se], result[r p],
and result[r ci]. So there is nothing to report for the whole potential first row. The whole sequence
happens again for the second level of colname—colname[0.foreign]. Two values are again found

for each of the specified levels of result.

The only time collect layout finds a single value for each level of result is when it enumerates

the weight level of dimension colname. That is the only coefficient that appears in only one of our

two regressions. We clearly need to somehow add a dimension to our table, a dimension whose levels

represent our regressions.

https://www.stata.com/manuals/tablescollectionprinciples.pdf#tablesCollectionprinciplesRemarksandexamplesHowcollectlayoutprocessestagspecifications

Collection principles — Tags, dimensions, levels, and layout from first principles 11

Let’s again list all the dimensions in our collection and see whether there is anything promising.

. collect dims
Collection dimensions
Collection: default

Dimension No. levels

Layout, style, header, label
cmdset 2
coleq 1

colname 5
colname_remainder 1

foreign 2
program_class 1

result 33
result_type 3

rowname 1
Style only

border_block 4
cell_type 4

cmdset looks promising. Let’s learn a bit more about that dimension.

. collect label list cmdset, all
Collection: default
Dimension: cmdset

Label: Command results index
Level labels:

1
2

We see Command results index, which does indeed look promising.

How do we add that dimension? We previously hinted that multiway tables could be specified by

interacting additional dimensions with those already specified on the rows or columns. We perform that

interaction using the same operator we use to create interactions in factor variables—#.

Collection principles — Tags, dimensions, levels, and layout from first principles 12

Let’s try interacting dimension cmdset with dimension colname. We will interact with colname
because it is on the row dimension and we do not have room for any more columns.

. collect layout (colname#cmdset) (result[_r_b _r_se _r_p _r_ci])
Collection: default

Rows: colname#cmdset
Columns: result[_r_b _r_se _r_p _r_ci]
Table 1: 14 x 4

Coefficient Std. error p-value 95% CI

Displacement (cu. in.)
1 -.0469161 .0066931 0.000 -.0602618 -.0335704
2 .0019286 .0100701 0.849 -.0181556 .0220129

Domestic
1 0 0
2 0 0

Foreign
1 -.8006817 1.335711 0.551 -3.464015 1.862651
2 -1.600631 1.113648 0.155 -3.821732 .6204699

Weight (lbs.)
2 -.0067745 .0011665 0.000 -.0091011 -.0044479

Intercept
1 30.79176 1.666592 0.000 27.46867 34.11485
2 41.84795 2.350704 0.000 37.15962 46.53628

That is not bad. We have all the coefficients, standard errors, 𝑝-values, and confidence intervals from

both regressions. They are not exactly organized the way they are in most comparative regression tables.

Let’s go for that organization. We will need to put the dimension cmdset onto the columns, and then

interact the coefficient names (dimension colname) with the statistics (dimension result) on the rows.
We have room on the rows, so let’s just ask for all the levels of dimension result.

Collection principles — Tags, dimensions, levels, and layout from first principles 13

. collect layout (colname#result) (cmdset)
Collection: default

Rows: colname#result
Columns: cmdset
Table 1: 48 x 2

1 2

Displacement (cu. in.)
Coefficient -.0469161 .0019286
95% CI -.0602618 -.0335704 -.0181556 .0220129
df 71 70
95% lower bound -.0602618 -.0181556
p-value 0.000 0.849
Std. error .0066931 .0100701
95% upper bound -.0335704 .0220129
t -7.01 0.19
|t| 7.01 0.19
Standardized coefficient -.7447313 .0306148

Domestic
Coefficient 0 0
df
Std. error 0 0
Standardized coefficient 0 0

Foreign
Coefficient -.8006817 -1.600631
95% CI -3.464015 1.862651 -3.821732 .6204699
df 71 70
95% lower bound -3.464015 -3.821732
p-value 0.551 0.155
Std. error 1.335711 1.113648
95% upper bound 1.862651 .6204699
t -0.60 -1.44
|t| 0.60 1.44
Standardized coefficient -.0636875 -.1273168

Weight (lbs.)
Coefficient -.0067745
95% CI -.0091011 -.0044479
df 70
95% lower bound -.0091011
p-value 0.000
Std. error .0011665
95% upper bound -.0044479
t -5.81
|t| 5.81
Standardized coefficient -.9100491

Intercept
Coefficient 30.79176 41.84795
95% CI 27.46867 34.11485 37.15962 46.53628
df 71 70
95% lower bound 27.46867 37.15962
p-value 0.000 0.000
Std. error 1.666592 2.350704
95% upper bound 34.11485 46.53628
t 18.48 17.80
|t| 18.48 17.80

Collection principles — Tags, dimensions, levels, and layout from first principles 14

That is most of what we would want in a comparative regression table and a bit more. We probably do

not want both the confidence interval and separately its upper and lower bound. Folks would disagree

about which among the standard error, 𝑡 statistic, 𝑝-values, and confidence interval should be included.
More importantly, where are the overall model 𝐹 statistic, the 𝑅2, and the other model results? We

saw earlier that these are in the result dimension, and we asked for everything in the result dimension.

This again comes down to how collect layout constructs the table by enumerating the levels in

the specified dimensions. We discussed earlier that the row specification is interacted with the column

specification. We specifically requested an interaction of colname and result on the rows. So, because

collect layout enumerates all combinations of cmdset, colname, and result, it is always trying to
find a unique value for a specific level of each of these dimensions.

If we want overall model results, the problem with the fully interacted enumeration is that it always

includes a level for colname. Model results cannot be tagged with a colname. They are not associated
with any variable or other parameter. We need to ask for results that do not include a colname. Easy
enough; we never said that the dimensions in row or column specifications had to be interacted. They can

also be stacked, one after the other. We can add the result dimension to our row specification again,

but this time not interacting it with colname.

. collect layout (colname#result result) (cmdset)

We have added a whole new set of enumerations to our table. After enumerating all possible combina-

tions of the levels of colname, result, and cmdset, collect layout will then enumerate all possible

combinations of just result and cmdset.

Before we run that, let’s put back our request for a subset of the levels of result when interacted

with colname. We will leave all the model results, just to see what is there.

. collect layout (colname#result[_r_b _r_se _r_z _r_p] result) (cmdset)

Okay, we, the authors, tried that, and the result will not fit in the width of the page you are reading.

So let’s ask for only one of our regressions first, just so we can see what is there.

Collection principles — Tags, dimensions, levels, and layout from first principles 15

. collect layout (colname#result[_r_b _r_se _r_z _r_p] result) (cmdset[1])
Collection: default

Rows: colname#result[_r_b _r_se _r_z _r_p] result
Columns: cmdset[1]
Table 1: 42 x 1

1

Displacement (cu. in.)
Coefficient -.0469161
Std. error .0066931
t -7.01
p-value 0.000

Domestic
Coefficient 0
Std. error 0

Foreign
Coefficient -.8006817
Std. error 1.335711
t -0.60
p-value 0.551

Intercept
Coefficient 30.79176
Std. error 1.666592
t 18.48
p-value 0.000

F statistic 35.56533
Number of observations 74
Standardized coefficient -.7447313
Command regress
Command line as typed regress mpg displacement i.foreign
Dependent variable mpg
Model DF 2
Residual DF 71
Program used to implement estat regress_estat
Log likelihood -208.7139
Log likelihood, constant-only model -234.3943
Predictions allowed by margins XB default
Model ols
Model sum of squares 1222.853
Program used to implement predict regres_p
Command properties b V
R-squared .5004596
Adjusted R-squared .4863881
Rank of VCE 3
RMSE 4.146281
Residual sum of squares 1220.607
Sum of the weights 74
Title of output Linear regression
SE method ols

Goodness, that even includes the command line as typed. For our comparison, let’s request a subset

of the model results by specifying specific levels of dimension result.

Collection principles — Tags, dimensions, levels, and layout from first principles 16

. collect layout (colname#result[_r_b _r_se _r_z _r_p] result[N F r2 ll])
> (cmdset)
Collection: default

Rows: colname#result[_r_b _r_se _r_z _r_p] result[N F r2 ll]
Columns: cmdset
Table 1: 27 x 2

1 2

Displacement (cu. in.)
Coefficient -.0469161 .0019286
Std. error .0066931 .0100701
t -7.01 0.19
p-value 0.000 0.849

Domestic
Coefficient 0 0
Std. error 0 0

Foreign
Coefficient -.8006817 -1.600631
Std. error 1.335711 1.113648
t -0.60 -1.44
p-value 0.551 0.155

Weight (lbs.)
Coefficient -.0067745
Std. error .0011665
t -5.81
p-value 0.000

Intercept
Coefficient 30.79176 41.84795
Std. error 1.666592 2.350704
t 18.48 17.80
p-value 0.000 0.000

Number of observations 74 74
F statistic 35.56533 45.88031
R-squared .5004596 .6628796
Log likelihood -208.7139 -194.1637

There is a lot we could do to make this table prettier. You can learn about that by reading the examples

in this manual. What we hope is that you are now more comfortable with how and why “you just use

tags organized into the levels of dimensions to request tabular results.”

Also see
[TABLES] Intro 2 —A tour of concepts and commands

[TABLES] collect layout — Specify table layout for the current collection

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2
https://www.stata.com/manuals/tablescollectlayout.pdf#tablescollectlayout
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

