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Description
Stata’s suite of estimation commands for survey data use the most commonly used variance estima-

tion techniques: bootstrap, balanced repeated replication, jackknife, successive difference replication,
and linearization. The bootstrap, balanced repeated replication, jackknife, and successive difference
replication techniques are known as replication methods in the survey literature. We stick with that
nomenclature here, but note that these techniques are also known as resampling methods. This entry
discusses the details of these variance estimation techniques.

Also see Cochran (1977), Wolter (2007), and Shao and Tu (1995) for some background on these
variance estimators.

Remarks and examples stata.com

Remarks are presented under the following headings:

Variance of the total
Stratified single-stage design
Stratified two-stage design

Variance for census data
Certainty sampling units
Strata with one sampling unit
Ratios and other functions of survey data

Revisiting the total estimator
The ratio estimator
A note about score variables

Linearized/robust variance estimation
The bootstrap
BRR
The jackknife

The delete-one jackknife
The delete-k jackknife

Successive difference replication
Confidence intervals

Variance of the total

This section describes the methods and formulas for svy: total. The variance estimators not
using replication methods use the variance of a total as an important ingredient; this section therefore
also introduces variance estimation for survey data.

We will discuss the variance estimators for two complex survey designs:

1. The stratified single-stage design is the simplest design that has the elements present in most
complex survey designs.

2. Adding a second stage of clustering to the previous design results in a variance estimator for
designs with multiple stages of clustered sampling.
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2 variance estimation — Variance estimation for survey data

Stratified single-stage design

The population is partitioned into groups called strata. Clusters of observations are randomly
sampled—with or without replacement—from within each stratum. These clusters are called primary
sampling units (PSUs). In single-stage designs, data are collected from every member of the sampled
PSUs. When the observed data are analyzed, sampling weights are used to account for the survey
design. If the PSUs were sampled without replacement, a finite population correction (FPC) is applied
to the variance estimator.

The svyset syntax to specify this design is

svyset psu [pweight=weight], strata(strata) fpc(fpc)

The stratum identifiers are contained in the variable named strata, PSU identifiers are contained in
variable psu, the sampling weights are contained in variable weight, and the values for the FPC are
contained in variable fpc.

Let h = 1, . . . , L count the strata and (h, i) denote the ith PSU in stratum h, where i = 1, . . . , Nh
and Nh is the number of PSUs in stratum h. Let (h, i, j) denote the jth individual from PSU (h, i)
and Mhi be the number of individuals in PSU (h, i); then

M =

L∑
h=1

Nh∑
i=1

Mhi

is the number of individuals in the population. Let Yhij be a survey item for individual (h, i, j); for
example, Yhij might be income for adult j living in block i of county h. The associated population
total is

Y =

L∑
h=1

Nh∑
i=1

Mhi∑
j=1

Yhij

Let yhij denote the items for individuals who are members of the sampled PSUs; here h = 1,
. . . , L; i = 1, . . . , nh; and j = 1, . . . , mhi. The number of individuals in the sample (number of
observations) is

m =

L∑
h=1

nh∑
i=1

mhi

The estimator for Y is

Ŷ =

L∑
h=1

nh∑
i=1

mhi∑
j=1

whijyhij

where whij is a sampling weight, and its unadjusted value for this design is whij = Nh/nh. The
estimator for the number of individuals in the population (population size) is

M̂ =

L∑
h=1

nh∑
i=1

mhi∑
j=1

whij
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The estimator for the variance of Ŷ is

V̂ (Ŷ ) =

L∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(yhi − yh)2 (1)

where yhi is the weighted total for PSU (h, i),

yhi =

mhi∑
j=1

whijyhij

and yh is the mean of the PSU totals for stratum h:

yh =
1

nh

nh∑
i=1

yhi

The factor (1−fh) is the FPC for stratum h, and fh is the sampling rate for stratum h. The sampling
rate fh is derived from the variable specified in the fpc() option of svyset. If an FPC variable is
not svyset, then fh = 0. If an FPC variable is set and its values are greater than or equal to nh,
then the variable is assumed to contain the values of Nh, and fh is given by fh = nh/Nh. If its
values are less than or equal to 1, then the variable is assumed to contain the sampling rates fh.

If multiple variables are supplied to svy: total, covariances are also computed. The estimator
for the covariance between Ŷ and X̂ (notation for X is defined similarly to that of Y ) is

Ĉov(Ŷ , X̂) =

L∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(yhi − yh)(xhi − xh)

Stratified two-stage design

The population is partitioned into strata. PSUs are randomly sampled without replacement from within
each stratum. Clusters of observations are then randomly sampled—with or without replacement—
from within the sampled PSUs. These clusters are called secondary sampling units (SSUs). Data are then
collected from every member of the sampled SSUs. When the observed data are analyzed, sampling
weights are used to account for the survey design. Each sampling stage provides a component to the
variance estimator and has its own FPC.

The svyset syntax to specify this design is

svyset psu [pweight=weight], strata(strata) fpc(fpc1) || ssu, fpc(fpc2)

The stratum identifiers are contained in the variable named strata, PSU identifiers are contained in
variable psu, the sampling weights are contained in variable weight, the values for the FPC for the
first sampling stage are contained in variable fpc1, SSU identifiers are contained in variable ssu, and
the values for the FPC for the second sampling stage are contained in variable fpc2.

The notation for this design is based on the previous notation. There still are L strata, and (h, i)
identifies the ith PSU in stratum h. Let Mhi be the number of SSUs in PSU (h, i), Mhij be the number
of individuals in SSU (h, i, j), and

M =

L∑
h=1

Nh∑
i=1

Mhi∑
j=1

Mhij
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be the population size. Let Yhijk be a survey item for individual (h, i, j, k); for example, Yhijk might
be income for adult k living in block j of county i of state h. The associated population total is

Y =

L∑
h=1

Nh∑
i=1

Mhi∑
j=1

Mhij∑
k=1

Yhijk

Let yhijk denote the items for individuals who are members of the sampled SSUs; here h = 1,
. . . , L; i = 1, . . . , nh; j = 1, . . . , mhi; and k = 1, . . . , mhij . The number of observations is

m =

L∑
h=1

nh∑
i=1

mhi∑
j=1

mhij

The estimator for Y is

Ŷ =

L∑
h=1

nh∑
i=1

mhi∑
j=1

mhij∑
k=1

whijkyhijk

where whijk is a sampling weight, and its unadjusted value for this design is

whijk =

(
Nh
nh

)(
Mhi

mhi

)
The estimator for the population size is

M̂ =

L∑
h=1

nh∑
i=1

mhi∑
j=1

mhij∑
k=1

whijk

The estimator for the variance of Ŷ is

V̂ (Ŷ ) =

L∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(yhi − yh)2

+

L∑
h=1

fh

nh∑
i=1

(1− fhi)
mhi

mhi − 1

mhi∑
j=1

(yhij − yhi)2
(2)

where yhi is the weighted total for PSU (h, i); yh is the mean of the PSU totals for stratum h; yhij
is the weighted total for SSU (h, i, j),

yhij =

mhij∑
k=1

whijkyhijk

and yhi is the mean of the SSU totals for PSU (h, i),

yhi =
1

mhi

mhi∑
j=1

yhij
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Equation (2) is equivalent to (1) with an added term representing the increase in variability because
of the second stage of sampling. The factor (1− fh) is the FPC, and fh is the sampling rate for the
first stage of sampling. The factor (1− fhi) is the FPC, and fhi is the sampling rate for PSU (h, i).
The sampling rate fhi is derived in the same manner as fh.

If multiple variables are supplied to svy: total, covariances are also computed. For estimated
totals Ŷ and X̂ (notation for X is defined similarly to that of Y ), the covariance estimator is

Ĉov(Ŷ , X̂) =

L∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(yhi − yh)(xhi − xh)

+

L∑
h=1

fh

nh∑
i=1

(1− fhi)
mhi

mhi − 1

mhi∑
j=1

(yhij − yhi)(xhij − xhi)

On the basis of the formulas (1) and (2), writing down the variance estimator for a survey design
with three or more stages is a matter of deriving the variance component for each sampling stage.
The sampling units from a given stage pose as strata for the next sampling stage.

All but the last stage must be sampled without replacement to get nonzero variance components
from each stage of clustered sampling. For example, if fh = 0 in (2), the second stage contributes
nothing to the variance estimator.

Variance for census data
The point estimates that result from the analysis of census data, in which the entire population

was sampled without replacement, are the population’s parameters instead of random variables. As
such, there is no sample-to-sample variation if we consider the population fixed. Here the sampling
fraction is one; thus, if the FPC variable you svyset for the first sampling stage is one, Stata will
report a standard error of zero.

Certainty sampling units

Stata’s svy commands identify strata with an FPC equal to one as units sampling with certainty.
To properly determine the design degrees of freedom, certainty sampling units should be contained
within their own strata, one for each certainty unit, in each sampling stage. Although the observations
contained in certainty units from a given sampling stage play a role in parameter estimation, they
contribute nothing to the variance for that stage.

Strata with one sampling unit

By default, Stata’s svy commands report missing standard errors when they encounter a stratum
with one sampling unit. Although the best way to solve this problem is to reassign the sampling unit
to another appropriately chosen stratum, there are three automatic alternatives that you can choose
from, in the singleunit() option, when you svyset your data.

singleunit(certainty) treats the strata with single sampling units as certainty units.

singleunit(scaled) treats the strata with single sampling units as certainty units but multiplies
the variance components from each stage by a scaling factor. For a given sampling stage, suppose
that L is the total number of strata, Lc is the number of certainty strata, and Ls is the number
of strata with one sampling unit, and then the scaling factor is (L− Lc)/(L− Lc − Ls). Using
this scaling factor is the same as using the average of the variances from the strata with multiple
sampling units for each stratum with one sampling unit.
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singleunit(centered) specifies that strata with one sampling unit are centered at the population
mean instead of the stratum mean. The quotient nh/(nh− 1) in the variance formula is also taken
to be 1 if nh = 1.

Ratios and other functions of survey data

Shah (2004) points out a simple procedure for deriving the linearized variance for functions of
survey data that are continuous functions of the sampling weights. Let θ be a (possibly vector-valued)
function of the population data and θ̂ be its associated estimator based on survey data.

1. Define the jth observation of the score variable by

zj =
∂θ̂

∂wj

If θ̂ is implicitly defined through estimating equations, zj can be computed by taking the partial
derivative of the estimating equations with respect to wj .

2. Define the weighted total of the score variable by

Ẑ =

m∑
j=1

wjzj

3. Estimate the variance V (Ẑ) by using the design-based variance estimator for the total Ẑ. This
variance estimator is an approximation of V (θ̂).

Revisiting the total estimator

As a first example, we derive the variance of the total from a stratified single-stage design. Here
you have θ̂ = Ŷ , and deriving the score variable for Ŷ results in the original values of the variable
of interest.

zj(θ̂) = zj(Ŷ ) =
∂Ŷ

∂wj
= yj

Thus you trivially recover the variance of the total given in (1) and (2).

The ratio estimator

The estimator for the population ratio is

R̂ =
Ŷ

X̂

and its score variable is

zj(R̂) =
∂R̂

∂wj
=
yj − R̂ xj

X̂

Plugging this into (1) or (2) results in a variance estimator that is algebraically equivalent to the
variance estimator derived from directly applying the delta method (a first-order Taylor expansion
with respect to y and x)

V̂ (R̂) =
1

X̂2

{
V̂ (Ŷ )− 2R̂ Ĉov(Ŷ , X̂) + R̂2 V̂ (X̂)

}
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A note about score variables

The functional form of the score variable for each estimation command is detailed in the Methods
and formulas section of its manual entry; see [R] total, [R] ratio, and [R] mean.

Although Deville (1999) and Demnati and Rao (2004) refer to zj as the linearized variable, here
it is referred to as the score variable to tie it more closely to the model-based estimators discussed
in the following section.

Linearized/robust variance estimation
The regression models for survey data that allow the vce(linearized) option use linearization-

based variance estimators that are natural extensions of the variance estimator for totals. For gen-
eral background on regression and generalized linear model analysis of complex survey data, see
Binder (1983); Cochran (1977); Fuller (1975); Godambe (1991); Kish and Frankel (1974); Särndal,
Swensson, and Wretman (1992); and Skinner (1989).

Suppose that you observed (Yj ,xj) for the entire population and are interested in modeling the
relationship between Yj and xj by the vector of parameters β that solve the following estimating
equations:

G(β) =

M∑
j=1

S(β;Yj ,xj) = 0

For ordinary least squares, G(β) is the normal equations

G(β) = X ′Y −X ′Xβ = 0

where Y is the vector of outcomes for the full population and X is the matrix of explanatory variables
for the full population. For a pseudolikelihood model—such as logistic regression—G(β) is the first
derivative of the log-pseudolikelihood function with respect to β. Estimate β by solving for β̂ from
the weighted sample estimating equations

Ĝ(β) =

m∑
j=1

wjS(β; yj ,xj) = 0 (3)

The associated estimation command with iweights will produce point estimates β̂ equal to the
solution of (3).

A first-order matrix Taylor-series expansion yields

β̂− β ≈ −

{
∂Ĝ(β)

∂β

}−1
Ĝ(β)

with the following variance estimator for β̂:

V̂ (β̂) =

{∂Ĝ(β)
∂β

}−1
V̂ {Ĝ(β)}

{
∂Ĝ(β)

∂β

}−T ∣∣∣∣∣
β=β̂

= DV̂ {Ĝ(β)}

∣∣∣∣∣
β=β̂

D′

http://www.stata.com/manuals/rtotal.pdf#rtotal
http://www.stata.com/manuals/rratio.pdf#rratio
http://www.stata.com/manuals/rmean.pdf#rmean
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where D is (X ′sWXs)
−1 for linear regression (where W is a diagonal matrix of the sampling weights

and Xs is the matrix of sampled explanatory variables) or the inverse of the negative Hessian matrix
from the pseudolikelihood model. Write Ĝ(β) as

Ĝ(β) =

m∑
j=1

wjdj

where dj = sjxj and sj is a residual for linear regression or an equation-level score from the
pseudolikelihood model. The term equation-level score means the derivative of the log pseudolikelihood
with respect to xjβ. In either case, Ĝ(β̂) is an estimator for the total G(β), and the variance estimator
V̂ {Ĝ(β)}|

β=β̂
is computed using the design-based variance estimator for a total.

The above result is easily extended to models with ancillary parameters, multiple regression
equations, or both.

The bootstrap

The bootstrap methods for survey data used in recent years are largely due to McCarthy and
Snowden (1985), Rao and Wu (1988), and Rao, Wu, and Yue (1992). For example, Yeo, Mantel,
and Liu (1999) cite Rao, Wu, and Yue (1992) with the method for variance estimation used in the
National Population Health Survey conducted by Statistics Canada.

In the survey bootstrap, the model is fit multiple times, once for each of a set of adjusted sampling
weights that mimic bootstrap resampling. The variance is estimated using the resulting replicated
point estimates.

Let θ̂ be the vector of point estimates computed using the sampling weights for a given survey
dataset (for example, θ̂ could be a vector of means, ratios, or regression coefficients). Each bootstrap
replicate is produced by fitting the model with adjusted sampling weights. The adjusted sampling
weights are derived from the method used to resample the original survey data.

According to Yeo, Mantel, and Liu (1999), if nh is the number of observed PSUs in stratum h,
then nh − 1 PSUs are sampled with replacement from within stratum h. This sampling is performed
independently across the strata to produce one bootstrap sample of the survey data. Let r be the
number of bootstrap samples. Suppose that we are about to generate the adjusted-weight variable for
the ith bootstrap replication and whij is the sampling weight attached to the jth observation in the
ith PSU of stratum h. The adjusted weight is

w∗hij =
nh

nh − 1
m∗hiwhij

where m∗hi is the number of times the ith cluster in stratum h was resampled.

To accommodate privacy concerns, many public-use datasets contain replicate-weight variables
derived from the “mean bootstrap” described by Yung (1997). In the mean bootstrap, each adjusted
weight is derived from b bootstrap samples instead of one. The adjusted weight is

w∗hij =
nh

nh − 1
m∗hiwhij

where

m∗hi =
1

b

b∑
k=1

m∗hik
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is the average of the number of times the ith cluster in stratum h was resampled among the b bootstrap
samples.

Each replicate is produced using an adjusted-weight variable with the estimation command that
computed θ̂. The adjusted-weight variables must be supplied to svyset with the bsrweight() option.
For the mean bootstrap, b must also be supplied to svyset with the bsn() option; otherwise, bsn(1)
is assumed. We call the variables supplied to the bsrweight() option bootstrap replicate-weight
variables when b = 1 and mean bootstrap replicate-weight variables when b > 1.

Let θ̂(i) be the vector of point estimates from the ith replication. When the mse option is specified,
the variance estimator is

V̂ (θ̂) =
b

r

r∑
i=1

{θ̂(i) − θ̂}{θ̂(i) − θ̂}′

Otherwise, the variance estimator is

V̂ (θ̂) =
b

r

r∑
i=1

{θ̂(i) − θ(.)}{θ̂(i) − θ(.)}′

where θ(.) is the bootstrap mean,

θ(.) =
1

r

r∑
i=1

θ̂(i)

BRR
BRR was first introduced by McCarthy (1966, 1969a, and 1969b) as a method of variance estimation

for designs with two PSUs in every stratum. The BRR variance estimator tends to give more reasonable
variance estimates for this design than the linearized variance estimator, which can result in large
values and undesirably wide confidence intervals.

The model is fit multiple times, once for each of a balanced set of combinations where one PSU is
dropped (or downweighted) from each stratum. The variance is estimated using the resulting replicated
point estimates (replicates). Although the BRR method has since been generalized to include other
designs, Stata’s implementation of BRR requires two PSUs per stratum.

Let θ̂ be the vector of point estimates computed using the sampling weights for a given stratified
survey design (for example, θ̂ could be a vector of means, ratios, or regression coefficients). Each BRR
replicate is produced by dropping (or downweighting) a PSU from every stratum. This could result
in as many as 2L replicates for a dataset with L strata; however, the BRR method uses Hadamard
matrices to identify a balanced subset of the combinations from which to produce the replicates.

A Hadamard matrix is a square matrix, Hr (with r rows and columns), such that H ′rHr = rI ,
where I is the identity matrix. The elements of Hr are +1 and −1; −1 causes the first PSU to be
downweighted and +1 causes the second PSU to be downweighted. Thus r must be greater than or
equal to the number of strata.

Suppose that we are about to generate the adjusted-weight variable for the ith replication and wj
is the sampling weight attached to the jth observation, which happens to be in the first PSU of stratum
h. The adjusted weight is

w∗j =

{
fwj , if Hr[i, h] = −1

(2− f)wj , if Hr[i, h] = +1

where f is Fay’s adjustment (Judkins 1990). By default, f = 0.
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Each replicate is produced using an adjusted-weight variable with the estimation command that
computed θ̂. The adjusted-weight variables can be generated by Stata or supplied to svyset with the
brrweight() option. We call the variables supplied to the brrweight() option BRR replicate-weight
variables.

Let θ̂(i) be the vector of point estimates from the ith replication. When the mse option is specified,
the variance estimator is

V̂ (θ̂) =
1

r(1− f)2
r∑
i=1

{θ̂(i) − θ̂}{θ̂(i) − θ̂}′

Otherwise, the variance estimator is

V̂ (θ̂) =
1

r(1− f)2
r∑
i=1

{θ̂(i) − θ(.)}{θ̂(i) − θ(.)}′

where θ(.) is the BRR mean,

θ(.) =
1

r

r∑
i=1

θ̂(i)

The jackknife

The jackknife method for variance estimation is appropriate for many models and survey designs.
The model is fit multiple times, and each time one or more PSUs are dropped from the estimation
sample. The variance is estimated using the resulting replicates (replicated point estimates).

Let θ̂ be the vector of point estimates computed using the sampling weights for a given survey
design (for example, θ̂ could be a vector of means, ratios, or regression coefficients). The dataset
is resampled by dropping one or more PSUs from one stratum and adjusting the sampling weights
before recomputing a replicate for θ̂.

Let whij be the sampling weight for the jth individual from PSU i in stratum h. Suppose that
you are about to generate the adjusted weights for the replicate resulting from dropping k PSUs from
stratum h. The adjusted weight is

w∗abj =


0, if a = h and b is dropped

nh
nh − k

wabj , if a = h and b is not dropped

wabj , otherwise

Each replicate is produced by using the adjusted-weight variable with the estimation command
that produced θ̂. For the delete-one jackknife (where one PSU is dropped for each replicate), adjusted
weights can be generated by Stata or supplied to svyset with the jkrweight() option. For the delete-
k jackknife (where k > 1 PSUs are dropped for each replicate), the adjusted-weight variables must
be supplied to svyset using the jkrweight() option. The variables supplied to the jkrweight()
option are called jackknife replicate-weight variables.
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The delete-one jackknife

Let θ̂(h,i) be the point estimates (replicate) from leaving out the ith PSU from stratum h. The
pseudovalue for replicate (h, i) is

θ̂
∗
h,i = θ̂(h,i) + nh{θ̂− θ̂(h,i)}

When the mse option is specified, the variance estimator is

V̂ (θ̂) =

L∑
h=1

(1− fh)mh

nh∑
i=1

{θ̂(h,i) − θ̂}{θ̂(h,i) − θ̂}′

and the jackknife mean is

θ(.) =
1

n

L∑
h=1

nh∑
i=1

θ̂(h,i)

where fh is the sampling rate and mh is the jackknife multiplier associated with stratum h. Otherwise,
the variance estimator is

V̂ (θ̂) =

L∑
h=1

(1− fh)mh

nh∑
i=1

{θ̂(h,i) − θh}{θ̂(h,i) − θh}′, θh =
1

nh

nh∑
i=1

θ̂(h,i)

and the jackknife mean is

θ
∗
=

1

n

L∑
h=1

nh∑
i=1

θ̂
∗
h,i

The multiplier for the delete-one jackknife is

mh =
nh − 1

nh

The delete-k jackknife

Let θ̃(h,d) be one of the point estimates that resulted from leaving out k PSUs from stratum h. Let
ch be the number of such combinations that were used to generate a replicate for stratum h; then
d = 1, . . . , ch. If all combinations were used, then

ch =
nh!

(nh − k)!k!
The pseudovalue for replicate (h, d) is

θ̃
∗
h,d = θ̃(h,d) + ch{θ̂− θ̃(h,d)}

When the mse option is specified, the variance estimator is

V̂ (θ̂) =

L∑
h=1

(1− fh)mh

ch∑
d=1

{θ̃(h,d) − θ̂}{θ̃(h,d) − θ̂}′

and the jackknife mean is

θ(.) =
1

C

L∑
h=1

ch∑
d=1

θ̃(h,d), C =

L∑
h=1

ch
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Otherwise, the variance estimator is

V̂ (θ̂) =

L∑
h=1

(1− fh)mh

ch∑
d=1

{θ̃(h,d) − θh}{θ̃(h,d) − θh}′, θh =
1

ch

ch∑
d=1

θ̃(h,d)

and the jackknife mean is

θ
∗
=

1

C

L∑
h=1

ch∑
d=1

θ̃
∗
h,d

The multiplier for the delete-k jackknife is

mh =
nh − k
chk

Variables containing the values for the stratum identifier h, the sampling rate fh, and the jackknife
multipliermh can be svyset using the respective suboptions of the jkrweight() option: stratum(),
fpc(), and multiplier().

Successive difference replication

Successive difference replication (SDR) was first introduced by Fay and Train (1995) as a method
of variance estimation for annual demographic supplements to the Current Population Survey. This
method is typically applied to systematic samples, where the observed sampling units are somehow
ordered.

In SDR, the model is fit multiple times, once for each of a set of adjusted sampling weights. The
variance is estimated using the resulting replicated point estimates.

Let θ̂ be the vector of point estimates computed using the sampling weights for a given survey
dataset (for example, θ̂ could be a vector of means, ratios, or regression coefficients). Each SDR
replicate is produced by fitting the model with adjusted sampling weights. The SDR method uses
Hadamard matrices to generate these adjustments.

A Hadamard matrix is a square matrix, Hr (with r rows and columns), such that H ′rHr = rI ,
where I is the identity matrix. Let hij be an element of Hr; then hij = 1 or hij = −1. In SDR, if
n is the number of PSUs, then we must find Hr with r ≥ n+ 2.

Without loss of generality, we will assume the ordered PSUs are individuals instead of clusters.
Suppose that we are about to generate the adjusted-weight variable for the ith replication and that wj
is the sampling weight attached to the jth observation. The adjusted weight is w∗j = fjiwj , where
fji is

fji = 1 +
1

2
√
2
(hj+1,i − hj+2,i)

Here we assume that the elements of the first row of Hr are all 1.

Each replicate is produced using an adjusted-weight variable with the estimation command that
computed θ̂. The adjusted-weight variables must be supplied to svyset with the sdrweight()
option. We call the variables supplied to the sdrweight() option SDR replicate-weight variables.

Let θ̂(i) be the vector of point estimates from the ith replication, and let f be the sampling fraction
computed using the FPC information svyset in the fpc() suboption of the sdrweight() option,
where f = 0 when fpc() is not specified. When the mse option is specified, the variance estimator
is
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V̂ (θ̂) = (1− f)4
r

r∑
i=1

{θ̂(i) − θ̂}{θ̂(i) − θ̂}′

Otherwise, the variance estimator is

V̂ (θ̂) = (1− f)4
r

r∑
i=1

{θ̂(i) − θ(.)}{θ̂(i) − θ(.)}′

where θ(.) is the SDR mean,

θ(.) =
1

r

r∑
i=1

θ̂(i)

Confidence intervals
In survey data analysis, the customary number of degrees of freedom attributed to a test statistic is

d = n−L, where n is the number of PSUs and L is the number of strata. Under regularity conditions,
an approximate 100(1− α)% confidence interval for a parameter θ (for example, θ could be a total,
ratio, or regression coefficient) is

θ̂ ± t1−α/2,d {V̂ (θ̂)}1/2

Cochran (1977, sec. 2.8) and Korn and Graubard (1990) give some theoretical justification for
using d = n− L to compute univariate confidence intervals and p-values. However, for some cases,
inferences based on the customary n−L degrees-of-freedom calculation may be excessively liberal;
the resulting confidence intervals may have coverage rates substantially less than the nominal 1− α.
This problem generally is of the greatest practical concern when the population of interest has a
skewed or heavy-tailed distribution or is concentrated in a few PSUs. In some of these cases, the user
may want to consider constructing confidence intervals based on alternative degrees-of-freedom terms,
based on the Satterthwaite (1941, 1946) approximation and modifications thereof; see, for example,
Cochran (1977, sec. 5.4) and Eltinge and Jang (1996).

Sometimes there is no information on n or L for datasets that contain replicate-weight variables
but no PSU or strata variables. Each of svy’s replication commands has its own default behavior
when the design degrees of freedom are not svyset or specified using the dof() option. svy brr:
and svy jackknife: use d = r − 1, where r is the number of replications. svy bootstrap: and
svy sdr: use z1−α/2 for the critical value instead of t1−α/2,d.
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